
A NEW PARADIAG TIME-PARALLEL TIME INTEGRATION
METHOD

MARTIN J. GANDER∗ AND DAVIDE PALITTA†

Abstract. Time-parallel time integration has received a lot of attention in the high performance
computing community over the past two decades. Indeed, it has been shown that parallel-in-time
techniques have the potential to remedy one of the main computational drawbacks of parallel-in-space
solvers. In particular, it is well-known that for large-scale evolution problems space parallelization
saturates long before all processing cores are effectively used on today’s large scale parallel computers.
Among the many approaches for time-parallel time integration, ParaDiag schemes have proven to
be a very effective approach. In this framework, the time stepping matrix or an approximation
thereof is diagonalized by Fourier techniques, so that computations taking place at different time
steps can be indeed carried out in parallel. We propose here a new ParaDiag algorithm combining the
Sherman-Morrison-Woodbury formula and Krylov techniques. A panel of diverse numerical examples
illustrates the potential of our new solver. In particular, we show that it performs very well compared
to different ParaDiag algorithms recently proposed in the literature.

1. Introduction. Time-parallel time integration is currently a very active field
of research within the high performance computing community. Research interest
was relaunched over twenty years ago with the introduction of the Parareal algorithm
[22], which is a two-level, non-intrusive method that allows existing codes to be paral-
lelized, and works well on parabolic problems; see, e.g., [14, 8] for detailed convergence
analyses. Nowadays, many other different techniques for time parallelization of evolu-
tion problems can be found on the market: methods based on multiple shooting (like
Parareal), methods based on Domain Decomposition and Waveform relaxation, Multi-
grid type methods, and even direct time-parallel solvers; see, e.g., [7] for a thorough
review of such schemes. The boundaries between these different solvers have become
less and less strict over the years, with tools designed for a specific method being fully
exploited in others. The ParaDiag family of time-parallel time integrators is a typical
example of such permeability. Originally, ParaDiag methods were designed as direct
time-parallel solvers [24]. To overcome the nondiagonalizability of the time stepping
matrix which is a Jordan block for a constant time step, it was first proposed to use
different time steps. However, this trick can lead to very ill-conditioned eigenvector
matrices which can potentially pollute the entire solution process, especially for fine
time grids. A thoughtful tradeoff between having similar time steps for accuracy and
different ones for diagonalizability is thus crucial to make this first ParaDiag method
successful; see, e.g., [11, 10] for a detailed analysis. Due to the practical limitation
this tradeoff imposes on the number of time steps that can be parallelized, a recent
approach consists in considering an approximate problem where the time stepping ma-
trix is periodic1. Thanks to this approximation, the ParaDiag approach can be well
combined with other time-parallel methods as, e.g., Parareal [31, 16] or MGRIT [33].
See also [15] for time-periodic waveform relaxation for initial value problems and [12]
for Parareal algorithms for truly time-periodic problems.

∗Section de Mathèmatiques, University of Geneva, Switzerland (martin.gander@unige.ch)
†Dipartimento di Matematica and AM2, Alma Mater Studiorum - Università di Bologna, Piazza

di Porta S. Donato, 5, I-40127 Bologna, Italy (davide.palitta@unibo.it)
1A anonymous reviewer pointed out that this corresponds to approximating a partial fraction

expansion of the rational approximation for the matrix exponential defined by the numerical scheme
(which is equivalent to a Weierstrass normal form [5], here essentially the Jordan Canonical Form
that was discovered independently [18]), by imposing periodicity to obtain a normal form which is
diagonal.

1

A different approach consists in employing ParaDiag techniques within iterative
methods. For instance, one approach approximates the time stepping matrix by a
circulant matrix, with the latter being used to define a preconditioner for Krylov
methods. A ParaDiag scheme can then be used for a more efficient application of
the preconditioning operator; see, e.g., the iterative time parallelization in [25] for
parabolic problems, and [2] for hyperbolic problems. Also for non-linear problems,
ParaDiag algorithms necessarily become iterative; see, e.g., [9].

ParaDiag techniques have been developed for optimal control problems [32] as
well. In this setting, very good performance is obtained by using α-circulant mod-
ifications of the time stepping matrix [23, 34]. See also [13] for an overview and
implementation details about these schemes.

In contrast to the first attempts of time parallelization by diagonalization using
different time steps, these modern ParaDiag methods are very successful in solving
both parabolic and hyperbolic evolution problems, and new ideas in this direction are
currently being developed; see, e.g., [19] where interpolation and low-rank techniques
are proposed and studied.

We present here a new ParaDiag algorithm for solving in a time-parallel fashion
the evolution problem

(1.1)
ut = L(u) + f, in Ω× (0, T],
u = g, on ∂Ω,

u(0) = u0,

where the spatial domain Ω is such that Ω ⊂ Rd, d = 1, 2, 3, and L is a linear
differential operator involving only spatial derivatives. If we discretize (1.1) in space
with a finite element or finite difference method with n̄ degrees of freedom, and use a
backward Euler scheme with ` time steps, the all-at-once discretization of (1.1) can
be written in matrix form as

(1.2) (I + τK)U − UΣT1 = [u0 + τ f1, . . . , τ f`],

where K ∈ Rn̄×n̄ is the stiffness matrix stemming from the spatial discretization,
Σ1 ∈ R`×` is a zero matrix having ones only on the first subdiagonal, the j-th column
of U = [u1, . . . ,u`] ∈ Rn̄×` represents the approximation to the solution u at time tj ,
j = 1, . . . , `, τ = T/` is the time step, and u0 and fj gather the nodal values of u0

and f(tj) along with the boundary conditions. See [27].
Recently, the matrix equation formulation (1.2) has been used to design new solu-

tion procedures. In particular, low-rank solvers can be very successful in solving (1.2)
whenever the right-hand side [u0 + τ f1, . . . , τ f`] has low rank; see, e.g., [27]. On
the other hand, the performance of such methods significantly worsens for right-hand
sides with a sizable rank. In this paper, we address the performance issue when the
right-hand side is possibly full rank. In particular, we propose a new ParaDiag algo-
rithm which is able to fully take advantage of the circulant-plus-low-rank structure of
Σ1 so as to design an efficient parallel-in-time algorithm for solving (1.2). A significant
advantage of this approach over low-rank space-time schemes is that no assumption
on the (numerical) rank of the right hand side [u0 + τ f1, . . . , τ f`] is needed in (1.2).

Here is an outline of the paper. In section 2 we show how to use the circulant-
plus-low-rank structure of Σ1 by combining (1.2) with the matrix-oriented Sherman-
Morrison-Woodbury formula. Such an approach sees as an intermediate step the
solution of a linear system whose coefficient matrix has a rather involved structure.
An ad-hoc projection technique for the solution of this inner linear system is proposed

2

in section 3 where we also study some of the properties of the coefficient matrix in case
of symmetric positive definite (SPD) stiffness matrices K. In section 4 we propose
a very successful variant of the ParaDiag scheme which makes use of α-circulant
matrices. In section 5 we generalize our approach to the case of higher-order time
discretization schemes. The potential of our new approach is illustrated in section 6
where several numerical results are shown. In section 7 we draw our conclusions.

Throughout the paper we adopt the following notation. Capital letters (A) denote
matrices, bold, lower-case letters (a) vectors, and plain, lower-case letters (a) scalars.
In = [e1, . . . , en] denotes the identity matrix of order n and the subscript is omitted
whenever the dimensions of I are clear from the context; ⊗ is the Kronecker product
whereas λmin(A) and λmax(A) denote the minimum and the maximum eigenvalue of
A, respectively. Given a matrix X = [x1, . . . ,xn] ∈ Rm×n, vec(X) ∈ Rmn denotes
the vector obtained by stacking the columns of X on top of each other, namely
vec(X) = [xT1 , . . . ,x

T
n]T .

2. The new ParaDiag algorithm. Even though the discrete backward Euler
operator Σ1 cannot be diagonalized as it is a Jordan block, its circulant-plus-rank-one
structure can be exploited to design efficient solvers for (1.2). Indeed, we can write

(2.1) Σ1 =

0

1
. . .

. . .
. . .

1 0

 = C1 − e1e
T
` , C1 =

0 1

1
. . .

. . .
. . .

1 0

 ,
where C1 is a circulant matrix.

The relation above has been used in, e.g., [25] to derive preconditioning operators
for the linear system counterpart of (1.2). In particular, such preconditioners were
obtained by dropping the rank-1 term e1e

T
` in (2.1).

In our setting, by inserting (2.1) into (1.2), we get

(2.2) (I + τK)U − UCT1 + Ue`e
T
1 = [u0 + f1, . . . , f`].

Since C1 is a circulant matrix, it can be diagonalized by the Fast Fourier Transform
(FFT), namely Π1 = FC1F

−1 = diag(FC1e1) = diag(π1, . . . , π`), where F denotes
the discrete Fourier matrix.

By postmultiplying (2.2) by FT we get

(2.3) (In̄ + τK)Ũ − ŨΠ1 + ŨF−Te`e
T
1 F

T = [u0 + τ f1, . . . , τ f`]F
T , Ũ = UFT ,

which can also be written in Kronecker form as(
I` ⊗ (In̄ + τK)−Π1 ⊗ In̄ + Fe1e

T
` F
−1 ⊗ In̄

)
vec(Ũ) = vec([u0 + τ f1, . . . , τ f`]F

T).

If we look at the system matrix above, this can be viewed as the sum of two compo-
nents. A main part P := I`⊗ (In̄ + τK)−Π1⊗ In̄, and a low-rank modification term
MNT where M := Fe1⊗In̄ and N := F−Te`⊗In̄. The Sherman-Morrison-Woodbury
formula thus implies that

vec(Ũ) =P−1vec([u0 + τ f1, . . . , τ f`]F
T)

− P−1M(I +NTP−1M)−1NTP−1vec([u0 + τ f1, . . . , τ f`]F
T).(2.4)

3

Since P is block diagonal,

P =

(1− π1)In̄ + τK
. . .

(1− π`)In̄ + τK

 ∈ Rn̄`×n̄`,

the action of its inverse can be efficiently computed in parallel. In particular, we can
write

P−1vec([u0 + τ f1, . . . , τ f`]F
T) = vec(L),

where

L := [((1− π1)In̄ + τK)−1[u0 + τ f1, . . . , τ f`]F
Te1, . . . ,

((1− π`)In̄ + τK)−1[u0 + τ f1, . . . , τ f`]F
Te`].

By using the property of the Kronecker product, the last part in the second term on
the right of (2.4) is such that

NTP−1vec([u0 + τ f1, . . . , τ f`]F
T) = NTvec(L) = LF−Te`,

and the linear system with I+NTP−1M we need to solve in (2.4) can thus be written
as

(2.5) (I +NTP−1M)x = b, b := LF−Te`.

A naive approach for solving (2.5) would be to first construct the coefficient
matrix, and then apply one’s favorite linear system solver. However, we notice that
we cannot explicitly compute the coefficient matrix I + NTP−1M as this requires
applying P−1 to all the n̄ columns of the matrix M , destroying potential parallel-in-
time acceleration.

We propose to use an ad-hoc projection scheme to solve (2.5). To this end, we
start by deriving an explicit expression for NTP−1M . We first notice that Fe1 ∈ R`
is the vector of all ones, a property of the discrete Fourier transform. Therefore,
M = [In̄, . . . , In̄]T . Moreover, if

F−Te` =

γ1

...
γ`

 then N =

γ1In̄
...

γ`In̄

 ,
which implies that the term NTP−1M we want to express explicitly can be written
as

NTP−1M =
[
γ1In̄ · · · γ`In̄

] ((1− π1)In̄ + τK)−1

. . .

((1− π`)In̄ + τK)−1

In̄...
In̄

=
∑̀
i=1

γi((1− πi)In̄ + τK)−1.

Therefore, the linear system (2.5) can be rewritten in the form

(2.6)

(
I +

∑̀
i=1

γi((1− πi)In̄ + τK)−1

)
︸ ︷︷ ︸

=:J`

x = b.

4

Algorithm 2.1 New ParaDiag Algorithm with Backward Euler

input : K ∈ Rn̄×n̄, u0, fi ∈ Rn̄, i = 1, . . . , `, ` ∈ N.
output: U ∈ Rn̄×` approximate solution to (1.2).

1 Compute [π1, . . . , π`]
T = FC1e1, and [γ1, . . . , γ`]

T = F−Te`
2 parfor i = 1, . . . , `
3 Set Lei = ((1− πi)In̄ + τK)−1[u0 + τ f1, τ f2, . . . , τ f`]F

Tei

4 Compute b = LF−Te`
5 Compute xm by applying Algorithm 3.1 to (2.6)
6 parfor i = 1, . . . , `
7 Set Wei = ((1− πi)In̄ + τK)−1xm

8 Set U = (L−W)F−T

We propose to apply a projection method for solving problem (2.6) where the residual
vector is imposed to be orthogonal to a suitable subspace. This is a very general
machinery and its effectiveness depends mainly on the approximation space one uses.
The details of our approach are given in section 3, and for the moment we simply
denote by xm the computed approximation2 to x, solution to (2.6). Going back
to (2.4), we use xm to compute

W = P−1Mxm = P−1vec(xmeT1 F
T) = P−1vec(xm1T`),

where 1` ∈ R` denotes the vector of all ones, and P−1 can be applied column-wise in
parallel once again, since it is block diagonal. We thus get

W = [((1− π1)In̄ + τK)−1xm, . . . , ((1− π`)In̄ + τK)−1xm].

To conclude, the solution U is then obtained by computing

U = (L−W)F−T .

The pseudocode of our new ParaDiag method is given in Algorithm 2.1.

3. The projection method for the inner linear system. In this section
we describe the solution of (2.6) by a suitable projection method. In particular,
we compute a numerical approximation xm = Vmym ≈ x, where the orthonormal
columns of Vm ∈ Rn̄×m span a suitable subspace Km, namely Km = Range(Vm),
and the vector ym ∈ Rm is computed by imposing an orthogonality condition on the
residual rm = J`xm − b, i.e., V Tm rm = 0.

Some computational aspects and the effectiveness of any projection method strongly
depend on the adopted approximation space Km. Even though the structure of J`
in (2.6) is rather involved – it is a linear combination of inverses of shifted and scaled
K’s – we propose using the polynomial Krylov subspace

(3.1) Km = Km(K,b) =span{b,Kb, . . . ,Km−1b},

so that our projection method can be seen as a FOM-like scheme3. However, other
options such as rational Krylov subspaces can be used instead of (3.1) as well. In

2The index m denotes the number of iterations performed by the projection method in Algo-
rithm 3.1 to obtain the sought approximation; see section 3.

3Our projection scheme does not amount to the actual FOM method as the matrix used to define
the subspace Km, namely K, does not coincide with the coefficient matrix of the linear system we
want to solve, namely J`.

5

our numerical experiments, using (3.1) already leads to remarkable performance, es-
pecially in terms of number of iterations; see section 6. This means that using more
sophisticated spaces, with a more expensive construction step, may not reap benefits.

We would like to mention here that the FOM-like method we propose for solv-
ing (2.6) can indeed be seen as a Krylov method for the numerical approximation of

f(K)b, with f being the rational function f(K) =
(
I +

∑`
i=1 γi((1− πi)In̄ + τK)−1

)−1

b.

Further considerations about the connection between these two points of view will be
made at the end of this section when K is SPD.

The use of the approximation space (3.1) allows us to compute the vector ym
and derive a relation for a cheap computation of the residual norm ‖rm‖, using the
Arnoldi relation arising from the construction of the Krylov subspace [29],

(3.2) KVm = VmTm + tm+1,mvm+1e
T
m,

where Tm = V TmKVm, tm+1,m stems from the orthogonalization procedure, and vm+1

is the (m + 1)-st basis vector. Since the relation (3.2) is shift-invariant, we can shift
K using any eigenvalue πi of the circulant matrix, C1, giving

((1− πi)In̄ + τK)Vm = Vm((1− πi)Im + τTm) + tm+1,mvm+1e
T
m, ∀ i = 1, . . . , `.

Moreover, by premultiplying by ((1 − πi)In̄ + τK)−1, postmultiplying by ((1 −
πiIm) + τTm)−1, and moving some terms we get

((1− πi)In̄ + τK)−1Vm =Vm((1− πi)Im + τTm)−1

− tm+1,m((1− πi)In̄ + τK)−1vm+1e
T
m((1− πi)Im + τTm)−1.(3.3)

Looking at the residual vector, if β := ‖b‖, hi := ((1 − πi)In̄ + τK)−1vm+1, and
Si := ((1− πi)Im + τTm)−1, we have

rm =J`Vmym − b

=Vm

((
Im +

∑̀
i=1

γiSi − tm+1,mV
T
m

∑̀
i=1

γihie
T
mSi

)
ym − βe1

)

− tm+1,m(I − VmV Tm)
∑̀
i=1

γihie
T
mSiym.

Imposing the Galerkin condition V Tm rm = 0 is thus equivalent to computing ym as
the solution of the m×m linear system

(3.4)

(
Im +

∑̀
i=1

γi
(
Im − tm+1,mV

T
mhie

T
m

)
Si

)
ym = βe1.

Then the residual norm is such that

(3.5) ‖rm‖ = |tm+1,m| ·

∥∥∥∥∥(I − VmV Tm)
∑̀
i=1

γihie
T
mSiym

∥∥∥∥∥ .
Our FOM-like method for (2.6) is summarized in Algorithm 3.1.

6

Algorithm 3.1 FOM-like method for (2.6)

input : K ∈ Rn̄×n̄, b ∈ Rn̄, πi,γi ∈ C, i = 1, . . . , `, maxit ∈ N, ε > 0, q ≥ 1.
output: xm ∈ Rn̄ approximate solution to (2.6).

1 Set β = ‖b‖, v1 = b/β, V1 = v1, m = 0, ‖r‖ = 1
2 while ‖r‖ > ε · β and m ≤ maxit do
3 Set m = m+ 1
4 Compute ṽ = Kvm
5 for k = 1, . . . ,m do
6 Compute tk,m = vTk ṽ
7 Set ṽ = ṽ − tk,mvk

8 Set tm+1,m = ‖ṽ‖, vm+1 = ṽ/tm+1,m, and Vm+1 = [Vm,vm+1]
9 if mod(m, q) = 0 then

10 parfor i = 1, . . . , `
11 Set hi = ((1− πi)In̄ + τK)−1vm+1 and Si = ((1− πi)Im + τTm)−1

12 Solve (Im +
∑`
i=1 γi(Im − tm+1,jV

T
mhie

T
j)Si)ym = βe1

13 Compute ‖r‖ = |tm+1,m| · ‖(I − VmV Tm)
∑`
i=1 hie

T
mSiym‖

14 Set xm = Vmym

The most computationally demanding step of this Krylov method is the residual
norm computation. In particular, the computation of the vectors hi requires the
parallel solution of the linear systems with (1 − πi)In̄ + τK for all i = 1, . . . , `. In
order to reduce the computational cost, we may want to solve (3.4) and compute (3.5)
only every q ≥ 1 iterations, namely the residual norm gets frozen for q iterations. In
the worst case scenario, this procedure leads to computing a slightly larger subspace
than what would have been necessary by checking (3.5) at each iteration. On the
other hand, the overall number of parallel-in-time loops performed by Algorithm 2.1
becomes m/q + 2.

Another option could be using an inner Krylov method to compute the hi’s.
Since ((1 − πi)In̄ + τK)hi = vm+1, by exploiting the fact the the right-hand side
vm+1 does not depend on the shift index i along with the shift-invariance property
of the Krylov subspace, one may want to construct Kt(K,vm+1) and employ well-
established Krylov routines for shifted linear systems; see, e.g. [3, 30]. On the other

hand, this procedure would compute only approximations h̃i ≈ hi in general. The
impact of such approximations on the vector ym and, ultimately, on xm may be tricky
to assess. Moreover, an underlying assumption of this paper is that we are able to
solve ` shifted linear systems with K by using parallelization.

We now consider in more detail the special case where the stiffness matrix K is
SPD, and we show that our algorithm for (2.6) can largely take advantage of this
structure. See the Appendix for the proof of the following result.

Theorem 3.1. Let the spatial stiffness matrix K be symmetric positive definite.
Then the coefficient matrix J` := I+

∑`
i=1 γi((1−πi)In̄+τK)−1 in (2.6) is Hermitian

positive definite for any ` ≥ 1. Moreover,

(3.6) κ(J`) ≤ 1 +
1

τλmin(K)
.

Recalling that Algorithm 3.1 imposes a Galerkin condition on the Krylov subspace

7

Km, we point out that Theorem 3.1 implies that the solution xm provided by Algo-
rithm 3.1 minimizes the error in the J`-energy norm over Km whenever K is SPD.

It is well-known that the convergence rate of FOM-like methods for symmetric
positive definite problems is related to the condition number of the coefficient ma-
trix4, see, e.g., [21]. The bound (3.6) displays the interplay between the spatial and
time discretization and how they contribute to the convergence of Algorithm 3.1. In
particular, if λmin(K) is far from zero and the time grid is rather coarse, i.e. τ is
large, we expect Algorithm 3.1 to converge fast. On the other hand, we may need
many iterations to reach the desired level of accuracy for problems posed on very fine
time grids with a small λmin(K), depending on the scaling of K, e.g., 1/h2 or 1/h.

Since K is SPD, λmin(K) can be cheaply computed by, e.g., the inverse power
method5. Therefore, it is easy to check the magnitude of τλmin(K). On the other
hand, one may want to select a time grid such that the latter value is big enough to
guarantee a well-conditioned J`.

For K SPD, the solution of (3.4) by Algorithm 3.1 can be seen as the numerical

evaluation of the action of the rational matrix function f(K) = (I +
∑`
i=1 γi((1 −

πi)In̄+τK)−1)−1 on the vector b, namely f(K)b, by the Lanczos method. Therefore,
one may want to take advantage of this viewpoint to derive a-priori upper bounds
on the 2- and/or J`-norm of the error; see, e.g., [6, 4]. With these bounds at hand,
it would be possible to predict how many iterations are indeed sufficient to get the
desired level of accuracy in Algorithm 3.1, thus avoiding the expensive residual norm
computation in (3.5). In this scenario, a single parallel-in-time loop is necessary within
Algorithm 3.1. In particular, once a sufficiently large Krylov subspace is constructed,
this parallel-in-time loop is involved in the definition of the coefficient matrix in (3.4)
and thus in the computation of the vector ym.

4. α-acceleration. In the context of preconditioning operators for all-at-once
linear systems stemming from (1.1), α-circulant matrices have been largely used; see,
e.g., [23]. We now explore the impact of this technique also on the scheme we proposed
in the previous sections. In particular, given α ∈ (0, 1], we write

(4.1) Σ1 = Cα − αe1e
T
` , Cα =

0 α

1
. . .

. . .
. . .

1 0

 ∈ R`×`.

Now Cα is an α-circulant matrix, and it can be diagonalized by the scaled Fast Fourier
Transform

Cα = D−1
α F−1ΠαFDα, Dα =

1

α1/`

. . .

α(`−1)/`

 , Πα = α1/`Π1,

see, e.g., [26].

4Though better insight is provided by the entire eigenvalue distribution.
5The implementation of such a method must make use of the properties of K to be efficient. In

particular, its symmetric positive definite nature and the possible sparsity coming from the adopted
discretization in space must be taken into account.

8

It is well-known that the eigenvector matrix FDα can be very ill-conditioned for
small α and sizable values of `. Indeed, κ(FDα) = α−(`−1)/`. Such ill-conditioning
will be one of the major obstacles in using very small values of α.

The use of (4.1) does not lead to any particular difficulty in the solver we proposed
in section 2. By following the same exact steps as in section 2 and adopting the same
notation, a direct computation shows that (2.4) translates into

vec(Ũ) =P−1vec([u0 + τ f1, . . . , τ f`]DαF
T)

− α1/`P−1M(I + α1/`NTP−1M)−1NTP−1vec([u0 + τ f1, . . . , τ f`]DαF
T).(4.2)

Once Ũ is computed, the original solution can be retrieved by computing U =
ŨF−TD−1

α .
From (4.2), it is clear how the use of α-circulant matrices is equivalent to introduc-

ing a weight in our setting. Indeed, the scalar α ∈ (0, 1] determines the contribution
of the correction term

vec(U2) =α1/`(D−1
α F−1 ⊗ I)P−1M(I + α1/`NTP−1M)−1NTP−1

vec([u0 + τ f1, . . . , τ f`]DαF
T),

to the point that, for sufficiently small α, the solution can be often well approximated
even when neglecting this term; see section 6.

The inner FOM-like method can benefit from the introduction of the parameter
α as well. Indeed, it holds that

(4.3) I + α1/`NTP−1M = I + α1/`
∑̀
i=1

γi((1− πi)In̄ + τK)−1.

Therefore, we need to solve a linear system whose coefficient matrix can be seen as
a small perturbation of the identity for α � 1. Using small values of α has thus the
potential of remarkably reducing the number of iterations performed by the FOM-
like method to attain a prescribed accuracy. This motivates the name α-acceleration
whenever α-circulant matrices of the form (4.1) are used in our context.

For the sake of completeness we report in Algorithm 4.1 the overall procedure
when using the α-circulant matrix in (4.1). In line 5 we compute the residual norm pro-
vided by the first term of the solution, namely vec(U1) = (D−1

α F−1⊗ I)P−1vec([u0 +
τ f1, . . . , τ f`]DαF

T). If this residual norm is sufficiently small, we stop the algorithm
and set U = U1 thus saving a lot of computational effort.

Even though the use of tiny values of α would be desirable, this would lead to an
extremely ill-conditioned eigenvector matrix FDα. For very small values of α, this
poor conditioning pollutes the computed solution U . In particular, it can be observed
that the error is proportional to κ(FDα). This drawback is well-known also in the
case of the variable time-stepping procedure proposed in [11, 10]. Finding the value of
α providing the best trade-off between acceleration and loss of accuracy is not an easy
task. We refer to our numerical experiments to supply some insight to this important
issue.

5. Higher-order BDFs. In the previous sections we assumed that the back-
ward Euler method was used for time discretization so that Σ1 was of the form (2.1).
In this section we show how to generalize our methodology to higher-order BDF ap-
proximations of time-dependent problems (1.1).

9

Algorithm 4.1 ParaDiag and Backward Euler with α-acceleration

input : K ∈ Rn̄×n̄, u0, fi ∈ Rn̄, i = 1, . . . , `, ` ∈ N, α ∈ (0, 1], τ, ε > 0.
output: U ∈ Rn̄×` approximate solution to (1.2).

1 Compute [π1, . . . , π`]
T = α1/`FC1e1, [γ1, . . . , γ`]

T = F−Te`, Dα =

diag(1, α1/`, . . . , α(`−1)/`)
2 parfor i = 1, . . . , `
3 Set Lei = ((1− πi)In̄ + τK)−1[u0 + τ f1, τ f2, . . . , τ f`]DαF

Tei

4 Set U1 = LF−TD−1
α

5 if ‖(I + τK)U1 − U1ΣT1 − [u0 + τ f1, . . . , τ f`]‖F ≤ ε · ‖U1‖F then
6 Set U = U1 and return

7 Compute b = LF−Te`
8 Compute xm by applying a variant of Algorithm 3.1 to(

I + α1/`
∑̀
i=1

γi((1− πi)In̄ + τK)−1

)
x = b

9 parfor i = 1, . . . , `
10 Set Wei = ((1− πi)In̄ + τK)−1xm

11 Set U = U1 − α1/`WF−TD−1
α

The backward Euler method belongs to the larger class of backward differentiation
formulas (BDFs) for time-dependent problems (1.1). In particular, the backward
Euler method is a BDF of order one, and BDFs of order s > 1 are well-established
time integrator schemes as well.

The matrix formulation of the discrete problem stemming from an all-at-once
discretization of (1.1) using a BDF of order s can be written as

(5.1) (I + τβK)U − UΣTs = G,

where

G =

 s∑
j=1

αju1−j + τβf1,

s∑
j=2

αju2−j + τβf2 . . . , αsu0 + τβfs, τβfs+1, . . . τβf`

 ,
and

(5.2) Σs =

0

α1
. . .

...
. . .

αs
. . .

. . .

0
. . .

. . .
...

. . .
. . .

. . .

0 · · · αs · · · α1 0

,

see, e.g., [27].

10

Table 5.1
BDF coefficients for s ≤ 6.

s β α1 α2 α3 α4 α5 α6

1 1 1
2 2/3 4/3 -1/3
3 6/11 18/11 -9/11 2/11
4 12/25 48/25 -36/25 16/25 -3/25
5 60/137 300/137 -300/137 200/137 -75/137 12/137
6 60/147 360/147 -450/147 400/147 -225/147 72/147 -10/147

In the equation above, u1−s, . . . ,u0 denote the s initial values required by the
adopted s-order BDF. In Table 5.1 we report the scalars αj = αj(s) and β = β(s)
defining a BDF of order s; see, e.g., [1, Table 5.3]6. It has been shown in, e.g., [1,
Section 5.2.3] that any BDF of order s > 6 is unstable. We thus restrict ourselves to
s ≤ 6.

For a general BDF of order s, the time discrete operator Σs can be written as a
circulant plus a matrix of rank s, namely

Σs = Cs − [e1, . . . , es]αs[e`−s+1, . . . , e`]
T , αs =

αs α1

αs α1

. . .
...

αs αs−1

αs

 ∈ Rs×s.

This means that the same strategy presented in section 2 can be applied by setting
in (2.4) P := I` ⊗ (In̄ + τβK) − Πs ⊗ In̄, Cs := FΠsF

−1, Πs = diag(FCse1),
M := F [e1, . . . , es] ⊗ In̄, and N := F−T [e`−s+1, . . . , e`]α

T
s . The main difference lies

in the linear system (2.5). In this setting, the right-hand side, simply denoted by b
in (2.5), is given by b(s) = vec(B(s)) where

B(s) = [((1−π1)In̄+τβK)−1GFT e1, . . . , ((1−π`)In̄+τβK)−1GFT e`]F
−T [e`−s+1, . . . , e`]α

T
s .

Moreover, the coefficient matrix I + NTP−1M ∈ Rsn̄×sn̄ can be seen as an s × s
block matrix with n̄× n̄ blocks; see, e.g., [27, Section 5.2]. If

Fei =

θ

(i)
1
...

θ
(i)
`

 , F−T [e`−s+1, . . . , e`]αsei =

γ

(i)
1
...

γ
(i)
`

 , i = 1, . . . , s,

so that

M =

θ

(1)
1 In̄ · · · θ

(s)
1 In̄

...
...

θ
(1)
` In̄ · · · θ

(s)
` In̄

 , N =

γ

(1)
1 In̄ · · · γ

(s)
1 In̄

...
...

γ
(1)
` In̄ · · · γ

(s)
` In̄

 ,
6Notice that in Table 5.1 we have changed the sign of the αj ’s with respect to the values listed

in [1, Table 5.3] in order to have a term of the form −UΣT
s also in (5.1) as it is done for equation (1.2).

11

then we have

NTP−1M =

∑̀
i=1

γ
(1)
i θ

(1)
i ((1− πi)In̄ + τβK)−1 · · ·

∑̀
i=1

γ
(1)
i θ

(s)
i ((1− πi)In̄ + τβK)−1

...
...∑̀

i=1

γ
(s)
i θ

(1)
i ((1− πi)In̄ + τβK)−1 · · ·

∑̀
i=1

γ
(s)
i θ

(s)
i ((1− πi)In̄ + τβK)−1

.

Denoting the matrix I +NTP−1M by J
(s)
` , we thus need to solve the linear system

(5.3) J
(s)
` x = b(s).

To this end, we adopt a projection scheme similar to the one presented in section 3.
Instead of (3.1), we use the block Krylov subspace

(5.4) K�
m = range{[B(s),KB(s), . . . ,Km−1B(s)]}.

If Vm = [V1, . . . ,Vm] ∈ Rn×sm, Vi ∈ Rn×s for all i = 1, . . . ,m, has orthonormal
columns and is such that range(Vm) = K�

m, then the block counterpart of the Arnoldi
relation (3.2) holds. In particular,

(5.5) KVm = VmTm + Vm+1tm+1,m(eTm ⊗ Is),

where Tm = V TmKVm ∈ Rsm×sm, and tm+1,m ∈ Rs×s; see, e.g., [17, 20] for further
details on block Krylov methods and efficient schemes for the computation of the basis
Vm.

In view of (5.5) we can derive the block counterparts of (3.3). In particular, by
using the same arguments of section 3, we have

(5.6)
((1− πi)In̄ + τβK)−1Vm = Vm((1− πi)Im + τβTm)−1

− ((1− πi)In̄ + τβK)−1Vm+1tm+1,m(eTm ⊗ Is)((1− πi)Im + τβTm)−1.

We propose to solve (5.3) by imposing a Galerkin condition with respect to the space
spanned by Is⊗ Vm. In particular, if xm = (Is⊗ Vm)ym, we want the residual vector

rm = J
(s)
` xm − b(s) to be such that (Is ⊗ V Tm)rm = 0.

Proposition 5.1. If B(s) = V1β, β ∈ Rs×s, Hi = ((1 − πi)In̄ + τβK)−1Vm+1,

and Si = ((1 − πi)Im + τβTm)−1, then the residual vector rm = J
(s)
` xm − b(s) =

J
(s)
` (Is ⊗ Vm)ym − b(s) can be written as

rm =(Is ⊗ Vm) ((Ism + Tm) ym − (e1 ⊗ Is)β)− (I − Is ⊗ VmV Tm)Smym,

where Tm,Sm ∈ Rms×ms are s× s block matrices whose (k, h) blocks (Tm)k,h, (Sm)k,h
are given by

(Tm)k,h =
∑̀
i=1

γ
(k)
i θ

(h)
i Si − V Tm

∑̀
i=1

γ
(k)
i θ

(h)
i Hitm+1,m(eTm ⊗ Is)Si,

(Sm)k,h =
∑̀
i=1

γ
(k)
i θ

(h)
i Hitm+1,m(eTm ⊗ Is)Si.

12

Moreover, imposing the Galerkin condition rm ⊥ K�
m is equivalent to computing ym

as the solution of the linear system

(Ism + Tm) ym = (e1 ⊗ Is)β,

and
‖rm‖ = ‖(I − Is ⊗ VmV Tm)Smym‖.

Proof. The results can be shown by applying the exact same arguments of sec-
tion 3 block-wise noticing that

Is ⊗ Vm =

Vm . . .

Vm

 .
6. Numerical examples. In this section we show several numerical examples to

illustrate different aspects of our new ParaDiag algorithm. We would like to mention
that in the following we refrain from reporting any running times achieved by the rou-
tines we test. Indeed, all the experiments are carried out on a simple laptop, so that
reporting running times would be only informative in a relative sense. Moreover, the
application of P is still performed sequentially and no real parallel-in-time implemen-
tation is adopted so far. On the other hand, we report the number of parallel-in-time
loops that would be performed by the tested schemes as we believe this can be a fair
measure of the computational cost.

Unless stated otherwise, the threshold used in Algorithm 3.1 is ε = 10−8. More-
over, we check the residual norm in Algorithm 3.1 at each iteration, i.e. we set q = 1.

6.1. Heat Equation. We consider the heat equation

(6.1)

 ut = ∆u+ f, in Ω× (0, 1],
u = 0, on ∂Ω,

u(x, 0) = u0,

where Ω = (0, 1)2. If the 2-dimensional Laplace operator is discretized using second
order centered finite differences with n nodes in each direction and h = 1/(n+ 1), the
stiffness matrix K ∈ Rn̄×n̄, n̄ = n2, can be written as

K = In ⊗ T + T ⊗ In, T =
1

h2

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

 ∈ Rn×n.

Since the eigenvalues of the SPD matrix T are known in closed-form, by using the
properties of the Kronecker product, it is easy to show that

λmin(K) =
8

h2
sin

(
π

2(n+ 1)

)2

.

By defining τ = 1/` for a given number of time steps ` ≥ 1, we can compute the
upper bound (3.6). In Table 6.1 we show this upper bound for common values of n̄
and `. From the results in Table 6.1 we first notice that while the value of the upper

13

Table 6.1
Upper bound of the coefficient matrix, J`, (3.6) for the 2-dimensional heat equation (6.1).

Different values of the number of spatial degrees of freedom n̄ and time steps ` are used in the
discretization.

n̄ ` 1 + 1
τλmin(K)

65536
256 13.969
512 26.938

1024 52.877

262144
256 13.969
512 26.938

1024 52.876

1048576
256 13.969
512 26.938

1024 52.876

bound (3.6) linearly grows with `, an increment in the number of spatial degrees of
freedom n̄ does not have a significant impact since λmin(K) only moderately increases
with n. Moreover, 1+1/(τλmin(K)) is O(10) for any value of n̄ and ` we tested. This
implies that the matrix J` is always very well-conditioned regardless of the source
term f and the initial condition u0 in (6.1).

We tested Algorithm 2.1 on an instance of the heat equation (6.1). In particular,
we consider [25, Example 6.1] where f = 0 and u0 = xy(x − 1)(1 − y). For all the
values of n̄ and ` listed in Table 6.1, a single iteration of Algorithm 3.1 already results
in a relative residual norm smaller than ε = 10−8. Indeed, a more careful inspection
of the eigenvalue distribution of J` shows that the latter is a very small perturbation
of the identity. In particular,

λmin(J`) = 1 +
∑̀
i=1

γi
1− πi + τλmax(K)

, λmax(J`) = 1 +
∑̀
i=1

γi
1− πi + τλmin(K)

,

and for all the values of n̄ and ` listed in Table 6.1 we have [λmin(J`), λmax(J`)] ⊂
[1, 1.004].

6.2. Advection-Diffusion Problem. We now consider the time-dependent
advection-diffusion equation

(6.2)

 ut − ν∆u+ w · ∇u = 0, in Ω× (0, 1], Ω: = (0, 1)2,
u = g(x, y), on ∂Ω,

u0 = u(x, y, 0) = 0 otherwise,

where ν > 0, w = (2y(1− x2),−2x(1− y2)) and g(1, y) = g(x, 0) = g(x, 1) = 0 while
g(0, y) = 1; see, e.g., [25]. To obtain the stiffness matrix K ∈ Rn̄×n̄, we used again
centered finite differences, and for the time integration backward Euler. The initial
vector u0 is set to be zero everywhere except the boundaries, where it satisfies the
boundary conditions.

We start by exploring numerically the α-acceleration technique presented in sec-
tion 4. We show in Figure 6.1 the results obtained by running a single iteration of
the FOM-like method, namely maxit = 1 in Algorithm 3.1, for different values of α.
We set n̄ = 65 536, ν = 2−5, and use ` = 64 time steps, and recall that we write the

14

10
-15

10
-10

10
-5

10
0

10
-10

10
-5

10
0

10
5

Fig. 6.1. Advection-diffusion equation: ‖U1‖F (solid line with stars), ‖U2‖F (solid line with
circles), relative residual norm achieved by U (dashed-dotted line) and U1 (dotted line), and the

error ‖Û − U‖F /‖Û‖F (dashed line) for different values of α, n̄ = 65 536, ν = 2−5, and ` = 64. Û
denotes the solution obtained by running GMRES on the all-at-once system with a small residual
tolerance (10−13).

computed solution U as U = U1 + U2 where U1 and U2 are such that

vec(U1) = (D−1
α F−1 ⊗ I)vec(L), vec(L) = P−1vec([u0 + τ f1, . . . , τ f`]DαF

T),

vec(U2) = −α1/`(D−1
α F−1 ⊗ I)P−1M(I + α1/`NTP−1M)−1NTvec(L).

In Figure 6.1 we show ‖U1‖F (solid line with stars), ‖U2‖F (solid line with circles),
the relative residual norm achieved by the whole U (dashed-dotted line) and the one
attained by using only U1 (dotted line) for different values of α. We also computed

the exact algebraic solution Û by running GMRES on the all-at-once system with the
very small tolerance 10−13 on the relative residual norm. In Figure 6.1 we thus plot
also the trend of ‖Û − U‖F /‖Û‖F (dashed line).

The first thing to notice from Figure 6.1 is that a change in α does not really
have an impact on ‖U1‖F ; this value remains (almost) constant for all the α’s we
tested. On the other hand, the trend of ‖U2‖F closely follows the values of α showing
how the contribution of U2 strongly depends on the selected α. If a O(10−7) relative
residual norm is good enough7, U2 can be completely neglected if α = O(10−7) in
this example. This means that U = U1 can be computed by performing a single
parallel-in-time loop. On the other hand, U2 has an important role in the accuracy of
the overall solution. Indeed, it is interesting to note that the error and the residual

7Notice that having this kind of accuracy in the algebraic problem is often exceeding the dis-
cretization error by orders of magnitude.

15

norm achieved by U = U1 + U2 scale like α2 whereas the residual norm attained by
U1 depends only linearly on α.

Note also that α plays a role in the inner linear system we need to solve to
compute U2. Figure 6.1 shows that the smaller α, the more accurate a solution we
get by performing a single iteration of the FOM-like method. This is due to the fact
that the coefficient matrix in (4.3) becomes a small perturbation of the identity for
small values of α.

As already mentioned, however, using too small values of α leads to a remark-
able increase in the condition number of the transformation matrix FDα. This is
clearly visible in Figure 6.1: for α ≤ 10−4 the error starts increasing, since κ(FDα)
is becoming the dominant factor polluting the quality of the computed solution U .

6.3. Comparison with other ParaDiag Methods. We now compare our
new ParaDiag scheme, namely Algorithm 4.1, with different state-of-the-art Para-
Diag solvers. As already mentioned, in what follows we report the number of parallel-
in-time loops (#PinT) needed by the routines we test as a measure to assess their
computational cost, instead of running time, since the latter strongly depends on the
precise implementations and computing infrastructures used. Recording fair compar-
isons in terms of running times would not be straightforward.

The first ParaDiag technique we compare to is the one proposed in [25], where
preconditioned GMRES is used to iteratively solve the n̄` × n̄` linear system corre-
sponding to the Kronecker form of (1.2). The preconditioning operator we use within
GMRES with right preconditioning8 is

P : x 7→ (F ⊗ In̄)(I` ⊗ (In̄ + τK) + Π1 ⊗ In̄)(F−1 ⊗ In̄)x.

Therefore, at each iteration we need to apply P−1 to the current basis vector, namely
we need to perform a parallel-in-time loop every time we apply the preconditioner.
This means that, in total, this routine performs p + 1 parallel-in-time loops if p
denotes the number of GMRES iterations needed to converge. The threshold on the
relative residual norm we used in GMRES is ε = 10−8. Notice that the use of right
preconditioning allows us to have access to the actual, unpreconditioned residual norm
computed by GMRES. The latter quantity is thus comparable with the residual norm
achieved by Algorithm 4.1.

The second ParaDiag technique we compare to is the new interpolation scheme
presented in [19, Section 3] and denoted by Ev-Int in what follows. In this method,
given two parameters ρ and r, one needs to perform r parallel-in-time loops involving
different coefficient matrices. The quality of the computed solution depends on ρ and
r. The authors in [19] do not comment much on the selection of ρ and r. They suggest
to use ρ = 5 ·10−4 and r = 2, values adopted in most of the experiments shown in [19].

In Table 6.2 we show the results for different values of n̄, `, and the viscosity
parameter ν. We use Algorithm 4.1 with α = 10−4, and recall that this algorithm
performs m+ 2 parallel-in-time loops where m is the number of iterations needed by
Algorithm 3.1 to converge. From the results in Table 6.2 we see that the number of
parallel-in-time loops performed by both Algorithm 4.1 and GMRES are very robust
with respect to n̄, `, and ν. We also see that the accuracy attained by our solver
improves by decreasing ν, for fixed n̄ and `, whereas GMRES shows the opposite
trend, in general. Ev-Int has a less regular behavior in this regard.

8To have fair comparisons, we use a matrix oriented GMRES implementation, so that the Kro-
necker form of (1.2) is never explicitly computed. See, e.g., [28].

16

Algorithm 4.1 (α = 10−4) GMRES Ev-Int

n̄ ` ν #PinT Rel. Res. #PinT Rel. Res. #PinT Rel. Res.

16 384

32
10−1 3 8.41e-11 5 8.02e-13 2 7.26e-11
10−2 3 6.98e-12 5 7.28e-12 2 1.24e-11
10−3 3 2.77e-12 5 2.13e-10 2 7.22e-11

64
10−1 3 1.74e-11 5 1.12e-13 2 3.72e-11
10−2 3 1.42e-12 5 1.31e-12 2 4.19e-12
10−3 3 7.41e-13 5 9.42e-12 2 1.99e-11

128
10−1 3 1.20e-11 5 4.51e-14 2 2.30e-11
10−2 3 1.01e-12 5 4.24e-13 2 2.23e-12
10−3 3 3.99e-13 5 1.88e-12 2 8.11e-12

65 536

32
10−1 3 3.42e-10 5 6.67e-13 2 8.58e-11
10−2 3 2.72e-11 5 3.91e-12 2 1.09e-11
10−3 3 3.61e-12 5 3.37e-11 2 4.49e-11

64
10−1 3 7.26e-11 5 1.31e-13 2 3.62e-11
10−2 3 5.21e-12 5 6.73e-13 2 3.33e-12
10−3 3 7.29e-13 5 8.71e-13 2 1.00e-11

128
10−1 3 4.84e-11 5 1.26e-13 2 3.07e-11
10−2 3 3.71e-12 5 2.11e-13 2 2.28e-12
10−3 3 5.40e-13 5 1.50e-13 2 3.55e-12

Table 6.2
Advection-Diffusion equation: results for different values of n̄, `, and ν.

Notice however that, even though Algorithm 4.1 is often more accurate than
Ev-Int, the latter algorithm only performs two parallel-in-time loops, in contrast to
the three loops performed by our new ParaDiag algorithm. By setting r = 3, similar
results in terms of accuracy can be obtained for Ev-Int as well.

To make a fair comparison between our procedure and Ev-Int, in Table 6.3 we
show the relative residual norms obtained by fixing the main computational cost of
the two algorithms, namely we perform the same number of parallel-in-time loops
in both schemes. For Ev-Int we use r = 2 (same results as in Table 6.2) and r =
1. For Algorithm 4.1 (α = 10−4) we perform only two parallel-in-time loops by
approximating the matrix in (4.3) by the identity, namely the FOM-like method is not
performed and we set xm = b in line 8 of Algorithm 4.1. The single parallel-in-time
loop scenario is addressed by reporting the accuracy attained by U1 in Algorithm 4.1
for α = 10−6.

As shown in Table 6.3, our new ParaDiag algorithm is in general at least as
accurate as Ev-Int in case of two parallel-in-time loops. On the other hand, whenever
a single parallel-in-time loop is performed, our new Algorithm 4.1 (α = 10−6) is often
three orders of magnitude more accurate than Ev-Int. Therefore, in general, our new
ParaDiag algorithm achieves better results in terms of accuracy than Ev-Int whenever
a cap on the computational cost of the adopted solver is imposed. We would like to
mention, however, that a careful tuning of the Ev-Int parameters may improve the
performance of the solver.

7. Conclusions. We presented a new ParaDiag algorithm which fully exploits
the circulant-plus-low-rank structure of the discrete operator stemming from the dis-
cretization of evolution problems (1.1) by BDFs, one of the most commonly used
family of implicit time integrators. A clever use of the matrix-oriented Sherman-

17

#PinT= 2 #PinT= 1
n̄ ` ν Alg. 4.1 (α = 10−4) Ev-Int Alg. 4.1 (α = 10−6) Ev-Int

16 384

32
10−1 8.44e-11 7.26e-11 1.87e-8 8.95e-6
10−2 6.97e-12 1.24e-11 3.97e-8 1.98e-5
10−3 3.14e-12 7.22e-11 5.88e-8 2.94e-5

64
10−1 1.76e-11 3.72e-11 1.09e-8 5.45e-6
10−2 1.43e-12 4.19e-12 2.45e-8 1.22e-5
10−3 8.43e-13 1.99e-11 3.99e-8 1.99e-5

128
10−1 1.20e-11 2.30e-11 8.23e-9 3.55e-6
10−2 1.01e-12 2.23e-12 1.59e-8 7.96e-6
10−3 4.30e-13 8.11e-12 2.79e-8 1.39e-5

65 536

32
10−1 3.43e-10 8.58e-11 2.84e-8 8.66e-6
10−2 2.71e-11 1.09e-11 3.84e-8 1.92e-5
10−3 3.73e-12 4.49e-11 5.64e-8 2.82e-5

64
10−1 7.27e-11 3.62e-11 1.17e-8 5.26e-6
10−2 5.21e-12 3.33e-12 2.35e-8 1.17e-5
10−3 7.57e-13 1.00e-11 3.81e-8 1.90e-5

128
10−1 4.83e-11 3.07e-11 1.78e-8 3.43e-6
10−2 3.71e-12 2.28e-12 1.52e-8 7.59e-6
10−3 5.46e-13 3.55e-12 2.66e-8 1.33e-5

Table 6.3
Advection-Diffusion equation: results for different values of n̄, `, and ν.

Morrison-Woodbury formula along with the design of an ad-hoc projection scheme
make our new strategy very successful.

We studied our algorithm for parabolic problems, and also introduced a variant
using α−acceleration, based on α−circulant matrices. A comparison with recent
ParaDiag techniques from the literature shows that our new ParaDiag algorithm is
competitive and capable of delivering superior accuracy for comparable cost.

Our methodology can be easily generalized to other discretization schemes as
long as the discrete time operator can be written as a circulant matrix plus a low-
rank correction. For instance, in [19, Section 4] it is shown that the all-at-once
discretization of (1.1) by Runge-Kutta methods leads to discrete problems similar
to (1.2), with a comparable Σ1. Therefore, our ParaDiag scheme can also be used to
parallelize these Runge-Kutta methods in time.

Acknowledgments. This work was supported by the Swiss National Science
Foundation, and part has been carried out at CIRM in Marseille, France, in the
context of the Morlet chair of the first author. The second author is member of
the Italian INdAM Research group GNCS. His work was partially supported by the
research project “Tecniche avanzate per problemi evolutivi: discretizzazione, algebra
lineare numerica, ottimizzazione” (INdAM - GNCS Project CUP E55F22000270001).

We would like to thank the anonymous reviewers for their valuable comments and
remarks.

Appendix. We show now the proof of Theorem 3.1.

Proof. If K is symmetric, then by its definition also J` is symmetric. The only
complex values involved in the definition of J` are the πi’s and γi’s and they appear
as either diagonal elements (the former ones) or scalar multipliers (the latter ones).

18

The eigenvalues πi of the circulant matrix C1 are of the form πi = ω−(`−1)(i−1) for
all i = 1, . . . , `, where ω = e−

2πı
` ∈ C. Therefore, |πi| ≤ 1 for all i = 1, . . . , ` and they

come in complex conjugate pairs. Moreover,

γ1

...
γ`

 = F−Te` =
1

`
F̄e` =

1

`

1

ω−(`−1)

ω−2(`−1)

...

ω−(`−1)2

 =
1

`

1
π1

π2

...
π`

 ,

so that also the γi’s come in complex conjugate pairs, and |γi| ≤ 1/` ≤ 1 for any
i = 1, . . . , `, ` ≥ 1.

Since J` is symmetric, |πi| ≤ 1 for any i, and the πi’s and γi’s all come in complex
conjugate pairs, J` is Hermitian.

We now show that it is also positive definite. For any z ∈ C` satisfying ‖z‖ = 1,
we have Re (z∗((1− πi)In̄ + τK)z) > 0 since K is SPD, τ > 0 and |πi| ≤ 1 for any
i = 1, . . . , `. This means that also ((1 − πi)In̄ + τK)−1 is positive definite for any i.
Furthermore, recalling that γi = πi/`, we have

min
z∈C`,‖z‖=1

Re(z∗J`z) =1 +
∑̀
i=1

Re(γi) min
z∈C`,‖z‖=1

Re(z∗((1− πi)I + τK)−1z)

=1 +
1

`

∑̀
i=1

Re(πi)

1− Re(πi) + τλmax(K)
.(7.1)

By construction we know that
∑`
i=1 Re(πi) = 0. Moreover, if we denote by J, K the

index sets such that Re(πi) ≥ 0 and Re(πi) < 0, respectively, then, for an even `, J
and K have the same cardinality. In particular, #J = #K = `/2 and we have

0 =
∑̀
i=1

Re(πi) =
∑
j∈J

Re(πj) +
∑
k∈K

Re(πk) =
∑
j∈J

(Re(πj)− Re(πj)),

namely for a given j ∈ J there exists an index k ∈ K such that Re(πj) = −Re(πk) if
` is even.

On the other hand, if ` is odd, we have #J = (`− 1)/2 + 1, #K = (`− 1)/2 and
we can write

0 =
∑̀
i=1

Re(πi) =
∑
j∈J

Re(πj) +
∑
k∈K

Re(πk) = 1 +
∑

j∈J,πj 6=1

Re(πj) +
∑
k∈K

Re(πk),

which means that
0 <

∑
j∈J,πj 6=1

Re(πj) = −1−
∑
k∈K

Re(πk).

However, in (7.1) we have a weighted sum of the real parts of the eigenvalues πi.
In particular, we can write

1

`

∑̀
i=1

Re(πi)

1− Re(πi) + τλmax(K)
=
∑̀
i=1

Re(πi)w(πi),

19

where

w(πi) :=
1

`(1− Re(πi) + τλmax(K))
> 0, for any i = 1, . . . , `.

We now focus on the scalars w(πi) and we define

w(πi) :=

{
w̌(πi), if i ∈ K,
ŵ(πi), if i ∈ J.

A direct computation shows that ŵ(πj) ≥ w̌(πk) for any j ∈ J, k ∈ K, since

(7.2) min
j∈J

ŵ(πj) ≥
1

`τλmax(K)
≥ max

k∈K
w̌(πk).

For an even `, it holds that

∑̀
i=1

Re(πi)w(πi) =
∑
j∈J

Re(πj)ŵ(πj) +
∑
k∈K

Re(πk)w̌(πk)

=
∑
j∈J

Re(πj)(ŵ(πj)− w̌(πkj)) ≥ 0,

where the index kj ∈ K is such that Re(πkj) = −Re(πj) for a given j ∈ J.
On the other hand, if ` is odd and j∗ ∈ J is such that πj∗ = 1, we can write

∑̀
i=1

Re(πi)w(πi) = ŵ(πj∗) +
∑

j∈J\{j∗}

Re(πj)ŵ(πj) +
∑
k∈K

Re(πk)w̌(πk)

≥ ŵ(πj∗) +
1

`τλmax(K)

∑
j∈J\{j∗}

Re(πj) +
∑
k∈K

Re(πk)w̌(πk)

= ŵ(πj∗)−
1

`τλmax(K)
− 1

`τλmax(K)

∑
k∈K

Re(πk) +
∑
k∈K

Re(πk)w̌(πk)

= ŵ(πj∗)−
1

`τλmax(K)
+
∑
k∈K

Re(πk)

(
w̌(πk)− 1

`τλmax(K)

)
≥ 0.

The nonegativity of the quantity above follows from (7.2). Indeed, ŵ(πj∗) ≥ 1
`τλmax(K)

whereas w̌(πk)− 1
`τλmax(K) ≤ 0 for any k ∈ K. On the other hand, Re(πk) < 0 for any

k ∈ K so that Re(πk)
(
w̌(πk)− 1

`τλmax(K)

)
≥ 0 for any k ∈ K.

Therefore, for any `, we have

1 +
1

`

∑̀
i=1

Re(πi)

1− Re(πi) + τλmax(K)
> 0,

and this shows the positive definiteness of J`.
To conclude, we show the upper bound (3.6). For any `, we have

κ(J`) =
maxi |λi(J`)|
mini |λi(J`)|

=
maxz∈C`,‖z‖=1 |z∗J`z|
minz∈C`,‖z‖=1 |z∗J`z|

=
1 + maxz∈C`,‖z‖=1 |

∑`
i=1 γiz

∗((1− πi)In̄ + τK)−1z|
1 + minz∈C`,‖z‖=1 |

∑`
i=1 γiz

∗((1− πi)In̄ + τK)−1z|
.

20

Recalling that |γi| ≤ 1/` and 0 ≤ |1− πi| ≤ 2 for any i we get

κ(J`) ≤
1 + maxi maxz∈C`,‖z‖=1 |z∗((1− πi)In̄ + τK)−1z|
1 + `mini minz∈C`,‖z‖=1 |z∗((1− πi)In̄ + τK)−1z|

=
1 + maxi

1
min

z∈C`,‖z‖=1
|z∗((1−πi)In̄+τK)z|

1 + `mini
1

max
z∈C`,‖z‖=1

|z∗((1−πi)In̄+τK)z|

≤
1 + 1

τλmin(K)

1 + `
2+τλmax(K)

=
τλmin(K) + 1

2 + τλmax(K) + `
· 2 + τλmax(K)

τλmin(K)

=
τλmin(K)

τλmax(K)

1 + 1
τλmin(K)

1 + 2+`
τλmax(K)

· τλmax(K)

τλmin(K)

(
1 +

2

τλmax(K)

)
≤ 1 +

1

τλmin(K)
.

REFERENCES

[1] U. M. Ascher and L. R. Petzold, Computer methods for ordinary differential equations and
differential-algebraic equations, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1998.

[2] F. Danieli and A. J Wathen, All-at-once solution of linear wave equations, Numerical Linear
Algebra with Applications, 28 (2021), p. e2386.

[3] A. Frommer and U. Glässner, Restarted GMRES for shifted linear systems, SIAM J. Sci.
Comput., 19 (1998), pp. 15–26. Special issue on iterative methods (Copper Mountain, CO,
1996).

[4] A. Frommer, K. Kahl, Th. Lippert, and H. Rittich, 2-norm error bounds and estimates for
Lanczos approximations to linear systems and rational matrix functions, SIAM J. Matrix
Anal. Appl., 34 (2013), pp. 1046–1065.

[5] A. Frommer, K. Kahl, and M. Tsolakis, Matrix functions via linear systems built from
continued fractions, arXiv preprint arXiv:2109.03527, (2021).

[6] A. Frommer and V. Simoncini, Stopping criteria for rational matrix functions of Hermitian
and symmetric matrices, SIAM J. Sci. Comput., 30 (2008), pp. 1387–1412.

[7] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time
Domain Decomposition Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher,
eds., Springer, 2015, pp. 69–114.

[8] M. J. Gander and E. Hairer, Nonlinear convergence analysis for the Parareal algorithm, in
Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computa-
tional Science and Engineering, O. B. Widlund and D. E. Keyes, eds., vol. 60, Springer,
2008, pp. 45–56.

[9] M. J. Gander and L. Halpern, Time parallelization for nonlinear problems based on diago-
nalization, in Domain decomposition methods in science and engineering XXIII, Springer,
2017, pp. 163–170.

[10] M. J. Gander, L. Halpern, J. Rannou, and J. Ryan, A direct time parallel solver by diago-
nalization for the wave equation, SIAM J. Sci. Comput., 41 (2019), pp. A220–A245.

[11] M. J. Gander, L. Halpern, J. Ryan, and T. T. B. Tran, A direct solver for time paral-
lelization, in Domain decomposition methods in science and engineering XXII, vol. 104 of
Lect. Notes Comput. Sci. Eng., Springer, Cham, 2016, pp. 491–499.

[12] M. J. Gander, Y.-L. Jiang, B. Song, and H. Zhang, Analysis of two parareal algorithms
for time-periodic problems, SIAM Journal on Scientific Computing, 35 (2013), pp. A2393–
A2415.

[13] M. J. Gander, J. Liu, S.-L. Wu, X. Yue, and T. Zhou, Paradiag: Parallel-in-time algorithms
based on the diagonalization technique, arXiv preprint arXiv:2005.09158, (2020).

[14] M. J. Gander and S. Vandewalle, Analysis of the Parareal time-parallel time-integration
method, SIAM j. Sci. Comput, 29 (2007), pp. 556–578.

21

[15] M. J. Gander and S.-L. Wu, Convergence analysis of a periodic-like waveform relaxation
method for initial-value problems via the diagonalization technique, Numerische Mathe-
matik, 143 (2019), pp. 489–527.

[16] , A diagonalization-based parareal algorithm for dissipative and wave propagation prob-
lems, SIAM Journal on Numerical Analysis, 58 (2020), pp. 2981–3009.

[17] M. H. Gutknecht, Krylov subspace algorithms for systems with multiple right hand sides:
an introduction, in Modern mathematical models, methods and algorithms for real world
systems, A. H. Siddiqi, I. Duff, and O. Christensen, eds., Anshan Ltd, 2007. Available at
http://www.sam.math.ethz.ch/~mhg/pub/delhipap.pdf.

[18] T. Hawkins, Weierstrass and the theory of matrices, Archive for history of exact sciences, 17
(1977), pp. 119–163.

[19] D. Kressner, S. Massei, and J. Zhu, Improved parallel-in-time integration via low-rank up-
dates and interpolation, ArXiv Preprint: 2204.03073, (2022).

[20] M. Kub́ınová and K. M. Soodhalter, Admissible and Attainable Convergence Behavior of
Block Arnoldi and GMRES, SIAM Journal on Matrix Analysis and Applications, 41 (2020),
pp. 464–486.

[21] J. Liesen and Z. Strakoš, Krylov subspace methods, Numerical Mathematics and Scientific
Computation, Oxford University Press, Oxford, 2013.

[22] J.-L. Lions, Y. Maday, and G. Turinici, A ”Parareal” in time discretization of PDE’s,
Compte Rendu de l’Academie de Sciences, 332 (2001), pp. 661–668.

[23] J. Liu and S.-L. Wu, A fast block α-circulant preconditoner for all-at-once systems from wave
equations, SIAM Journal on Matrix Analysis and Applications, 41 (2020), pp. 1912–1943.

[24] Y. Maday and E. M. Rønquist, Parallelization in time through tensor-product space-time
solvers, C. R. Math. Acad. Sci. Paris, 346 (2008), pp. 113–118.

[25] E. McDonald, J. Pestana, and A. Wathen, Preconditioning and iterative solution of all-
at-once systems for evolutionary partial differential equations, SIAM J. Sci. Comput., 40
(2018), pp. A1012–A1033.

[26] S. Noschese and L. Reichel, Generalized circulant Strang-type preconditioners, Numer. Lin-
ear Algebra Appl., 19 (2012), pp. 3–17.

[27] D. Palitta, Matrix equation techniques for certain evolutionary partial differential equations,
J. Sci. Comput., 87 (2021).

[28] D. Palitta and P. Kürschner, On the convergence of Krylov methods with low-rank trunca-
tions, Numer. Algorithms, 88 (2021), pp. 1383–1417.

[29] Y. Saad, Iterative methods for sparse linear systems, SIAM, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2nd ed., 2003.

[30] V. Simoncini, Restarted full orthogonalization method for shifted linear systems, BIT Numer-
ical Mathematics, 43 (2003), pp. 459–466.

[31] S.-L. Wu, Toward parallel coarse grid correction for the parareal algorithm, SIAM Journal on
Scientific Computing, 40 (2018), pp. A1446–A1472.

[32] S.-L. Wu and J. Liu, A parallel-in-time block-circulant preconditioner for optimal control of
wave equations, SIAM Journal on Scientific Computing, 42 (2020), pp. A1510–A1540.

[33] S.-L. Wu and T. Zhou, Acceleration of the two-level MGRIT algorithm via the diagonalization
technique, SIAM Journal on Scientific Computing, 41 (2019), pp. A3421–A3448.

[34] , Parallel implementation for the two-stage SDIRK methods via diagonalization, Journal
of Computational Physics, 428 (2021).

22

	Introduction
	The new ParaDiag algorithm
	The projection method for the inner linear system
	-acceleration
	Higher-order BDFs
	Numerical examples
	Heat Equation
	Advection-Diffusion Problem
	Comparison with other ParaDiag Methods

	Conclusions
	References

