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Abstract

B-methods are numerical methods which are especially tailored to solve non-
linear partial di�erential equation that have blow up solutions. We have pre-
sented in Part I a systematic construction of B-methods based on the variation
of constants formula. Here, we use splitting methods as a second way to con-
struct B-methods, and we prove several special properties of such methods. We
illustrate our analysis with numerical experiments.
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1. Introduction

Nonlinear partial di�erential equations (PDEs) arise in many important
models in science and engineering, and very few of those models have closed
form solutions. One therefore has to resort to numerical methods to compute
approximations. If the partial di�erential equation has further geometric prop-
erties, it is often an advantage for the numerical approximation to also have the
same geometric property, which led to the research �eld of geometric numerical
integration. Much progress has been made over the last two decades in this
area, see for example [28, 40, 27, 15, 7] and references therein.

In speci�c applications, the nonlinear PDE models can have solutions that
blow up in �nite time. This is in particular the case for combustion models
[23, 17, 31, 33], turbulent �ow [38], nonlinear optics [36, 41, 42] and population
dynamics [46, 26]. This blow-up indicates in general that the model is losing
its validity, and it is therefore important to understand the precise behavior
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of the model when the blow-up time is approached. Studying such blow-up
phenomena is necessarily done on a case-by-case basis, see for example [35, 49,
24, 50, 25, 20, 2, 19, 16], and the reviews [3, 21]. Blow-up can even happen
when �rst integrals are conserved, see [9] and references therein. The analysis
of blow-up phenomena is an active �eld of research, and many results have
been obtained over the past two decades, see [8, 43, 37, 44, 29, 13, 14, 47] and
references therein.

The construction of numerical methods to approximate the blow-up time and
rate of such models focuses in general on adaptive techniques. Very successful
are moving mesh methods, see [10]. In [11] self-similar solution techniques are
employed for obtaining a scale invariant adaptive numerical method. A more
direct numerical time stepping approach can be found in [30], where a numerical
method using arclength ingredients is constructed and analyzed, and in [48],
compacti�cation of base spaces is combined with the validation of Lyapunov
functions. Adaptive time stepping is also a very successful technique, where
the time step is proportional to the inverse of the norm of the solution, see for
example [45].

Considering blow-up as a geometric property is a more recent area of re-
search, and so far mostly ad hoc constructions have been used to obtain numer-
ical schemes with good blow-up properties, see for example [39]. In a �rst paper
[6], we have shown how one can systematically construct B-methods using the
technique of variation of the constant. The goal of this paper is to present a
second systematic way of obtaining B-methods, using splitting techniques.

2. B-Methods Based on Splitting

To �x ideas, we �rst show the construction of splitting B-methods for a quasi-
linear parabolic problem. The construction for a few other scalar or systems of
nonlinear partial di�erential equations can be found in Section 4.

2.1. Model Problem and Assumptions

We consider the quasi-linear parabolic partial di�erential equation

ut = ∆um + δF (u), for (x, t) ∈ Ω × (0, T ),
u = 0, for (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), for x ∈ Ω,
(1)

where δ is a positive constant, Ω is a bounded domain of Rd and u0 is a positive
continuous function on Ω̄. In our analysis, we need the following

Assumption 1. The function F is assumed to be positive, strictly increasing
and strictly convex on (0,∞), belonging to C2([0,∞)) and satisfying∫ ∞

b

ds

F (s)
<∞, (2)
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for b > 0. Then the function g(s) =
∫∞
s

1
F (σ)dσ is continuous and strictly de-

creasing on (0,∞). The function G = g−1 is continuous and strictly decreasing
on (0,M), where M = lims→0 g(s) ≤ ∞. Note also that g and G are positive
with lims→∞ g(s) = 0 and lims→0G(s) = ∞.

In order to be able to construct B-methods, we need to get an explicit form
of g and often G. Examples of functions F which satisfy all these conditions are

� F (u) = eu, g(u) = e−u, G(u) = − lnu,

� F (u) = (u+ α)p+1, α ≥ 0, p > 0, g(u) = 1
p(u+α)p , G(u) = (pu)−1/p − α,

� F (u) = eu − 1, g(u) = ln
(

eu

eu−1

)
, G(u) = u− ln(eu − 1),

� F (u) = (u+1)[ln(u+1)]p+1, p > 0, g(u) = 1
p[ln(u+1)]p , G(u) = e(pu)

−1/p−
1,

� F (u) = u2 + 1, g(u) = π
2 − arctan(u), G(u) = cot(u).

In problem (1) the nonlinearity in F is responsible for the �nite-time blow-up
and becomes increasingly important as we approach the blow-up time. The
conditions imposed on F allow us to write explicitly the solution of the non-
linear ordinary di�erential equation yt = δF (y). Indeed we get for any S > 0,∫ y(S)
y(t)

ds
F (s) =

∫ S
t
δds, and then g(y(t)) = [g(y(S)) + δS]− δt, that is

y(t) = y(t,K) = G(K − δt), (3)

where K is a constant, for all t satisfying K − δt ∈ (0,M). It is then natural
to seek integrators that exploit this information. In the following we present a
new approach to obtain semi-discretizations in time for the semi-linear problem
(1) from this exact solution. This approach allows us to derive many new B-
methods which are di�erent from the B-methods obtained using the variation
of constants approach in [6].

2.2. Construction of B-Methods based on Splitting

As suggested in Hairer, Lubich and Wanner [28]1, one way to exploit the
exact solution of the nonlinear part of the equation is by using splitting meth-
ods. We illustrate this construction on the quasi-linear scalar PDE (1); the
construction for a system of semi-linear PDEs is given in Section 4.3.

If we decompose ut = ∆um+δF (u) into f [1](u) = δF (u) and f [2](u) = ∆um,

we can make good use of the fact that we know the exact �ow φ
[1]
t of ut = δF (u)

(note that φt does not represent a time derivative) . Indeed, the exact �ow of

1�It may happen that the di�erential equation ẏ = f(y) can be split according to ẏ =
f [1](y) + f [2](y), such that only the �ow of, say, ẏ = f [1](y) can be computed exactly. If
f [1](y) constitutes the dominant part of the vector �eld, it is natural to search for integrators
that exploit this information.�
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an equation yt = f(y) is the map de�ned by φt(y0) = y(t) if y(0) = y0, so in

this case, using (3), we have φ
[1]
t (un) = G(g(un) − δt), for t < g(un)/δ. Then

we can choose any numerical integrator Φ
[2]
h for ut = ∆um, and by composing

the exact �ow and the numerical integrator, we obtain two new methods for
ut = ∆um + δF (u),

Φh = φ
[1]
h ◦ Φ[2]

h and Φ∗
h = Φ

[2]∗
h ◦ φ[1]

h , (4)

where Φ
[2]∗
h is the adjoint of Φ

[2]
h (see Section II.3 in [28]). Note that the two

original methods Φ
[2]
h and Φ

[2]∗
h are consistent, that is

Φ
[2]
h (z0) = z0 + hf [2](z0) +O(hp) and Φ

[2]∗
h (z0) = z0 + hf [2](z0) +O(hp),

with p ≥ 2. Moreover, φ
[1]
t is the exact �ow of ut = δF (u), so that its Taylor

expansion is

φ
[1]
h (y0) = y(h) = y0 + hf [1](y0) +O(h2).

Therefore, the resulting methods Φh and Φ∗
h are of �rst order. This construction

can only lead to methods of �rst order, however as these two integrators are
adjoint, we can use them as the basis of the composition method

Φh = Φαsh ◦ Φ∗
βsh ◦ · · · ◦ Φ

∗
β2h ◦ Φα1h ◦ Φ∗

β1h,

to construct methods of any desired order (see [28]). In particular, by choos-
ing α1 = β1 = 1/2 for s = 1, we obtain a second-order symmetric method

Ψh = Φh/2 ◦ Φ∗
h/2. It is interesting to note that if Φh (not Φ

[2]
h ) is the forward

(respectively backward) Euler method, the resulting method Ψh corresponds to
the midpoint (respectively trapezoidal) rule.

We saw that the exact �ow of ut = δF (u) is given by φ
[1]
t (un) = G(g(un)−

δt), so we just have to choose a numerical integrator for the second part ut =
∆um. For example, even though this problem is sti�, we start with forward

Euler Φ
[2]
h (un) = un + h∆umn , whose adjoint is backward Euler Φ

[2]∗
h (un) =

un + h∆umn+1. By composing these integrators with the exact �ow φ
[1]
t , we get

two B-methods. The �rst one is the Splitting Forward Euler B-Method (SpFE)

Φh(un) = φ
[1]
h ◦ Φ[2]

h (un), (5)

which gives the explicit scheme

un+1 = G(g(un + h∆umn )− δh), (6)

and requires the condition g(un + h∆umn ) ∈ (0,M). The second one is the
Splitting Forward Euler Adjoint B-Method (SpFE)∗

Φ∗
h(un) = Φ

[2]∗
h ◦ φ[1]

h (un), (7)
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which gives the implicit scheme

un+1 = G(g(un)− δh) + h∆umn+1, (8)

and requires the condition g(un)− δh ∈ (0,M). This scheme is studied in detail
in Section 3 for the special semi-linear case, m = 1.

Instead of choosing Φ
[2]
h to be forward Euler in (4), we could choose it to

be backward Euler; then the adjoint Φ
[2]∗
h is forward Euler and the resulting

schemes are the Splitting Backward Euler B-Method (SpBE)

Φh(un) = un+1 = G(g(v)− δh), with v = un + h∆vm, (9)

and the Splitting Backward Euler Adjoint B-Method (SpBE)

Φ∗
h(un) = un+1 = G(g(un)− δh) + h∆(G(g(un)− δh))m. (10)

Another possibility would be to choose Φ
[2]
h to be a second-order method, like

the symmetric midpoint rule (SpMid) or the trapezoidal rule (SpTrap). How-
ever, the scheme becomes more complicated without necessarily bringing more
accuracy, as the resulting scheme is only �rst order. In order to get higher order
methods, we need to compose �rst order methods. The simplest way to obtain
a second-order method is thus to construct

Ψh = Φh/2 ◦ Φ∗
h/2 = φ

[1]
h/2 ◦ Φ

[2]
h/2 ◦ Φ

[2]∗
h/2 ◦ φ

[1]
h/2, (11)

where Φ
[2]
h and Φ

[2]∗
h are adjoint �rst-order methods.

If we choose Φ
[2]
h to be forward Euler, we obtain the Second order Splitting

Forward Euler B-Method (SoSpFE)

Ψh(un) = G

(
g(v +

h

2
∆vm)− δh

2

)
, with v − h

2
∆vm = G

(
g(un)−

δh

2

)
,

(12)

and if Φ
[2]
h is chosen to be backward Euler, we get the Second order Splitting

Backward Euler B-Method (SoSpBE)

Ψh(un) = G(g(v)−δh
2
), with v−h

2
∆vm = G(g(un)−

δh

2
)+
h

2
∆(G(g(un)−

δh

2
))m.

(13)
Similarly we can construct arbitrary high order splitting B-methods.

2.3. Truncation Error Analysis

In order to show that B-methods have the potential to be better than stan-
dard methods, we need to compare the local truncation errors of both types of
methods. To start, we consider the problem ut = F (u) +Υ(u), where Υ can be
a function or an operator (like the Laplacian in our example). We denote by φ
the function that satis�es

φt(t, v) = F (φ(t, v)), and φ(0, v) = v, ∀v. (14)
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Keeping the notation introduced earlier, we have φ(t, v) = G(g(v)− t). We also
consider the numerical method Φ applied to vt = Υ(v), with v(0) = v0. If v(t)
solves this simpli�ed problem, we have

Φ(h, v0) = v(h) + E(h), (15)

where E represents the local truncation error of the standard method.
We �rst consider the B-methods obtained by applying the numerical method

�rst and use the result in the exact scheme (like SpFE or SpBE): starting with
u0, we de�ne v0 = u0 and we apply the numerical method Φ to get v1 =
v(h)+E(h), then we set u1(h) := φ(h, v1) = φ(h, v(h)+E(h)). To expand u1 as
a series of h, we need to compute its derivatives, u′1(h) = φt+φv (v

′(h)+E′(h))
and

u′′1(h) = φtt + 2φtv (v
′ + E′) + φvv (v

′ + E′)2 + φv (v
′′ + E′′),

where the derivatives of φ are evaluated at (h, v(h) + E(h)).
From the de�nition of φ given in (14) (or using φ(t, v) = G(g(v) − t)), we

obtain u1(0) = φ(0, v(0) + E(0)) = φ(0, u0) = u0, φt = F (φ), φv(0, v) = 1,
φtt = F ′(φ)φt, φtv = F ′(φ)φv and φvv(0, v) = 0. Moreover we have v′(h) =
Υ(v) and v′′(h) = Υ′(v)Υ(v). Hence the derivatives of u1 evaluated at h = 0
are u′1(0) = F (u0) + Υ(u0) + E′(0), and

u′′1(0) = F ′(u0)F (u0) + 2F ′(u0)(Υ(u0) + E′(0)) + Υ′(u0)Υ(u0) + E′′(0).

The values of E′(0) and E′′(0) depend on the standard method used, in par-
ticular for any consistent method, we have E′(0) = 0 and if the method is of
second or higher order, we also have E′′(0) = 0.

The Taylor expansion of the exact solution u is

u(h) = u0+h(Υ(u0)+F (u0))+
h2

2
(Υ′(u0)+F

′(u0))(Υ(u0)+F (u0))+· · · , (16)

where the derivative Υ′(u0) can be an operator, so the local truncation error of
the B-methods is given by

τB := u1 − u(h) =
h2

2

(
F ′(u0)Υ(u0)−Υ′(u0)F (u0) + E′′(0)

)
+O(h3), (17)

if a �rst-order standard method is used, and for higher order standard methods
we get

τB =
h2

2

(
F ′(u0)Υ(u0)−Υ′(u0)F (u0)

)
+O(h3).

To construct the adjoint methods, we �rst use the exact scheme and then
apply a numerical methods on the result. In other words, starting with the
initial condition u0, we de�ne v0 = φ(h, u0), where φ satis�es condition (14),
and we compute u1 = Φ(h, v0), where Φ is de�ned by (15) (to get a simpler
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notation, we denote the numerical method by Φ instead of Φ∗). The de�nition
of Φ implies in particular that for all ξ, we have

Φ(0, ξ) = ξ +E(0), Φt(0, ξ) = Υ(ξ) +E′(0), Φtt(0, ξ) = Υ′(ξ)Υ(ξ) +E′′(0),
(18)

and
Φv(0, ξ) = 1, Φvv(0, ξ) = 0, and Φtv(0, ξ) = Υ′(ξ). (19)

We now expand u1 = Φ(h, φ(h, u0)) in a series of h. The derivatives of u1 are

u′1(h) = Φt(h, φ(h, u0)) + Φv(h, φ(h, u0)) · φt(h, u0),
u′′1(h) = Φtt(h, φ) + 2Φtv(h, φ)φt(h, φ) + Φvv(h, φ)φt(h, φ)

2 +Φv(h, φ)φtt(h, φ).

Noting that u1(0) = Φ(0, φ(0, u0)) = φ(0, u0) = u0, we evaluate u1, u
′
1 and u′′1

at h = 0 and get

u′1(0) = Υ(u0) + E′(0) + F (u0),

u′′1(0) = Υ′(u0)Υ(u0) + E′′(0) + 2Υ′(u0)F (u0) + F ′(u0)F (u0),

where we used the properties of Φ in (18) and (19) and the de�nition of φ given
in (14). As the Taylor expansion of the exact solution u is given by (16), the
local truncation errors of these B-methods are, as expected,

τB∗ =
h2

2

(
Υ′(u0)F (u0) + E′′(0)− F ′(u0)Υ(u0)

)
+O(h3), (20)

for �rst-order standard methods, and for higher-order standard methods we get

τB∗ =
h2

2

(
Υ′(u0)F (u0)− F ′(u0)Υ(u0)

)
+O(h3).

We now need to show that in case of �nite-time blow-up, the local truncation
error of B-methods is smaller than that of the corresponding standard methods.
We illustrate the di�erence in truncation errors by considering the forward Euler
method.

The local truncation error of the forward Euler method applied to the general
equation yt = f(t, y) is given by

τ := y1 − y(h) = −h
2

2
(ft + fyf) +O(h3), (21)

which means that if we apply this method to ut = F (u) + Υ(u), we obtain

τs = −h
2

2
(Υ′(u0) + F ′(u0))(Υ(u0) + F (u0)) +O(h3). (22)

On the other hand, if we apply forward Euler to vt = Υ(v), we obtain E(h) =

−h2

2 [Υ′(v0)Υ(v0)] +O(h3), which gives E′′(0) = −Υ′(v0)Υ(v0). Going back to

7



(17) and (20) we obtain the truncation error of the corresponding B-methods,

τB =
h2

2

(
F ′(u0)Υ(u0)−Υ′(u0)F (u0)−Υ′(u0)Υ(u0)

)
+O(h3)

τB∗ = −h
2

2

(
F ′(u0)Υ(u0)−Υ′(u0)F (u0) + Υ′(u0)Υ(u0)

)
+O(h3).

In order for the function F to be responsible for the �nite-time blow-up, it
needs to be superlinear at in�nity, while the remaining part Υ(u) becomes less
important as u becomes large. We therefore expect the term F ′(u0)F (u0), which
is present in τs but absent in τB and τB∗ , to be large relative to the other terms.
As an example, let us �rst consider the case where Υ(u) is a bounded function
of u. We de�ne F (u) := eu and Υ(u) := sin(u). The local truncation error can
then be written as

τs = −h
2

2
(cos(u0) + eu0)(sin(u0) + eu0) +O(h3),

= −h
2

2

(
e2u0 + eu0(sin(u0) + cos(u0)) + cos(u0) sin(u0)

)
+O(h3)

for the standard method and

τB =
h2

2

(
eu0(sin(u0)− cos(u0))− cos(u0) sin(u0)

)
+O(h3),

for the specialized SpFE method. We see that the fastest growing term (eu0)2 in
τs does not appear in τB , while the other terms are of similar order. Given the
size of this term compared to the remaining terms, τB is considerably smaller
than τs.

Going back to the case Υ(u) = ∆u, we observe numerically the same phe-
nomenon. Indeed, with F (u) = 3eu and Υ(u) = ∆u, the local truncation errors
are

τs = −h
2

2

(
∆(∆u0 + 3eu0) + 3eu0∆u0 + 9e2u0

)
+O(h3),

τB =
h2

2

(
3eu0∆u0 −∆(3eu0)−∆(∆u0)

)
+O(h3)

for the SpFE method, whereas for the (SpFE)∗ method, we have

τB∗ = −h
2

2

(
3eu0∆u0 −∆(3eu0) + ∆(∆u0)

)
+O(h3).

In this case, the term e2u0 of τs is also absent from τB and τB∗ , but it is
not obvious that this term is much larger than the remaining terms. Some
numerical experiments using Matlab show that the di�erence between e2u and
the other terms is considerable and increases as u gets larger. Using the built-in

8



adaptive method ode45 we computed the solution of ut = 3eu +∆u on [−1, 1]
with u0(x) = cos(πx/2), we then evaluated each of the four terms that appear
in τs. When t = 0.1660 (the blow-up occurs approximately at t=0.1664), the
norm of the di�erent terms are ∥∆(∆u0)∥2 = 342 439, ∥∆(3eu0)∥2 = 1466 377,
∥3eu0(∆u0)∥2 = 1542 768, and ∥(3eu0)2∥2 = 16 544 121. So removing this last
term from the local error greatly improves the results in this example.

3. Analysis of (SpFE)∗ for semi-linear parabolic problems

We now analyze the properties of the (SpFE)∗ scheme applied to the model
problem (1) for the special case of m = 1, i.e., when the problem is semi-linear.
An explicit formula for the method is given by (8). By letting A := −∆, the
scheme (8) for m = 1 can be written in the form

Aun+1 = f(x, un+1) = − 1

h
un+1 +

1

h
G(g(un)− δh). (23)

3.1. Existence and Uniqueness of the Solution

Since the scheme (23) is linear, it has a unique solution if and only if
G(g(un)− δh) is well de�ned, i.e., g(un) ∈ (δh,M + δh). Since g is decreasing,
M = lims→0 g(s) and un > 0, we have g(un) < M + δh, so the only condition
is ∥un∥∞ < G(δh). We will need the following theorem due to Amann [1]:

Theorem 1 (Amann). Let f ∈ Cα(Ω̄ × R+) be given, with α ∈ (0, 1), and
assume that f(x, 0) ≥ 0. Then a necessary and su�cient condition for the
existence of a non-negative solution u ∈ C2+α(Ω) of the BVP

Au := −∆u = f(x, u) in Ω, u = 0 on ∂Ω, (24)

is the existence of a non-negative function v ∈ C2+α(Ω̄) satisfying

Av ≥ f(x, v) in Ω, v ≥ 0 on ∂Ω.

Moreover, if this condition is satis�ed, there exist a maximal non-negative so-
lution û ≤ v and a minimal non-negative solution ū ≤ v in the sense that, for
every non-negative solution u ≤ v of (24), the inequality ū ≤ u ≤ û holds.

Theorem 2. If the function un is positive in Ω, continuous in Ω̄, and satis�es

∥un∥∞ < G(δh), (25)

then the scheme (23) has a maximal non-negative solution û ≤ Cn = G(g(∥un∥∞)−
δh), a minimal solution ū ≥ 0, and if u is solution, then u ∈ C2(Ω̄) and
ū ≤ u ≤ û.

Remark 1. We can make the bound in condition (25) on the right-hand side
as large as desired by choosing h small enough. This condition is necessary for
the scheme (23) to be well-de�ned.
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Proof. The constant Cn is a supersolution of the scheme, if it satis�es − 1
hCn+

1
hG(g(un)− δh) ≤ 0 (= ACn), that is Cn ≥ G(g(un)− δh). Hence the constant
Cn = G(g(∥un∥∞)− δh), which is well-de�ned if condition (25) is satis�ed and
positive by de�nition of G (see Assumption 1), is a supersolution. Moreover,
since f(x, 0) = 1

hG(g(un)−δh) > 0, we conclude using Theorem 1 from Amann.

Since un ≡ 0 is not a solution of the scheme, this result implies that there
exists a non-zero nonnegative solution. Moreover the strong maximum principle
applies (see for example [51]) and any nonnegative solution is positive on Ω.
Uniqueness of the positive solution can also be obtained using the following
result of Keller [34] with m = 0 and M = Cn.

Theorem 3 (Keller). If there exist two constants m and M such that for all
x ∈ Ω and all u1, u2 such that m ≤ u1 < u2 ≤ M , we have f(x, u1) ≥ f(x, u2),
then problem (24) has at most one solution u ∈ C2 satisfying m ≤ u ≤M .

Since f(x, u) de�ned in (23) is decreasing in u, we get the uniqueness of the
solution, and we can show the same minimal time of existence as for the VBE
scheme in [6]:

Theorem 4. Scheme (23) has a unique positive solution un for n such that
tn = nh < T1, where T1 = 1

δ g(∥u0∥∞) =
∫∞
∥u0∥∞

ds
δF (s) .

Since we know from Theorem 2 that

if ∥un∥∞ < G(δh), then ∥un+1∥∞ ≤ Cn = G(g(∥un∥∞)− δh),

the proof is exactly the same as the proof of [6, Theorem 3.11].
Finally, we recall that the scheme (23) is linear, so that no specialized non-

linear solver is required to solve for un+1.

3.2. Rate of Growth

We now prove some growth rate estimates for the scheme (23). Note that
we will do this on a case-by-case basis for the functions F (u) listed in the
introduction, since the estimate depends on the particular function at hand.
We �rst consider the function F (u) = eu, before turning our attention to the
case of F (u) = (u+ α)p+1.

Theorem 5. Let C0 be a constant such that

C0 ≥ δe∥u0∥∞ and Au0 − δeu0 + C0 ≥ 0. (26)

If tn+1 < T2 := 1
C0
, the function un+1 given by

un+1 + hAun+1 = − ln(e−un − δh) (27)

satis�es for all x

un+1(x) ≤ un(x) + ln

(
T2 − tn
T2 − tn+1

)
.
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Remark 2. Note that if Au0 ≥ 0, we can take C0 = δe∥u0∥∞ , so that T2 =
1
C0

= 1
δ g(∥u0∥∞) = T1, as de�ned in Theorem 4.

Proof. We prove this result by induction, using a supersolution approach.
First, let us prove that if t1 = h < T2, we have

u1 ≤ u0 + ln

(
T2

T2 − h

)
. (28)

The function u0 + ln
(

T2

T2−h

)
= u0 − ln

(
1− h

T2

)
= u0 − ln(1− hC0) is a super-

solution of (27) with n = 0 if u0 − ln(1 − hC0) + hA(u0 − ln(1 − hC0)) ≥
− ln(e−u0 − δh), which simpli�es to

Au0 ≥ 1

h
ln(1− hC0)−

1

h
ln(1− δheu0). (29)

Since ln(1− x) = −
∑
k≥1

xk

k for x smaller than 1, we have

β(h) :=
1

h
ln(1− hC0)−

1

h
ln(1− δheu0) =

−1

h

∞∑
k=1

(hC0)
k

k
+

1

h

∞∑
k=1

(δheu0)k

k

=

∞∑
k=0

hk

k + 1
[(δeu0)k+1 − Ck+1

0 ].

Since 1
T2

= C0 ≥ δe∥u0∥ ≥ δeu0 , the bracket is negative and β is decreasing in h
so inequality (29) holds for all h ∈ (0, T2) if

Au0 ≥ lim
h→0

(
1

h
ln(1− hC0)−

1

h
ln(1− δheu0)

)
= δeu0 − C0,

which is exactly condition (26), and we get (28). To complete the induction we
assume that

un ≤ un−1 + ln

(
T2 − tn−1

T2 − tn

)
, (30)

and we show that un + ln
(

T2−tn
T2−tn+1

)
is a supersolution of (27), that is

un + ln

(
T2 − tn
T2 − tn+1

)
+ hAun + ln(e−un − δh) ≥ 0. (31)

First, we note that since 1
T2

= C0 ≥ δe∥u0∥, we have T2 ≤ 1
δe∥u0∥ , and u0 ≤

∥u0∥ ≤ ln( 1
δT2

), and by induction

un ≤ un−1 + ln

(
T2 − tn−1

T2 − tn

)
≤ ln

(
1

δ(T2 − tn−1)

)
+ ln

(
T2 − tn−1

T2 − tn

)
= ln

(
1

δ(T2 − tn)

)
. (32)

11



By de�nition of un, we have un + hAun = − ln(e−un−1 − δh), and from the

induction hypothesis (30), we obtain − ln(e−un−1 − δh) > − ln[e−un(T2−tn−1

T2−tn )−
δh], so that inequality (31) is satis�ed if

ln

(
T2 − tn
T2 − tn+1

)
− ln

[
e−un

(
T2 − tn−1

T2 − tn

)
− δh

]
+ ln(e−un − δh) ≥ 0.

which simpli�es to (T2 − tn)δ ≤ e−un , which is exactly (32).

Next, we consider the (SpFE)∗ scheme for F (u) = (u+ α)p+1, p > 0.

Theorem 6. Let p > 0. Suppose there exists a constant C0 that satis�es

C0 ≥ pδ(∥u0∥∞ + α)p and Au0 ≥ 0. (33)

If tn+1 < T2 := 1
C0
, the function un+1 given by

un+1 + hAun+1 = [(un + α)−p − pδh]−1/p − α, (34)

satis�es for all x

un+1 + α ≤
(

T2 − tn
T2 − tn+1

)1/p

(un + α).

Proof. Throughout this proof, we will write wn = un + α for all n. The
recurrence can then be written as

wn+1 + hAwn+1 = (w−p
n − pδh)−1/p, (35)

where we have Aun+1 = Awn+1, since A = −∆ annihilates the constant α. For
the initial step, we want to show that v1 = (T2−t0

T2−t1 )
1/pw0 satis�es v1 + hAv1 ≥

[w−p
0 − pδh]−1/p. We calculate

v1 + hAv1 =

(
T2

T2 − h

)1/p

(w0 + hAw0) ≥
(

T2
T2 − h

)1/p

w0 (since Aw0 = Au0 ≥ 0)

=

(
wp0

1− hC0

)1/p

(since T2 = 1/C0)

= (w−p
0 − hC0w

−p
0 )−1/p ≥ (w−p

0 − pδh)−1/p (since C0w
−p
0 ≥ pδ).

v1 is therefore a supersolution, so by Theorem 1, there exists a solution w1 of
(35) that satis�es α ≤ w1 ≤ ( T2

T2−h )
1/pw0 and w−p

1 ≥ T2−h
T2

w−p
0 ≥ (T2 − h)pδ.

This completes the base case.
For the induction step, suppose the solution wn satis�es

α ≤ wn ≤
(
T2 − tn−1

T2 − tn

)1/p

wn−1 and w−p
n ≥ (T2 − tn)pδ.

12



We now need to show that there exists a solution wn+1 such that

α ≤ wn+1 ≤
(

T2 − tn
T2 − tn+1

)1/p

wn and w−p
n+1 ≥ (T2 − tn+1)pδ.

We start by showing that vn+1 := ( T2−tn
T2−tn+1

)1/pwn is a supersolution, i.e., we

have
vn+1 + hAvn+1 − (w−p

n − pδh)−1/p ≥ 0. (36)

It is clear from the de�nition that vn+1 ≥ α ≥ 0, since T2 − tn > T2 − tn+1.
Substituting into (36) gives ( T2−tn

T2−tn+1
)1/p(wn + hAwn) − (w−p

n − pδh)−1/p ≥ 0.

Since wn satis�es wn + hAwn = (w−p
n−1 − pδh)−1/p, this criterion is equivalent

to ( T2−tn
T2−tn+1

)1/p(w−p
n−1 − pδh)−1/p − (w−p

n − pδh)−1/p ≥ 0. In other words, we

need to show that ( T2−tn
T2−tn+1

)1/p(w−p
n−1 − pδh)−1/p ≥ (w−p

n − pδh)−1/p, which is

equivalent to showing that

w−p
n−1 − pδh ≤

(
T2 − tn
T2 − tn+1

)
(w−p

n − pδh). (37)

To prove the above inequality, we use the induction hypothesis: we have w−p
n−1 ≤

(T2−tn−1

T2−tn )w−p
n which implies

w−p
n−1 − pδh ≤

(
T2 − tn−1

T2 − tn

)
w−p
n − pδh

=

(
T2 − tn
T2 − tn+1

)[
(T2 − tn−1)(T2 − tn+1)

(T2 − tn)2
w−p
n − (T2 − tn+1)pδh

T2 − tn

]
.

Therefore, the inequality (37) is true if

(T2 − tn−1)(T2 − tn+1)

(T2 − tn)2
w−p
n − (T2 − tn+1)pδh

T2 − tn
≤ w−p

n − pδh,

or

pδh

(
1− T2 − tn+1

T2 − tn

)
≤ w−p

n

(
1− (T2 − tn−1)(T2 − tn+1)

(T2 − tn)2

)
,

which simpli�es to (T2 − tn)pδ ≤ w−p
n , which we know is true by the induction

hypothesis. Thus, we have shown that vn+1 is a supersolution; by Theorem
1, a solution wn+1 exists and satis�es α ≤ wn+1 ≤ ( T2−tn

T2−tn+1
)1/pwn, so that

w−p
n+1 ≥ (T2−tn+1

T2−tn )w−p
n ≥ (T2 − tn+1)pδ, which completes the induction step.

3.3. Numerical Blow-up

In this section, we want to prove that for values of δ large enough, the
(SpFE)∗ method will blow up before a certain time T ∗ ≤

∫∞
0

ds
δF (s)−λs < ∞,

with λ being the smallest positive eigenvalue of −∆. The existence of such a
blow-up time in the continuous case has been shown by Kaplan in [32]. Since
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we already proved that T ∗ > T1 = 1
δ (g(∥u0∥∞), proving this result leads to

exactly the same bounds as Kaplan for the discrete case.
To do so, we �rst need to de�ne what we mean by numerical blow-up time.

Suppose we use a numerical method of �xed time step size h to integrate the
model problem (1). We de�ne the numerical blow-up time T ∗

h to be the small-
est multiple of h such that the numerical solution ceases to exist. To estimate
T ∗
h , we adapt the approach used by Kaplan for the continuous problem to our

semi-discretization: we show that there exists a �nite time T ∗ such that for all
K > 0 and h small enough, there exists n < T ∗/h such that ∥un∥∞ > K, so
that T ∗

h ≤ T ∗ for all h small enough.2 We now state our main result.

Theorem 7. Suppose that δ satis�es

δF (u)− λu > 0, ∀u ≥ 0, (38)

where λ is the �rst eigenvalue of −∆φ = λφ, φ = 0 on the boundary. We �x
some large positive constant K and choose ε ∈ (0, g(K)). Then there exists

h∗ > 0 such that for all h < min(h∗, g(K)−ε
δ ), the numerical scheme

un+1 + hAun+1 = G(g(un)− δh), (39)

has a numerical blow-up time T ∗ ≤
∫∞
0

ds
δF (s)−λs , in the sense that there exists

n∗ < T∗

h such that ∥un∗∥∞ > K.

Note that the proof presented in this section is constructive so that one can
compute an explicit bound h∗. We suppose thereafter that K and ε are �xed.

Remark 3. The assumption h < g(K)−ε
δ implies that K < G(δh+ ε) < G(δh)

so that as long as ∥un∥∞ ≤ K, condition (25) is satis�ed and scheme (39) has
a unique positive solution.

Remark 4. Condition (38) imposed on δ is identical to the one given by Kaplan
in [32]. It cannot be satis�ed at u = 0 if F (0) = 0, however, if F (0) > 0,
since F satis�es (2), we have limu→0

u
F (u) = 0 and limu→∞

u
F (u) = 0, and

condition (38) is satis�ed for all δ large enough. For example, if we consider
F (u) = eu, condition (38) becomes δ > λu

eu , for all u ≥ 0, that is δ > λ
e . If

we consider F (u) = (u + α)p, with α > 0, since the derivative of the function

β(u) := u/(u + α)p satis�es β′(u) = (u+α)p−p(u+α)p−1u
(u+α)2p > 0 ⇐⇒ u < α

p−1 , we

have β( α
p−1 ) =

α
(p−1)(αp)p , and condition (38) becomes δ > λα

(p−1)(αp)p .

2While most of our previous results were following Le Roux's approach in [39], we could
not use the same method as hers to prove this result. Indeed, a key element of Le Roux's
approach is the use speci�c functionals and no equivalent functionals could be found for this
scheme.
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3.3.1. Outline of the Proof

We need to show that there exists n∗ < T ∗/h such that ∥un∗∥∞ > K, where
K is a �xed large constant. Following the eigenfunction methods, we introduce
the sequence (an), de�ned by

an =

∫
Ω

φundx, (40)

where φ is the eigenfunction corresponding to the �rst eigenvalue λ of −∆φ =
λφ, φ = 0 on the boundary, with λ > 0, φ ≥ 0 and

∫
Ω
φdx = 1 (we can assume

φ ≥ 0 since by Courant's theorem, the eigenfunction φ does not change sign in
Ω). Our approach consists of �nding n∗ such that an∗ > K. Indeed we have

an ≤
∫
Ω

φ ∥un∥∞ dx = ∥un∥∞
∫
Ω

φ dx = ∥un∥∞.

We divide our proof into the following steps: 1. We prove that (an) is increasing.
2. We de�ne a(t), solution of a′(t) = δF (a(t)) − λa(t), a(0) = a∗ ∈ (0, a0),
which blows up in �nite time at T =

∫∞
a∗

ds
δF (s)−λs if δ satis�es condition (38).

De�ning Dn = an − a(nh), we need to bound Dn from below in order to prove
that for h small enough, Dn is positive for all n for which an and a(tn) are
well-de�ned.

3.3.2. Growth of the sequence (an)

To prove that (an) is increasing, we need the following lemma.

Lemma 1. As long as un satis�es ∥un∥∞ < G(δh), the sequence (an) de�ned in
(40) satis�es an+1 ≥ 1

1+hλG(g(an)−δh). The condition is satis�ed in particular

if h < g(K)−ε
δ and ∥un∥∞ ≤ K.

Proof. Since ∥un∥∞ < G(δh), scheme (39) is well-de�ned. We multiply each
side by φ and integrate over Ω to get

∫
Ω
φun+1−hφ∆un+1dx =

∫
Ω
φG(g(un)−

δh)dx. Using the fact that un and φ vanish on the boundary, the left-hand side
can be rewritten as an+1 − h

∫
Ω
un+1∆φdx = (1 + hλ)an+1, and we obtain

an+1 = 1
1+hλ

∫
Ω
φG(g(un) − δh)dx. We now prove that the function f(x) :=

G(g(x)− δh) is convex for x ≥ 0. We have

f ′(x) = G′(g(x)− δh)g′(x) = −F (G(g(x)− δh))
−1

F (x)
=

1

F (x)
F (G(g(x)− δh)),

since G′(s) = −F (G(s)) and g′(s) = −1
F (s) , and then

f ′′(x) =
1

F (x)2
[F ′(G(g(x)− δh))G′(g(x)− δh)g′(x)F (x)− F ′(x)F (G(g(x)− δh))]

=
1

F (x)2
[F ′(G(g(x)− δh))F (G(g(x)− δh))− F ′(x)F (G(g(x)− δh))]

=
F (G(g(x)− δh))

F (x)2
(F ′(G(g(x)− δh))− F ′(x)) ,
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which is positive since F being strictly convex implies that F ′ is increasing and
we have G(g(x)− δh) ≥ x. Hence f is convex and we apply Jensen's inequality
to get ∫

φ(x)f(un(x)) dx ≥ f

(∫
φ(x)un(x) dx

)
= f(an),

which completes the proof.

Lemma 2. If δ satis�es condition (38), the sequence (an) de�ned in (40) is
increasing as long as un satis�es ∥un∥∞ < G(δh) (this is satis�ed in particular

if h < g(K)−ε
δ and ∥un∥∞ ≤ K).

Proof. To prove this result, we show that for all x ∈ (0, G(δh)), we have

1

1 + hλ
G(g(x)− δh) > x, (41)

that is g(x)− g((1 + hλ)x) < δh. Since g is continuously di�erentiable, we can
apply the Mean Value Theorem on the interval (x, (1+hλ)x), so there exists ξ ∈
(x, (1+hλ)x), such that g(x)−g((1+hλ)x) = g′(ξ)(x−(1+hλ)x) = −g′(ξ)hλx,
which becomes g(x) − g((1 + hλ)x) = 1

F (ξ)hλx. So we need 1
F (ξ)hλx < δh,

i.e. F (ξ) > λx
δ , ∀ ξ ∈ (x, (1 + hλ)x). Since F is increasing and δ satis�es

condition (38), we have F (ξ) > F (x) > λx
δ . Hence inequality (41) holds for all

x ∈ (0, G(δh)) and Lemma 1 completes the proof.

3.3.3. De�nition of a(t) and Dn

From now on, we assume that condition (38) is satis�ed and h < g(K)−ε
δ and

∥un∥∞ ≤ K. This implies that un+1 is well-de�ned, thus so are an+1 and Dn+1

de�ned below.

De�nition of a(t). From Lemma 1, we have an+1−an
h ≥ 1

h (
1

1+hλG(g(an)− δh)−
an), hence we will compare (an) with (a(tn)) where tn = nh and a(t) is the
solution of

a′(t) = lim
h→0

1

h

(
1

1 + hλ
G(g(a(t))− δh)− a(t)

)
, a(0) = a∗,

where a∗ can be any �xed number in [0, a0). This limit simpli�es to

lim
h→0

1

h

(
1

1 + hλ
G(g(a)− δh)− a

)
= lim
h→0

1

h

[(
1

1 + hλ
− 1

)
G(g(a)− δh) +G(g(a)− δh)−G(g(a))

]
= lim
h→0

1

h

[(
−hλ
1 + hλ

)
G(g(a)− δh)− δ

G(g(a)− δh)−G(g(a))

−δ

]
= lim
h→0

[(
−λ

1 + hλ

)
G(g(a)− δh)

]
− δ G′(g(a))

= −λG(g(a)) + δ F (G(g(a))) = δF (a)− λa.
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So a(t) is the solution of

a′(t) = δF (a(t))− λa(t), a(0) = a∗ < a0.

By integrating this equation, we note that a(t) is de�ned on [0, Ta∗), where
Ta∗ =

∫∞
a∗

1
δF (s)−λs ds < ∞, so that a(t) blows up at �nite time Ta∗ . Our goal

is to show that an is larger than a(tn).

De�nition of Dn. For all n such that an and a(tn) are well-de�ned, we de�ne
Dn := an − a(tn). To prove Theorem 7, we will prove by induction that there
exists h∗ such that ∀h ≤ h∗, ∀n such that ∥un∥∞ ≤ K, we have Dn+1 > 0. The
initial condition a∗ was chosen such that D0 is positive, so assuming that Dn

is positive, we prove that Dn+1 is also positive. First, we need to verify that
a(tn+1) exists so that Dn+1 is well-de�ned and tn+1 < Ta∗ .

Lemma 3. If Dn > 0, the function a(tn+ξ), with ξ ∈ [0, h], is bounded above by
a(tn+ ξ) < G(ε), where ε is a �xed number belonging to (0, g(K)) (see Theorem
7).

Proof. We introduce for t ≥ tn the function b(t), solution of

b′(t) = δF (b(t)) > δF (b(t))− λb(t), b(tn) = a(tn).

This function can be written explicitly, b(t) = G(g(a(tn)) + δtn − δt), and we
have a(t) ≤ b(t), ∀t ≥ tn. Moreover since δ satis�es condition (38), a(t) is
increasing and we have a(tn + ξ) ≤ a(tn + h) ≤ b(tn+1) = G(g(a(tn)) − δh),

and since a(tn) < an ≤ K and h < g(K)−ε
δ , we get as required a(tn + ξ) ≤

G(g(a(tn))− δh) ≤ G(g(K)− δh) < G(ε).

Hence Dn+1 is well-de�ned and we �rst bound it using Lemma 1,

Dn+1 ≥ 1

1 + hλ
G(g(an)− δh)− a(tn + h) =: η(h).

We then take a Taylor expansion of the right hand side function η(h) around
h = 0,

η(0) = an − a(tn) = Dn,

η(h) =
−λG(g(an)− δh)

(1 + hλ)2
+ δ

F (G(g(an)− δh))

1 + hλ
− a′(tn + h),

η′(0) = δF (an)− λan − (δF (a(t))− λa(t)).

Thus, we have

Dn+1 ≥ Dn + h(ψ(an)− ψ(a(tn))) +
h2

2
η′′(ξ) (42)

for some ξ ∈ (0, h), with ψ(x) = δF (x)− λx.

Since η(h) is twice continuously di�erentiable for all 0 ≤ h ≤ g(K)−ϵ
δ , η′′(h)

is continuous on the same interval, so there exists a (possibly negative) constant
C2 (which depends on δ, K and ϵ, but not on h) such that η′′(h) ≥ C2 for all

0 < h < g(K)−ϵ
δ . We are now able to prove Theorem 7.
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3.3.4. Proof of Theorem 7

We suppose that ∥un∥∞ ≤ K and Dn > 0. We now show that Dn+1 > 0.
Indeed, since a(t) blows up at time Ta∗ with Ta∗ ≤ T0 =

∫∞
0

ds
δF (s)−λs , there

exists ñ < Ta∗/h, such that a(tñ) ≤ K and either tñ+1 ≥ Ta∗ or a(tñ+1) > K.
The �rst case implies that ∥un∥∞ > K for some n ≤ ñ, and in the second case,
by the positivity of Dn+1, we have ∥uñ+1∥∞ > a(tñ+1) > K with tñ+1 < Ta∗ .
Hence there exists n∗ < T0/h such that ∥un∗∥∞ > K.

We assume that Dn > 0 and we go back to (42) to write

Dn+1 ≥ Dn + h[ψ(an)− ψ(a(tn))] +
h2

2
η(ξ)

≥ Dn + h[ψ(a(tn) +Dn)− ψ(a(tn))] +
h2

2
C2

≥ Dn + hDnψ
′(ζ) +

h2

2
C2,

with ζ ∈ (a(tn), a(tn) + Dn), by the Mean Value Theorem. The derivative
ψ′(x) = δF ′(x)− λ is increasing and ζ > a(tn) ≥ a(0) = a∗ so we get

Dn+1 ≥ Dn(1 + hψ′(a∗)) +
h2

2
C2. (43)

By induction, we obtainDn+1 ≥ (1+hψ′(a∗))n+1D0+
h2

2 C2

∑n
k=0(1+hψ

′(a∗))k.
We assume that 1+ hψ′(a∗) > 0, so if ψ′(a∗) < 0, we need h to be smaller than
1/(−ψ′(a∗)), that is: if F ′(a∗) < λ

δ , then h <
1

λ−δF ′(a∗) . If C2 is positive, the

positivity of Dn+1 follows from (43). We now study the case C2 < 0. We obtain
di�erent bounds on h depending on the sign of ψ′(a∗):

� if ψ′(a∗) = 0, we get Dn+1 ≥ D0 + (n + 1)h
2

2 C2, so that since C2 < 0 and

tn+1 < Ta∗ , Dn+1 is positive if h < 2D0

(−C2)Ta∗
.

� if ψ′(a∗) > 0, we get Dn+1 ≥ (1+hψ′(a∗))n+1D0+
h2

2 C2

(
(1+hψ′(a∗))n+1−1

hψ′(a∗)

)
,

so we need h2

2 C2 ≥ − (1+hψ′(a∗))n+1

(1+hψ′(a∗))n+1−1︸ ︷︷ ︸ hψ′(a∗)D0. The underbraced term is

greater than 1 since ψ′(a∗) > 0, so we need h < 2ψ′(a∗)D0

(−C2)
.

� if ψ′(a∗) < 0 we also getDn+1 ≥ (1+hψ′(a∗))n+1D0+
h2

2 C2

(
(1+hψ′(a∗))n+1−1

hψ′(a∗)

)
,

so we need (1 + hψ′(a∗))n+1D0 +
h
2

C2

ψ′(a∗) [(1 + hψ′(a∗))n+1 − 1] > 0, which

simpli�es to h
(1+hψ′(a∗))n+1 <

2D0

(−C2)
(−ψ′(a∗)) + h. Since h > 0, it is enough

to satisfy h
(1+hψ′(a∗))n+1 ≤ 2D0

(−C2)
(−ψ′(a∗)). Since tn+1 = (n+ 1)h < Ta∗ , i.e.

(n+1) < Ta∗/h, and (1+hψ′(a∗)) ∈ (0, 1), we have β(h) := h
(1+hψ′(a∗))Ta∗/h

>
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h
(1+hψ′(a∗))n+1 . To prove that β(h) is strictly increasing for h > 0, we consider

β′(h) =
1

(1 + hψ′(a∗))Ta∗/h
− h

[(1 + hψ′(a∗))Ta∗/h]2
(1 + hψ′(a∗))Ta∗/h

·
[
−Ta∗
h2

ln(1 + hψ′(a∗)) +
Ta∗

h

ψ′(a∗)

1 + hψ′(a∗)

]
=

1

(1 + hψ′(a∗))Ta∗/h

[
1 + Ta∗

(
1

h
ln(1 + hψ′(a∗))− ψ′(a∗)

1 + hψ′(a∗)

)]
,

which is clearly positive if ln(1 + hψ′(a∗)) > h ψ′(a∗)
1+hψ′(a∗) . Since x − lnx > 1

for x > 1, and (1 + hψ′(a∗))−1 ∈ (1,∞), the above inequality is satis�ed and
β(h) is strictly increasing. Moreover β(0) = 0 and limh→ −1

ψ′(a∗)
β(h) = +∞,

so that the equation h
(1+hψ′(a∗))Ta∗/h

= 2D0(−ψ′(a∗))
(−C2)

has exactly one solution

h̃ and if h < h̃ we have Dn+1 > 0.

The existence and uniqueness results of this section can be generalized to
quasi-linear parabolic equations with power-like nonlinearities

ut = αum +∆um, in Ω × (0, T ),
u = 0, on ∂Ω × (0, T ),

u(x, 0) = u0(x), in Ω,

where Ω is a bounded domain in Rd, m > 1 and α ≥ 0, see [5], but the upper
bound blow up estimate remains currently open.

4. Numerical Results

We now test the new splitting B-methods on several non-linear partial di�er-
ential equations, and also compare them to the B-methods based on the variation
of constants approach from [6] called VCFE, VCBE, VCMR and VCTR.

4.1. A Semi-Linear Parabolic Equation
For the �rst example, we study the semi-linear parabolic equation ut =

∆u + δeu on the interval Ω = [−1, 1]. We discretize the Laplacian operator
in space using a fourth order �nite di�erence method with a �ve point stencil
and a mesh size of ∆x = 2/30. We set δ = 3 and u0(x) = cos(πx/2), which
is concave on the whole interval. Using adaptive methods, we can estimate the
blow-up time at Tb ≈ 0.1664. We show in Table 1 the errors in the computed
solutions up to Tf = 0.1660 with di�erent step sizes. We observe that the
error of B-methods is approximately 10 times smaller for �rst-order methods
(and even more for SpBE and SpBEA) and 30 times smaller for second-order
B-methods compared to standard methods. In Figure 1, we show these results
graphically. As expected, the slopes of the lines corresponding to �rst-order
methods are approximately one, whereas the slopes of the lines corresponding
to second-order methods are close to two. In Figure 2 we show the behavior in
time of the methods as blow-up is approached, using h = 0.0001 and computing
the solution up to Tf = 0.1663.

19



Timestep 5e-005 2.5e-005 1.25e-005 8e-006 5e-006
FE 0.277 0.152 0.08 0.0522 0.0331
BE 0.468 0.194 0.0904 0.0565 0.0347
SpFE 0.0361 0.0183 0.00919 0.00589 0.00369
SpFEA 0.0379 0.0187 0.0093 0.00594 0.00371
SpBE 0.00533 0.00269 0.00135 0.000864 0.000541
SpBEA 0.00551 0.00273 0.00136 0.000869 0.000543
VCFE 0.019 0.00956 0.0048 0.00307 0.00192

Timestep 0.0002 0.000125 0.0001 5e-005 2.5e-005
VCBE 0.0195 0.0097 0.00483 0.00309 0.00193
MR 0.00833 0.00324 0.00207 0.000516 0.000129
TR 0.0407 0.0152 0.00961 0.00237 0.000591
SoSpFE 0.000305 0.000121 7.75e-005 1.94e-005 4.87e-006
SoSpBE 0.000305 0.000121 7.75e-005 1.94e-005 4.87e-006
VCMR 0.00033 0.00013 8.36e-005 2.1e-005 5.25e-006
VCTR 0.000733 0.000287 0.000184 4.6e-005 1.15e-005

Table 1: Error at Tf = 0.1660 for �rst-order methods (top) and second-order methods (bot-
tom) applied to the semi-linear equation with δF (u) = 3eu.
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Figure 1: Error at Tf = 0.1660 for �rst-order methods (left) and second-order methods (right)
applied to the semi-linear equation with δF (u) = 3eu, with di�erent values of h.
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Figure 2: Error for �rst-order methods (left) and second-order methods (right) applied to the
semi-linear equation with δF (u) = 3eu, for time steps close to Tf = 0.1663.

4.2. A Quasi-Linear Parabolic Equation

Splitting B-methods can also be constructed for more general non-linear
PDEs. We illustrate this now with the quasi-linear equation with power-type
nonlinearities, ut = ∆uσ+1 + αuβ+1, with β > 0, σ > 0 and α ≥ 0. We split
the PDE right hand side into f [1](u) = αuβ+1 and f [2](u) = ∆uσ+1, and using
that the nonlinear part yt = αyβ+1 is solved by y(t) = ( 1

K−αβt )
1/β , the exact

�ow of the �rst part is φ
[1]
t (un) =

[
u−βn − αβt

]−1/β
. By choosing Φ

[2]
h to be the

forward Euler method, so that Φ
[2]∗
h is the backward Euler method we obtain

the corresponding SpFE method

Φh(un) = un+1 =
[
(un + h∆uσ+1

n )−β − αβh
]−1/β

, (44)

and its adjoint, the (SpFE)∗,

Φ∗
h(un) = un+1 =

(
u−βn − αβh

)−1/β
+ h∆uσ+1

n+1. (45)

If we choose Φ
[2]
h to be backward Euler we get SpBE,

Φh(un) =
[
v−β − αβh

]−1/β
, (46)

where v is solution of v − h∆(vσ+1) = un, and its adjoint (SpBE)∗

Φ∗
h(un) =

[
u−βn − αβh

]−1/β
+ h∆

([
u−βn − αβh

]−(σ+1)/β
)
. (47)

The second-order methods obtained by composing these methods are quite sim-

ple. If Φ
[2]
h is the forward Euler method, the composed method is SoSpFE

Ψh(un) =

((
v +

h

2
∆(vσ+1)

)−β

− αβ
h

2

)−1/β

, (48)
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Timestep 0.000125 8e-005 5e-005 2.5e-005 1.25e-005
FE 0.0188 0.0121 0.00762 0.00383 0.00192
BE 0.0196 0.0125 0.00774 0.00386 0.00192
SpFE 0.0082 0.00526 0.00329 0.00165 0.000824
SpFEA 0.00829 0.0053 0.00331 0.00165 0.000825
SpBE 0.004 0.00256 0.0016 0.0008 0.0004
SpBEA 0.004 0.00256 0.0016 0.0008 0.0004
VCFE 0.00209 0.00134 0.000837 0.000419 0.000209
VCBE 0.0021 0.00134 0.000839 0.000419 0.00021

Timestep 0.0005 0.00025 0.000125 8e-005 5e-005
MR 0.000191 4.78e-005 1.19e-005 4.89e-006 1.91e-006
TR 0.000499 0.000125 3.11e-005 1.28e-005 4.98e-006
SoSpFE 3.72e-005 9.29e-006 2.32e-006 9.52e-007 3.72e-007
SoSpBE 5.84e-005 1.46e-005 3.65e-006 1.49e-006 5.84e-007
VCMR 2.15e-006 5.37e-007 1.34e-007 5.5e-008 2.15e-008
VCTR 2.17e-005 5.42e-006 1.35e-006 5.55e-007 2.17e-007

Table 2: Error at Tf = 0.1000 for �rst-order methods (top) and second-order methods (bot-
tom) applied to the quasi-linear equation ut = ∆u2 + 8u3.

where v is the solution of v − h
2∆(vσ+1) = (u−βn − αβ h2 )

−1/β . Similarly, the

second-order method obtained using the backward Euler method for Φ
[2]
h is

SoSpBE, given implicitly by

Ψh(un) = un+1 =

((
v +

h

2
∆(uσ+1

n+1)

)−β

− αβh

2

)−1/β

, (49)

where v = [u−βn − αβh
2 ]−1/β + h

2∆[(u−βn − αβh
2 )−(σ+1)/β ]. We show a numerical

example for the quasi-linear equation ut = ∆u2 + 8u3, on Ω = (−1, 1) with
the same initial condition as above: u0(x) = cos(πx/2). The blow-up time is
approximately Tb ≈ 0.1128. We list in Table 2 the errors we obtained. We
observe that the B-methods obtained by variation of the constant are more
accurate than those obtained by splitting methods. Compared with standard
methods, the errors are 10 times smaller for �rst-order methods of the �rst type
and between 2 and 7 times smaller for �rst-order methods of the second type.
Among second-order methods, the method obtained by variation of the constant
and the midpoint rule (VCMR) is remarkably better than the others, as its error
is more than �fty times smaller that the error of the standard midpoint rule. In
Figure 3 we show the corresponding data graphically. The step-by-step errors
are plotted in Figure 4 up to Tf = 0.1110, when the solutions are computed
using the timestep h = 0.0001.

4.3. A Semi-Linear System

In [18] and [19] , Friedman and Giga considered parabolic systems of the
form ut − uxx = f(v), vt − vxx = g(u), where f and g are positive, increasing
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Figure 3: Error at Tf = 0.1000 for �rst-order methods (left) and second-order methods (right)
applied to the quasi-linear equation ut = ∆u2 + 8u3, with di�erent values of h.
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Figure 4: Error for �rst-order methods (left) and second-order methods (right) applied to the
quasi-linear equation ut = ∆u2 + 8u3, for timesteps close to Tf = 0.1110.
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and superlinear. They showed that the solutions exhibit a single-point blow-up.
More complex systems of the form (ui)t = ∆ui + fi(u1, . . . , um) were studied
by Bebernes and Lacey [4], Gang and Sleeman [22] and Chen [12]. In this
subsection, we derive several specialized methods for the simple case

ut = ∆u+ δev, vt = ∆v + γeu. (50)

We �rst solve the nonlinear system of ordinary di�erential equations y′(t) =
δez(t), z′(t) = γey(t), to get y(t) = lnK − ln[1 − δeKt+D] − ln γ, z(t) = lnK −
ln[1−δeKt+D]+Kt+D, whereK andD are constants of integration, determined
by the initial conditions, K = γey(0) − δez(0) and D = z(0)− y(0)− ln γ. Then

for each choice of numerical integrator Φ
[2]
h applied to ut = ∆u, vt = ∆v, we

obtain two schemes that are adjoint to each other. The forward Euler method
leads to the explicit SpFE scheme

Φh(un, vn) =

(
lnKn − ln[1− δeDn+hKn ]− ln γ
lnKn − ln[1− δeDn+hKn ] +Dn + hKn

)
,

where Kn = γeun+h∆un − δevn+h∆vn , Dn = vn+h∆vn−un−h∆un− ln γ, and
the adjoint scheme Φ∗

h we call (SpFE)∗ is given by

un+1 = lnKn − ln[1− δeDn+hKn ]− ln γ + h∆un+1,
vn+1 = lnKn − ln[1− δeDn+hKn ] +Dn + hKn + h∆vn+1,

whereKn = γeun−δevn , Dn = vn−un−ln γ. If we choose instead the backward
Euler method, we obtain the SpBE scheme

Φh(un, vn) =

(
lnKn − ln[1− δeDn+hKn ]− ln γ
lnKn − ln[1− δeDn+hKn ] +Dn + hKn

)
,

where Kn = γew1 − δew2 , Dn = w2 − w1 − ln γ, and w1 and w2 are solutions
of w1 = un + h∆w1 and w2 = vn + h∆w2. For its adjoint method (SpBE)∗,
we �rst de�ne Kn := γeun − δevn , Dn := vn − un − ln γ, and w1 := lnKn −
ln[1− δeDn+hKn ]− ln γ, w2 := lnKn− ln[1− δeDn+hKn ] +Dn+hKn. Then the
(SpBE)∗ scheme can be written as

Φ∗
h(un, vn) =

(
w1 + h∆w1

w2 + h∆w2

)
.

We can also compose these methods to construct second-order splitting B-
methods. For these, we �rst de�ne Kn := γeun − δevn , Dn := vn − un − ln γ as

before. Then, if we choose Φ
[2]
h to be the forward Euler method, we de�ne w1

and w2 to be the solutions of

w1 − h
2∆w1 = lnKn − ln[1− δeDn+

h
2Kn ]− ln γ,

w2 − h
2∆w2 = lnKn − ln[1− δeDn+

h
2Kn ] +Dn + h

2Kn,

and we de�ne K̃ := γ exp(w1+
h
2∆w1)−δ exp(w2+

h
2∆w2), D̃ := w2+

h
2∆w2−

w1 − h
2∆w1 − ln γ, to �nally get the SoSpFE scheme

un+1 = ln K̃ − ln[1− δeD̃+h
2 K̃ ]− ln γ,

vn+1 = ln K̃ − ln[1− δeD̃+h
2 K̃ ] + D̃ + h

2 K̃.
(51)
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Timestep 0.0001 5e-005 2.5e-005 1.25e-005 8e-006
FE 0.0146 0.00736 0.00369 0.00185 0.00118
BE 0.015 0.00747 0.00372 0.00186 0.00119
SpFE 0.00146 0.00073 0.000365 0.000183 0.000117
SpFEA 0.000679 0.000339 0.000169 8.47e-005 5.42e-005
SpBE 0.000675 0.000338 0.000169 8.46e-005 5.42e-005
SpBEA 0.00146 0.000731 0.000365 0.000183 0.000117
VCFE 0.00118 0.00059 0.000295 0.000148 9.45e-005
VCBE 0.00118 0.000591 0.000295 0.000148 9.45e-005

Timestep 0.0004 0.0002 0.0001 5e-005 2.5e-005
MR 5.91e-005 1.48e-005 3.69e-006 9.23e-007 2.31e-007
TR 0.000339 8.48e-005 2.12e-005 5.3e-006 1.32e-006
SoSpFE 4.85e-006 1.21e-006 3.03e-007 7.57e-008 1.89e-008
SoSpBE 4.85e-006 1.21e-006 3.03e-007 7.57e-008 1.89e-008
VCMR 5.82e-006 1.46e-006 3.64e-007 9.1e-008 2.28e-008
VCTR 6.4e-006 1.6e-006 4e-007 1e-007 2.5e-008

Table 3: Error at Tf = 0.1100 for �rst-order methods (top) and second-order methods (bot-
tom) applied to the system of semi-linear equations.

If we choose to use the backward Euler method as Φ
[2]
h , we need to �rst de�ne

ũ := lnKn−ln[1−δeDn+h
2Kn ]−ln γ, ṽ := lnKn−ln[1−δeDn+h

2Kn ]+Dn+
h
2Kn,

and then w1 and w2 are the solutions of

w1 −
h

2
∆w1 = ũ+

h

2
∆ũ, w2 −

h

2
∆w2 = ṽ +

h

2
∆ṽ,

and we de�ne K̃ := γ exp(w1) − δ exp(w2), D̃ := w2 − w1 − ln γ, to �nally get
un+1 and vn+1 by (51) for the SoSpBE scheme.

We now present the results of numerical experiments for the system of semi-
linear parabolic equations (50) with δ = 3 and γ = 5. The initial conditions
are u0(x) = cos(πx/2) and v0(x) = cos(πx/2) on Ω = [−1, 1]. The blow-up
time is approximately Tb ≈ 0.1181. The errors are listed in Table 3. and shown
graphically in Figure 5.

In Figure 6, we show again the evolution of the solution as we approach
blow up. We used h = 0.0001 and computed the solutions up to Tf = 0.1170.
Further examples can be found in [5, Appendix A].

5. Conclusions

We presented in this paper a systematic approach for deriving numerical
integrators which are very accurate for semi- and quasi-linear parabolic and
hyperbolic partial di�erential equations exhibiting blow-up in �nite time. We
call this new class of geometric integration methods B-methods, where B stands
for blow-up. Our construction is completely general, and can lead to B-methods
for many other nonlinear partial di�erential equations that were not considered
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Figure 5: Error at Tf = 0.1100 for �rst-order methods (left) and second-order methods (right)
applied to the system of semi-linear equations with di�erent values of h.
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Figure 6: Error for �rst-order methods (left) and second order methods (right) applied to the
system of semi-linear equations, for timesteps close to Tf = 0.1170.
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in this paper. Because of their construction, which takes the blow-up behavior
into account, all these methods will behave substantially better close to blow-up,
while their behavior before blow-up is similar to classical time stepping schemes.
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