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1 Introduction

We are interested in solving in parallel anisotropic diffusion problems of the form

LD := −div(�∇D) + [D = 6 in Ω ⊂ R2, D = 0 on mΩ, (1)

where � is a symmetric positive definite matrix with,1,∞ coefficients,

(G, H) ∈ Ω ↦→ �(G, H) =
(
�GG �GH
�GH �HH

)
,

and (G, H) ∈ Ω ↦→ [(G, H) ≥ 0 is in !∞ (Ω). Schwarz algorithms for such problems
are naturally formulated and studied at the continuous level. For a decomposition
of the domain Ω into possibly non-overlapping subdomains Ω 9 , 9 = 1, 2, . . . , �, the
parallel optimized Schwarz algorithm with Robin transmission conditions for the
anisotropic diffusion problem (1) computes for iteration index ℓ = 1, 2, . . .

LDℓ
9
= 6 in Ω 9 ,

Dℓ
9
= 0 on mΩ 9 ∩ mΩ,

�∇Dℓ
9
· n 9 + ?Dℓ9 = −�∇Dℓ−1

8
· n8 + ?Dℓ−1

8
on Γ 98 ,

(2)
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Fig. 1: Three typical discretizations for two subdomain decompositions: square-
square (ss), triangle-square (ts) and triangle-quadrangle (tq).

where n 9 denotes the unit outer normal on the boundary of Ω 9 , and Γ 98 denotes the
portion of the interface whereΩ 9 takes data fromΩ8 . The efficiency of the algorithm
is known to depend on the choice of the parameter ?, which is usually optimized
for a simple two subdomain decomposition, see [3] for the Laplace case. In [5],
we showed at the continuous level for a general constant diffusion matrix � that
for Ω := (−0, 0) × (0, 1) decomposed into two non-overlapping subdomains Ω1 :=
(−0, 0) × (0, 1) andΩ2 := (0, 0) × (0, 1) with the interface Γ12 = Γ21 := mΩ1∩mΩ2,
the optimized parameters and associated convergence factors are of the form

?∗ =
√
5̃ (:min) 5̃ (:max), d∗ =

√
5̃ (:max) −

√
5̃ (:min)√

5̃ (:max) +
√
5̃ (:min)

, (3)

where for a general constant diffusion matrix �

5̃ (:) := 5 (A (:)) with A (:) :=
1
�GG

√
[�GG +

(
c:

1

)2
det �, (4)

with the function 5 defined for unbounded and bounded domains by

5 (A) :=
{
5∞ (A) := �GGA 0 = ∞,
50 (A) := 5∞ (A) coth(0A) 0 < ∞. (5)

For both cases, the smallest frequency is :min = 1 and the largest frequency can be
estimated by :max =

1
ℎH

for cell centered (cc) discretization, and :max =
1
ℎH
− 1 for

vertex centered (vc) discretizations, which are almost the same for small mesh size
ℎH in the H direction, see below for more information.

We show for the three example meshes in Figure 1 the numerically computed
convergence factors ď in Table 1 when running the optimized Schwarz algorithm dis-
cretized by Discrete Duality Finite Volumes (DDFV, see [5] for the DDFV Schwarz
algorithm, and [7, 2, 1] for DDFV discretizations in general) for the Laplace problem,
�(G, H) = �, and four anisotropic diffusion matrices, and characteristic mesh size
ℎG = ℎH =: ℎ = 1

16 , i.e themeshes in Figure 1 twice refined.We used the theoretically
optimized value ?∗ = ?∗∞,cvc from (3) with :max =

1
ℎH
− 1 corresponding to the vc

scheme (index cvc for continuous vertex centered), see the comment at the end of
section 3, and then also determined the numerically best working parameter ?̌∗ and
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Problem ss ts tq ss ts tq
�GG �HH ?∗∞,cvc ď ď ď ?̌∗ ď∗ ?̌∗ ď∗ ?̌∗ ď∗

1 1 12.87 0.592 0.592 0.593 11.89 0.567 10.87 0.566 11.63 0.559
16 1 51.50 0.452 0.521 0.602 49.84 0.439 46.29 0.475 44.79 0.556
16 1

16 16.01 0.351 0.343 0.586 23.50 0.174 19.88 0.254 11.07 0.487
1 16 50.35 0.821 0.744 0.687 75.14 0.732 57.22 0.712 57.61 0.647
1
16 16 12.59 0.949 0.919 0.891 26.84 0.884 22.46 0.841 21.52 0.842

Table 1: Numerically measured convergence factors ď of the optimized Schwarz
algorithm for the three example meshes square-square (ss), triangle-square (ts) and
triangle-quadrangle (tq) for the Laplace problem and four anisotropic diffusion prob-
lems with the theoretical parameter ?∗∞,cvc and the numerically best working one ?̌∗.

associated convergence factor ď∗, which we computed (throughout the paper) per-
forming each time 100 iterations and using the last 40 to fit the linear convergence,
to avoid initial fluctuations due to starting with a random initial guess.

We see from this experiment that for the Laplace problem the theoretically de-
termined best parameter at the continuous level ?∗∞,cvc performs very well on all
meshes, and is close to the numerically best working one ?̌∗, with ď ≈ ď∗. For
anisotropic diffusion however this is not the case: the performance now depends
on the mesh structure, and the numerically optimized parameter ?̌∗ can be rather
different from the theoretical parameter ?∗∞,cvc. It is this difference we want to better
understand, in particular for DDFV discretizations, which are highly accurate for
anisotropic diffusion.

To start with our investigation, we plot in Figure 2 an example subdomain solution
on the right subdomainΩ2 with interface value equal to 1 and vanishing source term
for the Laplace case and two anisotropic diffusion cases. We see that the anisotropy
deforms the solution quite a bit, and for �GG large, the subdomain clearly sees the
boundary conditions at the outer boundary mΩ (Figure 2 middle), whereas for �HH
large a boundary layer is forming close to the interface Γ21 (Figure 2 right). This
indicates that both the subdomain size, as well as the discretization, i.e. the mesh
size, should influence the behavior of the optimized Schwarz method for anisotropic
diffusion, and thus the best value of the parameter ?.

Fig. 2: Solutions for �GG = 1, �HH = 1 (left), for �GG = 16, �HH = 1 (middle), for
�GG = 1, �HH = 16 (right), on an isotropic mesh.
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2 Optimized parameters at the discrete level

For rectangular meshes and for a diagonal anisotropy (�GH = 0), it is easy to see (see
e.g. [4]) that the DDFV scheme leads to two decoupled classical finite difference
schemes, a cell centered (cc) scheme with unknowns at the cell centers, and a
vertex centered (vc) scheme with unknowns at the vertices. In [4], we performed the
optimization analysis in the same rectangular domain configuration as above, for a
discretization associated to the step sizes ℎG and ℎH for both the cc and vc schemes
for unbounded (0 = ∞) and bounded (0 < ∞) domains. The optimized parameters
and associated convergence factors are again of form (3), with

5̃ (:) := 5 (a(:)), a(:) := − ln(_(:)), _(:) := 1 + ` (:)
2 −

√
`(:) + ` (:)2

4 ,

`(:) := ℎ2
G

�GG

(
4 �HH
ℎ2
H

sin2
(
: cℎH

21

)
+ [

)
,

(6)

and the function 5 is defined for the cc and vc schemes on unbounded and bounded
domains by

5 (a) :=


5∞,cc (a) := 2 �GG

ℎG
tanh

(
a
2
)
, 0 = ∞,

50,cc (a) := 5∞,22 (a)coth
(
0a
ℎG

)
, 0 < ∞,

5∞,vc (a) := �GG
ℎG

sinh (a) , 0 = ∞,
50,vc (a) = 5∞,{2 (a)coth

(
0a
ℎG

)
, 0 < ∞.

(7)

Again the smallest frequency :min = 1, and the maximum frequencies can be esti-
mated by :max =

1
ℎH

for the cc scheme and :max =
1
ℎH
− 1 for the vc scheme.

3 Asymptotic Analysis

In order to understand the difference in the performance of the optimized Schwarz
method in the anisotropic case, we now present a new asymptotic analysis of the
optimized parameters and associated convergence factors. We look at the asymptotic
behavior as ℎG and ℎH tend to zero, their ratio being constant.

We start with the asymptotic analysis of the optimization results (4)-(5) at the
continuous level. When inserting the smallest frequency : = :min into (4)-(5), we
get in the unbounded domain case

5̃∞ (:min) =
√
[�GG +

( c
1

)2
det �,

and in the bounded domain case



Optimized Robin transmission conditions for anisotropic diffusion on arbitrary meshes 5

5̃0 (:min) =
√
[�GG +

( c
1

)2
det � coth

(
0

�GG

√
[�GG +

( c
1

)2
det �

)
.

At the largest frequency : = :max, we obtain the same asymptotics, namely

5̃∞ (:max) = 5̃0 (:max) =
c
√

det �
ℎH

+ O(1). (8)

Now when ℎH tends to zero, we see from (4) that 0A (:max) tends to infinity, and
therefore coth(0A (:max)) = 1 + >(ℎH). We thus obtain for the unbounded domain
case 0 = ∞ for the optimized parameter and associated convergence factor

?∗∞ ∼
(
[�GG +

( c
1

)2
det �

) 1
4 (
c
√

det �
) 1

2
ℎ
− 1

2
H ,

d∗∞ ∼ 1 − 2
(
[�GG +

( c
1

)2
det �

) 1
4 (
c
√

det �
)− 1

2
ℎ

1
2
H ,

where 5 (ℎH) ∼ 6(ℎH) means limℎH→0
5 (ℎH )
6 (ℎH ) = 1, and when 0 < ∞, we get

?∗0 ∼
(
[�GG +

( c
1

)2
det �

) 1
4 (
c
√

det �
) 1

2

(
coth

(
0

�GG

√
[�GG +

( c
1

)2
det �

)) 1
2

ℎ
− 1

2
H ,

d∗0 ∼ 1−2
(
[�GG+

( c
1

)2
det �

)1
4(
c
√

det �
)− 1

2

(
coth

(
0

�GG

√
[�GG +

( c
1

)2
det �

)) 1
2

ℎ
1
2
H .

We see that the asymptotic behavior in the mesh size is the same, but the constants
differ between the bounded and unbounded domain case, clearly indicating that the
continuous analysis on the bounded domain can take into account the anisotropy
observed in Figure 2.

We next perform an asymptotic analysis of the optimization results (6) and (7)
at the discrete level. For a diagonal diffusion matrix �, at the minimum frequency,
: = :min, we obtain from (6)

`(:min) =
ℎ2
G

�GG

(
4
�HH

ℎ2
H

sin2
(
cℎH

21

)
+ [

)
=
ℎ2
G

�2
GG

(
[�GG +

( c
1

)2
�GG�HH + O(ℎ2

H)
)
.

Hence `(:min) → 0 when the mesh is refined, and because _(:min) ∼ 1−
√
`(:min)

and 5̃ (:min) ∼ �GG
ℎG

√
`(:min), we obtain

5̃∞,cc (:min) ∼ 5̃∞,vc (:min) ∼
√
[�GG +

( c
1

)2
�GG�HH . (9)

At the highest frequency, : = :max, we obtain for the cc scheme
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`cc (:max) =
ℎ2
G

�GG

(
4
�HH

ℎ2
H

sin2
( c

2

)
+ [

)
=
ℎ2
G

�2
GG

(
[�GG + 4

�GG�HH

ℎ2
H

)
∼ 4V,

where V := �HH

ℎ2
H

ℎ2
G

�GG
, and similarly for the vc scheme,

`vc (:max) =
ℎ2
G

�GG

(
4
�HH

ℎ2
H

sin2
( c

2
(1 − ℎH)

)
+ [

)
=
ℎ2
G

�2
GG

(
4
�GG�HH

ℎ2
H

+ O(1)
)
∼ 4V.

Note that the case of a Laplacian with an isotropic square mesh corresponds to the

parameter value V = 1. By hyperbolic trigonometric calculus, and �GG
ℎG

=

√
�GG�HH

ℎH
√
V

,

we obtain the alternative formula 5∞,cc (a(:)) = 2 �GG
ℎG

1−_(:)
1+_(:) , which yields

5̃∞,cc (:max) = 2 �GG
ℎG

−V+
√
V+V2

1+V−
√
V+V2

=

√
�GG�HH

ℎH
√
V

2 −V+
√
V+V2

1+V−
√
V+V2

=

√
�GG�HH

ℎH
√
V

2
√
V+V2

1+V :=
√
�GG�HH

ℎH
kcc (V),

with kcc (V) = 2√
1+V

. Similarly, since 5∞,vc (a(:)) = �GG
ℎG

1−_(:)2
2_(:) by hyperbolic

trigonometric calculus, we obtain

5∞,vc (:max) = �GG
ℎG

2
(
−V+
√
V+V2

) (
1+V−
√
V+V2

)
1+2V−2

√
V+V2

=

√
�GG�HH

ℎH
√
V

2
(
−V +

√
V + V2

) (
1 + V −

√
V + V2

) (
1 + 2V + 2

√
V + V2

)
=

√
�GG�HH

ℎH
√
V

2
√
V + V2 :=

√
�GG�HH

ℎH
kvc (V),

with kvc (V) = 2
√

1 + V. Note that in the special case V = 1, we get kcc (V) =
√

2 and
kvc (V) = 2

√
2, a factor 2 difference. For the unbounded domain case, 0 = ∞, we

then obtain for the optimized parameters and associated convergence factors of the
cc and vc schemes

?∗∞,cc ∼ kcc (V)
1
2
√
�GG�HH

(
[

�HH
+

( c
1

)2
) 1

4

ℎ
− 1

2
H ,

?∗∞,vc ∼ kvc (V)
1
2
√
�GG�HH

(
[

�HH
+

( c
1

)2
) 1

4

ℎ
− 1

2
H ,

d∗∞,cc ∼ 1 − 2kcc (V)−
1
2

(
[

�HH
+

( c
1

)2
) 1

4

ℎ
1
2
H ,

d∗∞,vc ∼ 1 − 2kvc (V)−
1
2

(
[

�HH
+

( c
1

)2
) 1

4

ℎ
1
2
H .
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In the bounded domain case, 0 < ∞, we see that coth
(
0a (:max)
ℎG

)
∼ 1 and when

`(:min) → 0, we have a(:min) ∼ −
√
`(:min), which implies

0a (:min)
ℎG

∼ 0√
�GG

√
[ +

(
c
1

)2
�HH ⇒ coth

(
0a (:min)
ℎG

)
∼ coth

(
0√
�GG

√
[ +

(
c
1

)2
�HH

)
.

(10)
We therefore get for the optimized parameters and associated convergence factors
for the cc and vc schemes in the bounded domain case

?∗a,cc ∼ kcc (V)
1
2
√
�GG�HH

(
[

�HH
+

(
c
1

)2
) 1

4 coth
(

0√
�GG

√
[ +

(
c
1

)2
�HH

) 1
2

ℎ
− 1

2
H ,

?∗a,vc ∼ kvc (V)
1
2
√
�GG�HH

(
[

�HH
+

(
c
1

)2
) 1

4 coth
(

0√
�GG

√
[ +

(
c
1

)2
�HH

) 1
2

ℎ
− 1

2
H ,

d∗a,cc ∼ 1 − 2kcc (V)−
1
2

(
[

�HH
+

(
c
1

)2
) 1

4 coth
(

0√
�GG

√
[ +

(
c
1

)2
�HH

) 1
2

ℎ
1
2
H ,

d∗a,vc ∼ 1 − 2kvc (V)−
1
2

(
[

�HH
+

(
c
1

)2
) 1

4 coth
(

0√
�GG

√
[ +

(
c
1

)2
�HH

) 1
2

ℎ
1
2
H .

These formulas take both the domain size and the mesh resolution into account, also
when the mesh is not chosen appropriately for the anisotropy under consideration.

If one can not use separate parameters for the cc and vc components in a DDFV
implementation, it was shown in [4] that the optimized choice for one parameter is
of the form

?∗a,ddfv =
√
5a,cc (a(:min)) 5a,vc (a(:max)),

and since asymptotically we have 5a,cc (a(:min)) ∼ 5a,vc (a(:min)) from (9) and (10),
one should use the optimized parameter ?∗a,vc ∼ ?∗a,ddfv in that case.

The continuous and discrete asymptotic results lead to the following general
theorem.

Theorem 1 (Optimized Robin Parameter for Diagonal Anisotropic Diffusion)
The optimized Schwarz method (2) for the anisotropic diffusion problem (1)

with diagonal diffusion matrix � and a subdomain decomposition of the rectangle
Ω = (−0, 0) × (0, 1) into two non-overlapping subdomains Ω1 := (−0, 0) × (0, 1)
and Ω2 := (0, 0) × (0, 1) has for small mesh size ℎH the asymptotically optimized
parameter and associated convergence factor

?∗ ∼ k 1
2
√
�GG�HH

(
[

�HH
+

(
c
1

)2
) 1

4
2

1
2 ℎ
− 1

2
H , (11)

d∗ ∼ 1 − 2k− 1
2

(
[

�HH
+

(
c
1

)2
) 1

4
2

1
2 ℎ

1
2
H , (12)

where in the unbounded domain case, 0 = ∞, we have 2 = 1, whereas in the bounded
domain case, 0 < ∞, we have
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Fig. 3: Graph of the functions kcc (V) and kvc (V) for the discrete analysis, compared
to k(V) = c (dotted) from the continuous analysis for small and large V range.

2 := 2(0, 1, �GG , �HH , [) = coth

(
0
√
�GG

√
[ +

( c
1

)2
�HH

)
. (13)

Furthermore, in the continuous case k = c, and in the discrete case we have

k := kcc (V) =
2√

1 + V
or k = kvc (V) := 2

√
1 + V (14)

for the cell centered or vertex centered discretizations, with

V :=
�HH

ℎ2
H

ℎ2
G

�GG
. (15)

Plotting the k(V) functions in Figure 3, we see that if V = 1 then the continuous
and discrete analyses give about the same optimized parameter ?∗ and associated
convergence factor, especially for the vc scheme. Since V = �HH

ℎ2
H

ℎ2
G

�GG
, this can be

achieved by having equal mesh sizes ℎG = ℎH and isotropic diffusion �GG = �HH ,
or by adapting the mesh sizes to the anisotropy, ℎ2

H =
�GG
�HH

ℎ2
G . Such an adaptation is

also recommended for accuracy, since a Taylor expansion gives

�GG
D (G+ℎG ,H)−2D (G,H)−D (G−ℎG ,H)

ℎ2
G

+ �HH
D (G,H+ℎH )−2D (G,H)−D (G,H−ℎH )

ℎ2
H

= (�GGmGG + �HHmHH)D(G, H) + 1
12 (�GGℎ

2
Gm

4
G + �HHℎ2

Hm
4
H)D(G, H) + . . . ,

(16)

and from the separation of variables solution D(G, H) = 4−
:c
1

√
�HH

�GG
G sin( : c

1
H) we see

that the fourth derivative in G scales like �2
HH

�2
GG
, while the fourth derivative in H does

not scale in these entries, and hence to balance the error term, we should choose
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�GGℎ
2
G

�2
HH

�2
GG

≈ �HHℎ2
H =⇒ ℎ2

G

�GG

�HH

ℎ2
H

= V ≈ 1. (17)

Hence for V ≈ 1, we can use the continuous analysis results and expect good perfor-
mance, also in highly anisotropic cases, provided the mesh is adapted accordingly. If
V is very different from one, we should use the parameters from the discrete analysis
to get good performance. We also see from Figure 3 (right) that for large V the opti-
mized parameters for the cc and vc schemes are becoming more and more different,
and (12) together with (14) indicates that the cc scheme is converging much faster
than the vc scheme in these not well resolved mesh situations. In the DDFV case with
general meshes, where both cc and vc discretizations are involved, the importance
will then lie on a good optimization of the vc parameter, the cc parameter playing
only a secondary role in these not well resolved cases.

Next, we see from Theorem 1 that if 2 ≈ 1, then we can use the unbounded
domain analysis, since the only term depending on the domain bound 0 on the left
and right is 2. Now 2 ≈ 1 if the argument of the coth is large, i.e. either the domains
and thus 0

1
is large, or [ is large, or �HH

�GG
is large, which is illustrated in Figure 1 on

the right, where we see that the outer boundary on the right does not play a major
role any more1. If none of these hold, then the bounded domain analysis needs to be
used to obtain good performance.

Finally, from d∗ in Theorem 1, we see the algorithm will converge very fast with
the well chosen ?∗, provided �HH is small or [ large, or k(V) is small. Having k(V)
small is however not advisable, because the discretization accuracy is only good for
V ≈ 1, see (17).

4 Numerical Experiments

We can now explain the discrepancies we observed in Table 1 as soon as we solve
anisotropic diffusion problems. There are two reasons: the first one is that when using
the optimized parameter ?∗∞ from the continuous, unbounded domain analysis, the
fact that the subdomains are actually bounded in a concrete computation becomes
important as soon as the diffusion in the orthogonal direction to the interface is
large, and the cross diffusion tangential to the interface is small. This is visible also
in Figure 1 showing a corresponding solution in the middle, where we can clearly
see that the boundary on the right makes the solution decay linearly in the direction
orthogonal to the interface, in stark contrast to the Laplace case on the left in Figure
1, where the decay is exponential. The second reason for discrepancies is the uniform
discretization, which can not resolve well the boundary layers close to the top and
bottom boundaries in Figure 1 (middle), and close to the interface in Figure 1 (right)
which also influence the convergence of the Schwarz method.

1 For example, in the case �GG = 1 and �HH = 16, the difference is of order 10−11.
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Problem ss ts tq ss ts tq
�GG �HH ?∗a,cvc ď ď ď ?̌∗ ď∗ ?̌∗ ď∗ ?̌∗ ď∗

1 1 12.48 0.582 0.581 0.583 11.89 0.567 10.87 0.566 11.63 0.559
16 1 60.59 0.514 0.578 0.651 49.84 0.439 46.29 0.475 44.79 0.556
16 1

16 28.04 0.258 0.436 0.741 23.50 0.174 19.88 0.254 11.07 0.487
1 16 48.75 0.826 0.751 0.695 75.14 0.732 57.22 0.712 57.61 0.647
1
16 16 12.19 0.950 0.921 0.894 26.84 0.884 22.46 0.841 21.52 0.842

Table 2: Results corresponding to Table 1 but now using the theoretical parameter
?∗a,cvc from the bounded domain analysis.

Problem ss ts tq ss ts tq
�GG �HH ?∗a,cc ?

∗
a,vc ď ď ď ?̌∗cc ?̌∗vc ď∗ ?̌∗cc ?̌∗vc ď∗ ?̌∗cc ?̌∗vc ď∗

1 1 8.62 12.22 0.573 0.572 0.574 8.62 11.93 0.566 7.73 11.38 0.533 10.49 10.49 0.527
16 1 49.16 50.56 0.444 0.509 0.592 49.59 49.87 0.439 45.87 45.89 0.468 39.61 40.13 0.514
16 1

16 23.48 23.48 0.174 0.347 0.698 23.50 23.44 0.173 19.75 20.24 0.242 11.42 11.65 0.466
1 16 19.07 84.09 0.723 0.728 0.733 20.01 80.71 0.714 44.46 66.21 0.653 13.78 58.50 0.621
1

16 16 1.84 54.59 0.806 0.834 0.861 1.13 51.09 0.796 1.90 36.72 0.756 0.69 30.80 0.733

Table 3: Results corresponding to Table 2 but now using the discrete theoretical
parameters ?∗a,cc and ?∗a,vc, and the numerically best working ones ?̌∗cc and ?̌∗vc.

As a first remedy, we use the optimized parameter ?∗0 from the continuous,
bounded domain analysis to take into account the boundedness of the domains.
From Table 2 we see that this already improves the performance of the method
when the diffusion is large in the orthogonal direction to the interface and small
tangentially. However for the other cases using the bounded domain analysis is not
sufficient due to the bad mesh resolution in the anisotropic case.

We therefore now use the discrete optimized formulas ?∗a,vc and ?∗a,cc in our DDFV
Schwarz code, which are perfectly adapted to the anisotropy of the problem we are
solving on bounded subdomains, and truly optimize both the vc and cc scheme
component convergence also for the not well chosen mesh resolution. We show the
corresponding results in Table 3. We see that now our parameters predicted by the
discrete analysis for the cc and vc schemes give performance close to the truly best
possible ones for rectangular meshes, and still workwell on general meshes for which
our analysis is not valid any more. Furthermore, the performance still follows our
asymptotic analysis, as the plots of the convergence factors under mesh refinement
in Figure 4 indicate.

We finally show numerical results using an anisotropic mesh which gives better
approximate discrete solutions, see the truncation error analysis in (16). We show
the corresponding results for such meshes in Table 4, and in Figure 5. We see that the
continuous analysis gives now very good predictions for the optimized parameters
for the vc scheme, while for the cc scheme their value is still a bit overestimated.
This does however not influence the performance very much.
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Fig. 4: Asymptotic dependence of 1 − ď on the mesh size for isotropic meshes and
the anisotropic diffusion problems in Table 3, with ℎ = ℎH = ℎG . From top left to
bottom right: (�GG , �HH) = (16, 1), (16, 1

16 ), (1, 16), ( 1
16 , 16).

5 Conclusions

Using asymptotic analysis, we explained rigorously numerical observations on the
performance of DDFV optimized Schwarz methods applied to anisotropic diffusion.
We showed that for strong anisotropic diffusion solved on uniform, non-adapted
meshes, one needs optimized parameters from a more subtle discrete analysis, con-
tinuous optimization does not suffice. When using suitably adapted, anisotropic
meshes such that the discrete solution is a good approximation of the continuous
one, optimized parameters from a continuous analysis perform however well. We
also showed numerically that this remains true if one uses meshes for which a de-

Problem ss aniso
�GG �HH ?∗a,ccc ?∗a,cvc ďc ?∗a,cc ?∗a,vc ď ?̌∗cc ?̌∗vc ď∗

16 1 125.13 124.15 0.730 83.94 118.73 0.718 82.30 111.96 0.705
16 1

16 115.32 115.09 0.749 77.37 109.43 0.737 77.37 102.45 0.724
1 16 50.35 48.75 0.601 33.67 47.67 0.581 33.37 46.43 0.573
1

16 16 12.59 12.19 0.601 8.42 11.92 0.580 8.42 11.63 0.574

Table 4: Results obtained using the discrete optimized parameters for adapted
anisotropic meshes.
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Fig. 5: Asymptotic dependence of 1 − ď on the mesh size for anisotropic meshes
and the anisotropic diffusion problems in Table 4. From top left to bottom right:
(�GG , �HH) = (16, 1), (16, 1

16 ), (1, 16), ( 1
16 , 16).

tailed asymptotic analysis as ours on Cartesian meshes can not be performed. For
extensions of the DDFV Schwarz algorithm to Navier-Stokes problems, see [6].
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