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Abstract In this work, the Parareal algorithm is applied to evolution problems that admit good low-rank approximations
and for which the dynamical low-rank approximation (DLRA) can be used as time stepper. Many discrete integrators
for DLRA have recently been proposed, based on splitting the projected vector field or by applying projected Runge–
Kutta methods. The cost and accuracy of these methods are mostly governed by the rank chosen for the approximation.
These properties are used in a new method, called low-rank Parareal, in order to obtain a time-parallel DLRA solver for
evolution problems. The algorithm is analyzed on affine linear problems and the results are illustrated numerically.
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1 Introduction

This work is concerned with the parallel-in-time integration of evolution problems for which the solution can be well
approximated by a time-dependent low-rank matrix. In particular, we aim to solve approximately the evolution problem

.
X(t) = F(t,X(t)), t ∈ [0,T ],

X(0) = X0,
(1)

where X(t) is a matrix of size m×m. When the dimension m is large, the numerical solution of (1) can be very expensive
since the matrix X(t) is usually dense. One way to alleviate this curse of dimensionality is to use low-rank approxima-
tions where, for every t, we approximate X(t) by Y (t) ∈ Rm×m such that rank(Y (t)) = r ≪ m. The accuracy of this
approximation will depend on the choice of the rank r. Here, X(t) is assumed to be square for notational convenience
and all results can be easily formulated for rectangular X(t).

A popular paradigm to solve directly for the low-rank approximation Y (t) is the dynamical low-rank algorithm
(DLRA), first proposed in [25]. As defined later in Def. 5, DLRA leads to an evolution problem that is a projected
version of (1). In the last decade, many discrete integrators for this projected problem have been proposed. One class
of integrators consists in a clever splitting of the projector so that the resulting splitting method can be implemented
efficiently. An influential example is the projector-splitting scheme proposed in [29]. Other methods that require inte-
grating parts of the vector field can be found in [22,4]. Another approach, proposed in [9,24,35], is based on projecting
standard Runge–Kutta methods (sometimes including their intermediate stages). Most of these methods are formulated
for constant rank r. Rank adaptivity can be incorporated without much difficulty for splitting and for projected schemes;
see [9,6,35,3]. Finally, given the importance of DLRA in problems from physics (like the Schrödinger and Vlasov
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equation), the integrators in [29,7] also preserve certain invariants, like energy. However, none of these time integrators
consider a parallel-in-time scheme for DLRA, which is particularly interesting in the large-scale setting.

Parallel computing can be very effective and is even necessary to solve huge-scale problems. While parallelization in
space is well known, also the time direction can be parallelized to some extent when solving evolution problems. Over the
last decades, various parallel-in-time algorithms have been proposed; see, e.g., the overviews [12,32]. Among these, the
Parareal algorithm from [28] is one of the more popular algorithms for time parallelization. It is based on a Newton-like
iteration, with inaccurate but cheap corrections performed sequentially, and accurate but expensive solves performed
in parallel. This idea of solving in parallel an evolution problem as a nonlinear (discretized) system also appears in
related methods like PFASST [8], MGRIT [11] and Space-Time Multi-Grid [17]. Theoretical results and numerical
studies on a large numbers of cores, show that these parallel-in-time methods can have good parallel performance for
parabolic problems; see, e.g., [36,21,16]. So far, these methods did not incorporate a low-rank compression of the space
dimension, which is the main topic of this work.

2 Preliminaries and contributions

2.1 The Parareal algorithm

The Parareal iteration in Def. 1 below is given for constant time step h (hence T = Nh) and for autonomous F . Both
restrictions are not crucial but ease the presentation. The quantity Xk

n is an approximation for X(tn) at time tn = nh and
iteration k. The accuracy of this approximation is expected to improve with increasing k. Here, and throughout the paper,
we denote dependency on the iteration index k as k, which should not be confused with the kth power.

Definition 1 (Parareal) The Parareal algorithm is defined by the following double iteration on k and n,

(Initial value) Xk
0 = X0, (2)

(Initial approximation) X0
n+1 = G h(X0

n ), (3)

(Iteration) Xk+1
n+1 = F h(Xk

n )+G h(Xk+1
n )−G h(Xk

n ). (4)

Here, F h(X) represents a fine (accurate) time stepper applied to the initial value X and propagated until time h. Similarly,
G h(X) represents a coarse (inaccurate) time stepper.

Given two time steppers, the Parareal algorithm is easy to implement. A remarkable property of Parareal is the
convergence in a finite number of steps for k = n. It is well known that Parareal works well on parabolic problems but
behaves worse on hyperbolic problems; see [18] for an analysis.

2.2 Dynamical low-rank approximation

Let Mr denote the set of m×m matrices of rank r, which is a smooth embedded submanifold in Rm×m. Instead of
solving (1), the DLRA solves the following projected problem:

Definition 2 (Dynamical low-rank approximation) For a rank r, the dynamical low-rank approximation of prob-
lem (1) is the solution of

.
Y (t) = PY (t)F(t,Y (t)),

Y (0) = Y0 ∈ Mr,
(5)

where PY is the l2-orthogonal projection onto the tangent space TY Mr of Mr at Y ∈ Mr. In particular, Y (t) ∈ Mr for
every t ∈ [0,T ].

To analyze the approximation error of DLRA, we need the following standard assumptions from [23]. Here, and
throughout the paper, ∥ · ∥ denotes the Frobenius norm.

Assumption 1 (DLRA assumptions) The function F satisfies the following properties for all X ,Y ∈ Rm×m:

– Lipschitz with constant L: ∥F(X)−F(Y )∥ ≤ L∥X −Y∥.
– One-sided Lipschitz with constant ℓ: ⟨X −Y,F(X)−F(Y )⟩ ≤ ℓ∥X −Y∥2.
– Maps almost to the tangent bundle of Mr: ∥F(Y )−PY F(Y )∥ ≤ εr.
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In the analysis in Section 3, it is necessary to have ℓ < 0 for convergence. This holds when F is a discretization
of certain parabolic PDEs, like the heat equation. In particular, for an affine function of the form F(X) = A(X)+B, it
holds ℓ= 1

2 λmax(A+AT ); see [20, Ch. I.10]. The quantity εr is called the modeling error and decreases when the rank r
increases. For our problems of interest, this quantity is typically very small. Finally, the existence of L is only needed to
guarantee the uniqueness of (1) but it will actually not appear in our analysis. We can therefore allow L to be large, as is
the case for discretized parabolic PDEs.

Standard theory for perturbations of ODEs allows us to obtain the following error bound from the assumptions
above:

Theorem 1 (Error of DLRA [23]) Under Assumption 1, the DLRA verifies∥∥∥ψ
h
r (Y0)−φ

h(X0)
∥∥∥≤ eℓt ∥Y0 −X0∥+ εr

∫ t

0
eℓsds, (6)

where φ h is the flow of the original problem (1) and ψh
r is the flow of its DLRA (5) for rank r.

The solution of DLRA (5) is quasi-optimal with the best rank approximation. This can be seen already in Theorem 1
for short time intervals. Similar estimates exist for parabolic problems [5] and for longer time when there is a sufficiently
large gap in the singular values and when their derivatives are bounded [25].

2.3 Contributions

In this paper, we propose a new algorithm, called low-rank Parareal. As far as we know, this is the first parallel-in-time
integrator for low-rank approximations. We analyze the proposed algorithm when the function F in (1) is affine. To this
end, we extend the analysis of the classical Parareal algorithm in [14] to a more general setup where the coarse problem
is different from the fine problem. We can prove that the method converges for big steps (large h) on diffusive problems
(ℓ < 0). In numerical experiments, we confirm this behavior. In addition, the method also performs well empirically with
a less strict condition on h and on a non-affine problem.

3 Low-rank Parareal

We now present our low-rank Parareal algorithm for solving (1). Since the cost of most discrete integrators for DLRA
scales quadratically1 with the approximation rank, we take the coarse time stepper as DLRA with a small rank q.
Likewise, the fine time stepper is DLRA with a large rank r. We can even take r = m, which corresponds to computing
the exact solution as the fine time stepper since Y ∈ Rm×m.

Definition 3 (Low-rank Parareal) Consider two ranks q < r. The low-rank Parareal algorithm iterates

(Initial value) Y k
0 = Y0, (7)

(Initial approximation) Y 0
n+1 = ψ

h
q ◦Tq(Y 0

n )+En, (8)

(Iteration) Y k+1
n+1 = ψ

h
r ◦Tr(Y k

n )+ψ
h
q ◦Tq(Y k+1

n )−ψ
h
q ◦Tq(Y k

n ), (9)

where ψh
r (Z) is the solution of (5) at time h with initial value Y0 = Z, and Tr is the orthogonal projection onto Mr. The

notations ψh
q and Tq are similar but apply to rank q. The matrices En are small perturbations such that rank(Y 0

n+1)= r+2q
and can be chosen randomly.2

Observe that the rank of Y k
n is at most r + 2q for all n,k. The low-rank structure is therefore preserved over the

iterations. The matrices En insure that each iteration has a rank between r and r+ 2q. These matrices impact only the
initial error but do not have any role in the convergence of the algorithm as is shown later in the analysis. An efficient
implementation should store the low-rank matrices in a factorized manner. In this context, the truncated SVD can be
efficiently performed. The DLRA flows ψh

r and ψh
q can only be computed for relatively small problems. For larger

problems, a suitable DLRA integrator must be used; see Section 4 for implementation details.

1 While the actual cost can be larger, at the very least the methods typically compute compact QR factorizations to normalize the approxi-
mations. This costs O(mr2 + r3) flops in our setting.

2 One could even take all initial Y 0
n+1 random, as is sometimes also done in standard Parareal. The important property is rank(Y 0

n+1) = r+2q
so that the low-rank Parareal iterations (9) are performed on the correct manifold.
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3.1 Convergence analysis

Let Xn = X(tn) be the solution of the full problem (1) at time tn. Let Y k
n be the corresponding low-rank Parareal solution

at iteration k. We are interested in bounding the error of the algorithm,

Ek
n = Xn −Y k

n , (10)

for all relevant n and k. To this end, we make the following assumption:

Assumption 2 (Affine vector field) The function F is affine linear and autonomous, that is,

F(X) = A(X)+B

with A : Rm×m → Rm×m a linear operator and B ∈ Rm×m.

The following lemma gives us a recursion for the Frobenius norm of the error. This recursion will be fundamental
in deriving our convergence bounds later on when we generalize the proof for standard Parareal from [14].

Lemma 1 (Iteration of the error) Under the Assumptions 1 and 2, the error of low-rank Parareal verifies∥∥∥Ek+1
n+1

∥∥∥≤ eℓhCr,q

∥∥∥Ek
n

∥∥∥+ eℓhCq

∥∥∥Ek+1
n

∥∥∥+ eℓh max
n≥0

∥Xn −Tr(Xn)∥+(2εq + εr)
∫ h

0
eℓ(h−s)ds. (11)

The constants ℓ,εq,εr are defined in Assumption 1. Moreover, Cr,q and Cq are the Lipschitz constants of Tr −Tq and Tq.

Proof Our proof is similar to the one in [24] where first the continuous version of the approximation error of DLRA is
studied. Denote by φ h(Z) the solution of (1) at time h with initial value Y0 = Z. By definition, the discrete error is

Ek+1
n+1 = φ

h(Xn)−ψ
h
r ◦Tr(Y k

n )−ψ
h
q ◦Tq(Y k+1

n )+ψ
h
q ◦Tq(Y k

n ).

We can interpret each term above as a flow from tn to tn+1 = tn + h. Denote these flows by X(t),Z(t),W (t), and V (t)
with the initial values

X(tn) = Xn, Z(tn) = Tr(Y k
n ), W (tn) = Tq(Y k+1

n ), V (tn) = Tq(Y k
n ). (12)

Defining the continuous error as
E(t) = X(t)−Z(t)−W (t)+V (t),

we then get the identity Ek+1
n+1 = E(tn +h).

We proceed by bounding ∥E(t)∥. By definition of the flows above, we have (omitting the dependence on t in the
notation)

.
E = F(X)−PZF(Z)−PW F(W )+PV F(V )

= F(X −Z −W +V )+F(Z)−PZF(Z)−PW F(W )+F(W )−F(V )+PV F(V ),

where the last equality holds since the function F is affine. Using Assumption 1 and Cauchy–Schwarz, we compute

1
2

d
dt

∥E(t)∥2 =
〈

E,
.

E
〉

= ⟨E,F(E)⟩+ ⟨E,F(Z)−PZF(Z)⟩+ ⟨E,F(W )−PW F(W )⟩−⟨E,F(V )−PV F(V )⟩
≤ ℓ∥E∥2 + εr ∥E∥+2εq ∥E∥ .

Since d
dt ∥E(t)∥2 = 2∥E(t)∥ d

dt ∥E(t)∥, we therefore obtain the differential inequality

d
dt

∥E(t)∥ ≤ ℓ∥E∥+ εr +2εq.

Grönwall’s lemma allows us to conclude

∥E(tn +h)∥ ≤ ∥E(tn)∥eℓh +(2εq + εr)
∫ tn+h

tn
eℓ(h−s)ds. (13)

From (12), we get

E(tn) = Xn −Tr(Y k
n )−Tq(Y k+1

n )+Tq(Y k
n ).
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Denoting T ⊥
r = I −Tr and Tr,q = Tr −Tq, we get after rearranging terms

E(tn) = T ⊥
r (Xn)+Tr(Xn)−Tq(Xn)−Tr(Y k

n )+Tq(Y k
n )+Tq(Xn)−Tq(Y k+1

n )

= T ⊥
r (Xn)+Tr,q(Xn)−Tr,q(Y k

n )+Tq(Xn)−Tq(Y k+1
n ).

Taking norms gives

∥E(tn)∥ ≤
∥∥∥T ⊥

r (Xn)
∥∥∥+∥∥∥Tr,q(Xn)−Tr,q(Y k

n )
∥∥∥−∥∥∥Tq(Xn)−Tq(Y k+1

n )
∥∥∥

≤ max
n≥0

∥∥∥T ⊥
r (Xn)

∥∥∥+Cr,q

∥∥∥Ek
n

∥∥∥+Cq

∥∥∥Ek+1
n

∥∥∥ , (14)

where Cr,q and Cq are the Lipschitz constants of Tr,q and Tq respectively. Combining inequalities (13) and (14) gives
the statement of the lemma.

We now study the error recursion (11) in more detail. To this end, let us slightly rewrite it as∥∥∥Ek+1
n+1

∥∥∥≤ α

∥∥∥Ek
n

∥∥∥+β

∥∥∥Ek+1
n

∥∥∥+κ,
∥∥E0

n
∥∥≤ γ, (15)

with the non-negative constants

α = eℓhCr,q, β = eℓhCq, γ = max
n≥0

∥∥E0
n
∥∥ ,

κ = eℓh max
n≥0

∥Xn −Tr(Xn)∥+(2εq + εr)
∫ h

0
eℓ(h−s)ds.

(16)

Our first result is a linear convergence bound, up to the DLRA approximation error. It is similar to the linear bound
for standard Parareal.

Theorem 2 (Linear convergence) Under the Assumptions 1 and 2, and if α +β < 1, low-rank Parareal verifies for all
k ∈ N the linear bound

max
n≥0

∥∥∥Ek
n

∥∥∥≤ ( α

1−β

)k

max
n≥0

∥∥E0
n
∥∥+ κ

1−α −β
, (17)

where α,β ,κ are defined in (16).

Proof Define ek
⋆ = maxn≥0

∥∥Ek
n
∥∥. Taking the maximum for n ≥ 0 of both sides of (15), we obtain

ek+1
⋆ ≤ αek

⋆+βek+1
⋆ +κ.

By assumption, 0 ≤ β < 1 and we can therefore obtain the recursion

ek+1
⋆ ≤ α

1−β
ek
⋆+

κ

1−β
,

with solution

ek
⋆ ≤

(
α

1−β

)k

e0
⋆+

κ

1−α −β

[
1−
(

α

1−β

)k
]
.

By assumption, we also have 0 ≤ α

1−β
< 1, which allows us to obtain the statement of the theorem.

Next, we present a more refined superlinear bound. To this end, we require the following technical lemma that solves
the equality version of the double iteration (15). A similar result, but without the κ term and only as an upper bound,
already appeared in [14, Thm. 1]. Our proof is therefore similar but more elaborate.

Lemma 2 Let α,β ,γ,κ ∈R be any non-negative constants such that α < 1 and β < 1. Let ek
n be a sequence depending

on n,k ∈ N such that

ek+1
n+1 = αek

n +βek+1
n +κ, e0

n+1 = γ, ek
0 = 0. (18)

Then,

ek
n = κ

k−1

∑
j=0

n− j−1

∑
i=0

(
i+ j

i

)
α

j
β

i +

{
0 if n ≤ k,
γ αk

∑
n−k−1
i=0

(i+k−1
i

)
β i if n ≥ k+1.

(19)
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Proof The idea is to use the generating function ρk(ξ ) = ∑
∞
n=1 ek

nξ n for k ≥ 1. Multiplying (18) by ξ n+1 and summing
over n, we obtain

∞

∑
n=0

ek+1
n+1ξ

n+1 =
∞

∑
n=0

αek
nξ

n+1 +
∞

∑
n=0

βek+1
n ξ

n+1 +
∞

∑
n=0

κξ
n+1,

∞

∑
n=0

e0
n+1ξ

n+1 =
∞

∑
n=0

γξ
n+1.

Since ek
0 = 0 for all k, this gives the relations

ρk+1(ξ ) = αξ ρk(ξ )+βξ ρk+1(ξ )+κ
ξ

1−ξ
, ρ0(ξ ) = γ

ξ

1−ξ
.

We can therefore obtain the linear recurrence

ρk+1(ξ ) = aρk(ξ )+b, where a =
αξ

1−βξ
, b =

κξ

(1−ξ )(1−βξ )
.

Its solution satisfies

ρk(ξ ) =
αkξ k

(1−βξ )k
γξ

1−ξ
+

k−1

∑
j=0

α jξ j

(1−βξ ) j+1
κξ

1−ξ
.

It remains to compute the coefficients in the power series of the above formula since by definition of ρk(ξ ) =

∑
∞
n=1 ek

nξ n they equal the unknowns ek
n. The binomial series formula for |z|< 1,

1
(1− z)k+1 =

∞

∑
i=0

(
i+ k

i

)
zi, (20)

together with the Cauchy product gives

1
(1−βξ )k

1
1−ξ

=
∞

∑
i=0

(
i+ k−1

i

)
β

i
ξ

i ·
∞

∑
i=0

ξ
i =

∞

∑
n=0

(
n

∑
ℓ=0

(
ℓ+ k−1

ℓ

)
β
ℓ

)
ξ

n

1
(1−βξ ) j+1

1
1−ξ

=
∞

∑
i=0

(
i+ j

i

)
β

i
ξ

i ·
∞

∑
i=0

ξ
i =

∞

∑
n=0

(
n

∑
ℓ=0

(
ℓ+ j
ℓ

)
β
ℓ

)
ξ

n.

Hence, the first term in ρk(ξ ) satisfies

αkξ k

(1−βξ )k
γξ

1−ξ
= γα

k
∞

∑
n=0

(
n

∑
ℓ=0

(
ℓ+ k−1

ℓ

)
β
ℓ

)
ξ

n+k+1 = γα
k

∞

∑
n=k+1

(
n−k−1

∑
ℓ=0

(
ℓ+ k−1

ℓ

)
β
ℓ

)
ξ

n,

while the second term can be written as

k−1

∑
j=0

α jξ j

(1−βξ ) j+1
κξ

1−ξ
= κ

k−1

∑
j=0

∞

∑
n=0

n

∑
ℓ=0

(
ℓ+ j
ℓ

)
α

j
β
ℓ
ξ

n+ j+1 = κ

∞

∑
n=1

k−1

∑
j=0

(
n−1

∑
ℓ=0

(
ℓ+ j
ℓ

)
α

j
β
ℓ

)
ξ

n+ j.

Putting everything together, we have

∞

∑
n=0

ek
nξ

n = γα
k

∞

∑
n=k+1

(
n−k−1

∑
ℓ=0

(
ℓ+ k−1

ℓ

)
β
ℓ

)
ξ

n +κ

∞

∑
m=1

k−1

∑
j=0

(
m−1

∑
ℓ=0

(
ℓ+ j
ℓ

)
α

j
β
ℓ

)
ξ

m+ j.

Finally, we can identify the coefficient ek
n in front of ξ n with those on the right-hand side. The coefficient for ξ n in the

first term is clearly nonzero only when n ≥ k+1. In the second term, there is only one m for every j such that m+ j = n.
Substituting m = n− j allows us to identify the coefficient of ξ n.

Using the previous lemma, we can obtain a convergence bound that is superlinear in k.

Theorem 3 (Superlinear convergence) Under the Assumptions 1 and 2, and if α + β < 1, the error of low-rank
Parareal satisfies for all n,k ∈ N the bound∥∥∥Ek

n

∥∥∥≤ αk

(k−1)!
∏

k
j=2(n− j)

1−β
max
n≥0

∥∥E0
n
∥∥+ κ

1−α −β
, (21)

where α,β ,κ are defined in (16).
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Proof Define ek
n =

∥∥Ek
n
∥∥. By Lemma 1, the terms ek

n verify the relation described in Lemma 2 with = replaced by ≤
in (18). Hence, the solution (19) from Lemma 2 will be an upper bound for ek

n.
Since 0 ≤ α +β < 1 and using the binomial series formula (20), we bound the first term in (19) as

κ

k−1

∑
j=0

n− j−1

∑
i=0

(
i+ j

i

)
α

j
β

i ≤ κ

k−1

∑
j=0

∞

∑
i=0

(
i+ j

i

)
α

j
β

i = κ

k−1

∑
j=0

α
j 1
(1−β ) j+1

≤ κ

1−β

∞

∑
j=0

(
α

1−β

) j

=
κ

1−β

1
1− α

1−β

=
κ

1−α −β
.

For 0 ≤ i ≤ n− k−1 and n ≥ k+1, observe that

(i+ k−1)!
i!

=
k

∏
j=1

(i+ j)≤
k

∏
j=1

(n− k−1+ j) =
k

∏
j=2

(n− j).

Since 0 ≤ β < 1, we can therefore bound the second term as

γ α
k

n−k−1

∑
i=0

(
i+ k−1

i

)
β

i = γ α
k

n−k−1

∑
i=0

(i+ k−1)!
i!(k−1)!

β
i ≤ γ

αk

(k−1)!

k

∏
j=2

(n− j)
n−k−1

∑
i=0

β
i

≤ γ
αk

(k−1)!
∏

k
j=2(n− j)

1−β
.

The conclusion now follows by the definition of γ .

The proof above can be modified to obtain a simple linear bound that is similar but different to the one from
Theorem 2:

Theorem 4 (Another linear convergence bound) Under Assumptions 1 and 2, and if α +β < 1, the error of low-rank
Parareal satisfies for all n,k ∈ N the bound∥∥∥Ek

n

∥∥∥≤ α
k(1+β )n−1 max

n≥0

∥∥E0
n
∥∥+ κ

1−α −β
, (22)

where α,β ,κ are defined in (16).

Proof We repeat the proof for the superlinear bound but this time, the second term is bounded as

γ α
k

n−k−1

∑
i=0

(
i+ k−1

i

)
β

i ≤ γ α
k

n−1

∑
i=0

(
n−1

i

)
β

i = γ α
k (1+β )n−1.⊓⊔

Remark 1 In the proof above, yet another bound based on (20) is

γ α
k

n−k−1

∑
i=0

(
i+ k−1

i

)
β

i ≤ γ α
k

∞

∑
i=0

(
i+ k−1

i

)
β

i = γ α
k 1
(1−β )k .

This time we recover the linear bound from Theorem 2.

3.2 Summary of the convergence bounds

In the previous section, we have proven four upper bounds for the error of low-rank Parareal. The first is directly obtained
from Lemma 2. It is the tightest bound but its expression is too unwieldy for practical use. The other three bounds can
be summarized as ∥∥∥Ek

n

∥∥∥≤ Bn,k max
n≥0

∥∥E0
n
∥∥+ κ

1−α −β
, (23)

with
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Bn,k rate of (23) in k

αk(1−β )−k linear

αk(1+β )n−1 linear

αk(1−β )−1 ∏
k
j=2(n− j)
(k−1)! superlinear

Each of these practical bounds describes different phases of the convergence, and none is always better than the others.
In Figure 1, we have plotted all four bounds for realistic values of α and β . We took κ = 10−15 ≈ εmach since it only
determines the stagnation of the error and would interfere with judging the transient behavior of the convergence plot.
Furthermore, the errors e0

n = γ = 1 at the start of the iteration k = 0 were chosen arbitrarily since they have little influence
on the results.

The bounds above depend on α = eℓhCr,q and β = eℓhCq, where Cq and Cr,q are the Lipschitz constants of Tq and
Tr,q respectively; see (16). While it seems difficult to give a priori results on the size Cq and Cr,q, we can bound them up
to first order in the theorem below. Note also that in the important case of ℓ < 0, the constants α and β can be made as
small as desired by taking h sufficiently large.

Theorem 5 (Lipschitz constants) Let A, Ã ∈ Rm×n. Then

∥Tq(A)−Tq(Ã)∥ ≤
σq

σq −σq+1
∥A− Ã∥+O(∥A− Ã∥2), (24)

where σq is the qth singular value of A. Moreover,

∥Tr,q(A)−Tr,q(Ã)∥ ≤
(

σq

σq −σq+1
+

σr

σr −σr+1

)
∥A− Ã∥+O(∥A− Ã∥2). (25)

Proof For the first inequality, we refer to [2, Theorem 2] and [10, Theorem 24]. The second inequality follows from the
first by the triangle inequality,

∥Tr,q(A)−Tr,q(Ã)∥F ≤ ∥Tq(A)−Tq(Ã)∥+∥Tr(A)−Tr(Ã)∥.⊓⊔

In many applications with low-rank matrices, the singular values of the underlying matrix are rapidly decaying. In
particular, when the singular values decay exponentially like σk ≈ e−ck for some c > 0, we have

σq

σq −σq+1
=

1
1−σq+1/σq

≈ 1
1− e−c . (26)

This last quantity decreases quickly to 1 when c grows. Even for c = 1, it is less than 1.6. We therefore see that the
constants in Theorem 5 are not too large in this case.

Remark 2 In the analysis, a sufficiently large gap in the singular values is required at both the coarse rank and the fine
rank. In our experiments, we observed that such a gap is indeed required at the coarse rank, but not at the fine rank. It
suggests that the bound (25) can therefore probably be improved.

4 Numerical experiments

We now show numerical experiments for our low-rank Parareal algorithm. We implemented the algorithm in Python 3.10
and all computations were performed on a MacBook Pro with a M1 processor and 16GB of RAM. The complete code
is available at GitHub so that all the experiments can be reproduced. The DLRA steps are solved by the second-order
projector-splitting integrator from [29]. Since the problems considered are stiff, we used sufficiently many substeps of
this integrator so that the coarse and fine solvers within low-rank Parareal can be considered exact.
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Fig. 1: Bounds derived for several values of α and β . In all panels n = 30, γ = 1, and κ = 10−15.

4.1 Lyapunov equation

Consider the differential Lyapunov equation,
.

X(t) = AX(t)+X(t)A+CCT , X(0) = X0, (27)

where A ∈Rm×m is a symmetric matrix, and C ∈Rm×k is a tall matrix for some k ≤ m. This initial value problem admits
a unique solution for t ∈ [0,T ] for any T > 0. The most typical example of (27) is the heat equation on a square with
separable source term. Other applications can be found in [31].

Assumption 3 The matrix A ∈ Rm×m is symmetric and strictly negative definite.

Under Assumption 3, the one-sided Lipschitz constant ℓ for (27) is strictly negative. Indeed, the linear Lyapunov operator
A (X) = AX +XA has the symmetric matrix representation A⊗ I+ I⊗A with eigenvalues λi(A)+λ j(A) for 1 ≤ i, j ≤ m;
see [19, Ch. 12.3]. As in [20, Ch. I.10], we therefore get immediately that ℓ = 2maxi λi(A) < 0. Moreover, since A is
invertible, we can write the closed-form solution of (27) as

X(t) = etA (X0)+A −1(etA (CCT )−CCT ), (28)

which can be easily verified by differentiation using properties of the matrix exponential etA (Z) = etAZetA.
The following result shows that the solution of (27) can be well approximated by low rank. It is the analogue to a

similar result for the algebraic Lyapunov equation A (X) =CCT . The latter result is well known, but we did not find a
proof for the former in the literature.

Lemma 3 (Low-rank approximability of Lyapunov ODE) Let σi(X0) be the ith singular value of X0 and likewise for
σi(CCT ). Under Assumption 3, the solution X(t) of (27) has an approximation

Y (t) of rank at most r0 +2rρ

for any 0 ≤ r0,r,ρ ≤ m with error

∥X(t)−Y (t)∥2 ≤ eℓtσr0+1(X0)+

(
etℓ−1

ℓ

)(
4exp

( −π2ρ

log(4κA)

)
∥CCT∥2 +σr+1(CCT )

)
,

where κA = ∥A∥2 ∥A−1∥2 and ℓ= 2maxi λi(A).
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Proof The aim is to approximate the following two terms that make up the closed-form solution X(t) in (28):

X1(t) = etA (X0), X2(t) = A −1(etA (CCT )−CCT ).

The first term X1(t) can be treated directly. By the truncated SVD, the initial value satisfies

X0 = Y0 +E0 where rank(Y0) = r0 and ∥E0∥2 = σr0+1(X0).

By Assumption 3, the operator A is full rank. We therefore obtain

X1(t) = etA (X0) = eAtY0eAt + eAtE0eAt = Y1(t)+E1(t), (29)

where rank(Y1(t)) = rank(Y0) = r0 and ∥E1(t)∥2 ≤ eℓtσr0+1(X0) since ℓ= 2maxi λi(A).
Next, we focus on the second term X2(t). Like above, the source term can be decomposed as

CCT = D+F where rank(D) = r and ∥F∥2 = σr+1(CCT ).

By linearity of the Lyapunov operator, we therefore obtain

X2(t) = A −1(etA D−D)+A −1(etA F −F). (30)

Denote M = etA D−D. By definition of the Lyapunov operator A , we have

S = A −1(M) ⇐⇒ AS+SA = M.

As studied in [34] and then improved in [1], the singular values of the solution S are bounded as

σrank(M)ρ+1(S)
σ1(S)

≤ 4exp
( −π2ρ

log(4κA)

)
, (31)

where κA = ∥A∥2 ∥A−1∥2 and 0 ≤ ρ ≤ m. Since rank(M) ≤ 2rank(D) = 2r by assumption on D, the bound (31) then
implies that

S = Y2(t)+δS(t),

where rank(Y2(t))≤ 2rρ and

∥δS(t)∥2 ≤ 4exp
( −π2ρ

log(4κA)

)∥∥∥A −1(etA D−D)
∥∥∥

2
≤ 4exp

( −π2ρ

log(4κA)

)
etℓ−1

ℓ
∥D∥2 ,

where the last inequality holds by properties of the logarithmic norm µ of A which equals ℓ; see [37, Proposition 2.2].
Moreover, we can bound the last term in (30) as

∥E2(t)∥2 = ∥A −1(etA F −F)∥2 ≤
etℓ−1

ℓ
∥F∥2 .

Putting (29) and (30) together, we obtained

X(t) = Y (t)+E(t), Y (t) = Y1(t)+Y2(t), E(t) = E1(t)+δS(t)+E2(t),

which proves the statement of the lemma.

The lemma shows that if X0 and CCT have good low-rank approximations, then the solution X(t) of the differential
Lyapunov equation has comparable low-rank approximations as well on [0,T ]. Since ℓ < 0, we can even take T → ∞ and
recover essentially the low-rank approximability of the Lyapunov equation X(∞) = A −1(CCT ). This is clearly visible
when X0 and CCT are exactly of low rank, which we state as a simple corollary for convenience.

Corollary 1 Under Assumption 3 and assuming that rank(X0) = r0, rank(CCT ) = r, the solution X(t) of (28) has an
approximation

Y (t) of rank at most r0 +2rρ

for any 0 ≤ ρ ≤ m with error

∥X(t)−Y (t)∥2 ≤ 4
etℓ−1

ℓ
exp
( −π2ρ

log(4κA)

)∥∥CCT∥∥
2 .
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Fig. 2: Solution over time of the Lyapunov ODE (27) for the heat equation. Note the change of scale between t = 0.0
and t = 1.0.

The corollary clearly shows that the approximation error decreases exponentially when the approximation rank
increases linearly via ρ . Furthermore, we see that the condition number of the matrix A has only a mild influence due to
log(κA).

Remark 3 Corollary 1 can be compared to a similar result in [26]. In that work, the authors solve (27) with exact low-
rank X0 = ZZT and CCT using a Krylov subspace method. More specifically, with Uk an orthonormal matrix that spans
the block Krylov space Kk(A, [C Z]), the projected Lyapunov equation

.
Yk = (UT

k AUk)Yk +Yk (UT
k AUk)+UT

k CCTUk, Yk(0) =UT
k X0Uk,

is used to define the approximation Xk(t) = UkYk(t)UT
k . The approximation error of Xk(t) is studied in [26, Theorem

4.2]. Since rank(Xk(t))≤ k(rank(Z)+ rank(C)), we therefore also get a result on the low-rank approximability of (27).
This bound is, however, worse than ours since it does not give zero error for t = 0 and k = 1, for example. On the other
hand, it is a bound for a discrete method whereas our Lemma 3 and Corollary 1 are statements about the exact solution.

We now apply the low-rank Parareal algorithm to the differential Lyapunov equation (27). Let A = ∆dx be the n×n
discrete Laplacian with zero Dirichlet boundary conditions obtained by standard centered differences on [−1,1]. The
Lyapunov equation is therefore a model for the 2D heat equation on Ω = [−1,1]2. In the experiments, we used n = 100
spatial points and the time interval [0,T ] = [0,2]. The matrix C for the source is generated randomly with singular values
σi = 10−5(i−1) where i = 1,2, . . . so that its numerical rank is 4. In order to have a realistic initial value, X0 is obtained as
the exact solution at time t = 0.01 of the same ODE but with a random initial value X̃0 with singular values σi = 10−(i−1).

Figure 2 is a 3D plot of the solution over time on Ω with its corresponding singular values. As we can see, the solu-
tion becomes almost stationary at t = 1.0. In addition, it stays low-rank over time in agreement to Lemma 3. Moreover,
the singular values suggest to take the fine rank r = 16 for an error of the fine solver of order 10−12.

The convergence of the error of the low-rank Parareal algorithm is shown in Figure 3. The algorithm converges
linearly from the coarse rank solution to the fine rank solution. Figure 3a suggests that the coarse rank does not influence
the convergence rate and it only reduces the initial error. This is consistent with our analysis. Indeed, since the singular
values are exponentially decaying, the singular gap is approximately constant; see (26). Hence, the constants α and
β from (16) that determine the convergence rate do not depend on the coarse rank q; as is shown up to first order in
Theorem 5. Figure 3b shows that, similarly, the convergence rate does not depend on the fine rank either, although it
limits the final error.

In Figure 4a, we investigate the convergence for several sizes n. Even though the problem is stiff, the convergence
does not seem influenced by the size of the problem. Figure 4b shows the error of the algorithm applied to the problem
with several step sizes. According to our analysis, the convergence is faster when the stepsize h is large; see (16).
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Fig. 3: Convergence of the error of low-rank Parareal for the Lyapunov ODE (27) with n = 100 and T = 2.0. Influence
of the coarse and fine ranks.
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Fig. 4: Convergence of the error of low-rank Parareal for the Lyapunov ODE (27) with coarse rank q = 4 and fine rank
r = 16. Influence of size and final time.

4.2 Parametric cookie problem

We now solve a simplified version of the parametric cookie problem from [27]. Consider the ODE

.
Y =−A0Y −A1YC1 +b1T , Y (0) = Y0, (32)

where the sparse matrices A0,A1 ∈R1580×1580, b ∈R1580, and C1 = diag(c1
1,c

2
1, . . . ,c

p
1) are given in [27]. The aim of this

problem is to solve a heat problem simultaneously with several heat coefficients, denoted by c1
1, . . . ,c

p
1 .

In our experiments, we used p = 101 parameters with c1
1 = 0,c2

1 = 1, . . . ,c101
1 = 100. The initial value X0 is obtained

after computing the exact solution of (32) at time t = 0.01 with the zero matrix as initial value. The time interval is
[0,T ] = [0,0.1].

The singular values of the reference solution are shown in Figure 5. The stationary solution has good low-rank
approximations, as was proved in [27, Thm. 2.4]. The singular value decay suggests that a fine rank r = 16 leads to full
numerical accuracy.

In Figure 6, we applied the low-rank Parareal algorithm with several coarse ranks q and fine ranks r. Like for
the Lyapunov equation, it seems that the convergence rate does not depend on the coarse rank q. In agreement to our
analysis (see Figure 1), the convergence is linear in the first iterations and superlinear in the last iterations. In addition,
the convergence is not influenced by the fine rank r.
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Fig. 5: Singular values of the solution over time of the parametric cookie problem (32).
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Fig. 6: Convergence of the error of low-rank Parareal for the parametric cookie problem (32). Influence of the coarse
and fine ranks.

4.3 Riccati equation

The Riccati differential equation is given by
.

X(t) = AT X(t)+X(t)A+CTC−X(t)SX(t), X(0) = X0, (33)

where X ∈ Rm×m, A ∈ Rm×m, C ∈ Rk×m, and S ∈ Rm×m. We note that this is no longer an ODE with an affine vector
field and hence our theoretical results do not apply here. As already studied in [33], we take S = I and A is the spatial
discretization of the diffusion operator

D = ∂x(α(x)∂x(·))−λ I

on the spatial domain Ω = [0,1]. Furthermore, we take α(x) = 2+ 2cos(2πx) and λ = 1. The discretization is done
by the finite volume method, as described in [15]. The tall matrix C ∈ Rk×m is obtained from k independent vectors
{1,e1, . . . ,e(k−1)/2, f1, . . . , f(k−1)/2}, where

ei(x) =
√

2cos(2πkx) and fi(x) =
√

2sin(2πkx), i = 1, . . . ,(q−1)/2, (34)

are evaluated at the grid points {x j}m
j=1 with x j =

j
m+1 . The time interval is [0,T ] = [0,0.1].

As for the other problems, the singular values of the solution (shown in Figure 7) indicate that we can expect good
low-rank approximations on [0,T ]. We choose the fine rank r = 18. The convergence of low-rank Parareal is shown
in Figure 8. Unlike the previous problems, the coarse rank q has a more pronounced influence on the behavior of the
convergence. While our theoretical results do not hold for this nonlinear problem, we still see that low-rank Parareal
converges linearly when the coarse rank q is sufficiently large (q = 6, q = 8). The convergence is slower (but still
superlinear) when q = 4. This could be due to the non-constant gaps in the singular values. The influence of the fine
rank r is more like for the linear problems.

4.4 Rank-adaptive algorithm

Since the approximation rank of the solution is usually not known a priori, it is more convenient for the user to supply
an approximation tolerance than an approximation rank. Even though the rank can change to satisfy the tolerance during
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Fig. 7: Singular values of the solution over time of the Riccati ODE (33).
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Fig. 8: Convergence of the error of low-rank Parareal for the Riccati problem (33). Influence of the coarse and fine ranks.

the truncation steps, Algorithm 3 can be easily reformulated for such a rank adaptive setting. The key idea is to fix the
coarse rank to keep the cost of the coarse solver low, while the fine rank is determined by a fine tolerance.

Definition 4 (Adaptive low-rank Parareal) Consider a small fixed rank q and a fine tolerance τ . The adaptive low-rank
Parareal algorithm iterates

(Initial value) Y k
0 = Y0, (35)

(Initial approximation) Y 0
n+1 = ψ

h
q ◦Tq(Y 0

n )+En, (36)

(Iteration) Y k+1
n+1 = ψ

h
rank(Tτ (Y k

n ))
◦Tτ(Y k

n )+ψ
h
q ◦Tq(Y k+1

n )−ψ
h
q ◦Tq(Y k

n ), (37)

where the notation is similar to that of the previous Def. 3, except for Tτ which represents the rank-adaptive truncation.
In particular, Tτ(Y ) is the best rank q approximation of Y so that the (q+1)th singular value of Y equals the tolerance τ .
The matrices En are small perturbations, randomly generated such that rank(Y 0

n+1) = rank(Y0) and its smallest singular
value is larger than the fine tolerance τ .

Figure 9 shows the numerical behavior of this rank-adaptive algorithm. As we can see, the algorithm behaves as
desired. Figure 9a shows the algorithm applied with several tolerances and is comparable to Figure 3b with several fine
ranks. Figure 9b shows the rank of the solution over time. Already after two iterations, the rank is reduced to almost the
numerical rank of the exact solution and the rank does not change much for the rest of the iterations.

5 Conclusion and future work

We proposed the first parallel-in-time algorithm for integrating a dynamical low-rank approximation (DLRA) of a matrix
evolution equation. The algorithm follows the traditional Parareal scheme but it uses DLRA with a low rank as coarse
integrator, whereas the fine integrator is DLRA with a higher rank. Taking into account the modeling error of DLRA, we
presented an analysis of the algorithm and showed linear convergence as well as superlinear convergence under common
assumptions and for affine linear vector fields, up to the modeling error.

In our numerical experiments, the algorithm behaved well on diffusive problems, which is similar to the original
Parareal algorithm. Due to the significant difference in computational cost for the fine and coarse integrators, it is
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Fig. 9: Adaptive low-rank Parareal. On the left, the algorithm is applied with several tolerances. On the right, the rank
of the solution over time is shown for several iterations.

reasonable to expect good speed-up in actual parallel implementations. A proper parallel implementation to verify this
claim is a natural future work. It may however be more appropriate to first generalize more efficient parallel-in-time
algorithms, like Schwarz waveform relaxation and multigrid methods [13], to DLRA.

Since DLRA can also be used to obtain low-rank tensor approximations [30], another future work is to extend low-
rank Parareal to tensor DLRA. Finally, our theoretical analysis assumes that the ODE has an affine vector field. Since
this assumption was only needed in one step of the proof of Lemma 1, it might be possible that it can be relaxed to
include certain non-linear vector fields.
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