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Abstract. We analyze the recently introduced family of preconditioners in [23] for the stage4
equations of implicit Runge-Kutta methods for s-stage methods. We simplify the formulas for the5
eigenvalues and eigenvectors of the preconditioned systems for a general s-stage method and use6
these to obtain convergence rate estimates for preconditioned GMRES for some common choices of7
the implicit Runge-Kutta methods. This analysis is based on understanding the inherent matrix8
structure of these problems and exploiting it to qualitatively predict and explain the main observed9
features of the GMRES convergence behavior, using tools from approximation and potential theory10
based on Schwarz-Christoffel maps for curves and close, connected domains in the complex plane.11
We illustrate our analysis with numerical experiments showing very close correspondence of the12
estimates and the observed behavior, suggesting the analysis reliably captures the essence of these13
preconditioners.14
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1. Introduction. Runge-Kutta methods are a well-established family of one-18

step solvers for systems of ordinary differential equations (ODEs; see [31, 30] for an19

overview and further references). For implicit methods (IRK), their efficiency depends20

on the efficiency of a solver for the so-called stage equations – in general a system21

of ms non-linear equations, where m is the number of scalar ODEs in the system22

and s is the number of stages of the Runge-Kutta method. An important application23

arises from the space discretization of time-dependent partial differential equations24

(PDEs), resulting in a system of ODEs with very large m. If the spatial operator is25

linear, then the stage equations also form a system of linear algebraic equations and26

are often solved by an iterative solver, e.g., a Krylov method. In [23], the authors27

introduced a family of preconditioners for GMRES for the stage equations, numerically28

showing that these preconditioners give an outstanding performance, especially under29

refinement of the spatial mesh, i.e., as m grows. Recently, there have also been other30

contributions in the direction of preconditioning the fully implicit Runge-Kutta stage31

equations for PDEs, see [27, 26] but also [20, 19] and [3], introducing new ideas in32

terms of implementation as well as formulation and testing these numerically on a33

variety of test problems.34

We focus on the setting considered in [23], expand the 2-stage method analysis35

given in [10], and consider the general s-stage case, giving a theoretical background for36

the performance and spectral properties observed. Using the classical ideal GMRES37

bound we use the structural properties of the stage equations to obtain computable38

expressions for the spectrum. These then justify the use of estimates based on con-39

formal mapping theory (see [5]) of the ideal GMRES bound and ultimately lead to40

descriptive estimates for GMRES convergence properties for the preconditioned sys-41

tems.42
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2 M. J. GANDER AND M. OUTRATA

First, we recall some important preliminaries in Section 2 so that we can deliver43

the analysis, based on the spectral analysis of the preconditioned system, in Section 3.44

We support the analysis by considering more involved examples in Section 4.45

2. Model problem and preliminaries. The analysis in this paper applies46

to any spatial discretizations of ∂tu = Lu + f with a diffusive elliptic operator L47

that leads to a symmetric definite problem (the main assumptions being (3.6) in48

Section 3). However, in order to facilitate the understanding and put the emphasis on49

the preconditioners and their performance we choose for its exposition the simplest50

concrete problem and its discretization – the heat equation. We thus consider the51

heat equation on the unit square and a time interval (0, Tend), i.e.,52

(2.1)

∂

∂t
u = ∆u+ f in Ω× (0, Tend),

u = g on ∂Ω× (0, Tend) and u = u0 in Ω× {0},
53

where ∆ is the Laplace operator, f, g, u0 are given functions and Ω is the unit square54

Ω := (0, 1) × (0, 1). As in [10] we discretize in space using a finite difference scheme55

on an equidistant grid with N + 1 rows and columns, and with mesh size h = 1/N .56

The values at the interior grid points become unknown functions of time, which are57

governed by the system of ODEs58

(2.2)
∂

∂t
ui(t) =

ui−N (t) + ui−1(t)− 4ui(t) + ui+1(t) + ui+N (t)

h2
+ b

(ST )
i (t),59

for i = N + 1, . . . , N(N − 1) − 1, where b
(ST)
i (t) collects the known values from the60

source terms, given by g and f , at the given point. Combining the unknowns in each61

grid column into one vector denoted by uk(t), i.e.,62

uk(t) :=
[
uNk+2 uNk+3 · · · uN(k+1)−1

]T
(t), u(t) :=

[
uT
1 (t) · · · uT

N−1(t)
]T

,63

and also analogously for bk(t) and b(t), we rewrite (2.2) as64

(2.3)
∂

∂t
u(t) =

1

h2
Lu(t) + b(ST)(t),65

with66

(2.4)

L =


T I

I
. . .

. . .

. . .
. . . I
I T

 , T =


−4 1

1
. . .

. . .

. . .
. . . 1
1 −4

 , I =


1

. . .

. . .

1

 ,67

where L is of dimension n := (N − 1)2 and the blocks T, I are of dimension N − 1.68

We discretize [0, Tend] with MTend
+ 1 equidistant time points with time step τ =69

Tend/MTend
, i.e.,70

{0 = t0 < · · · < tMTend
= Tend}, τ =

Tend

MTend

and tm = τ ·m, m = 0, . . . ,MTend
.71
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SPECTRAL ANAL. OF IMPLICIT S-STAGE BLOCK RUNGE-KUTTA PREC. 3

Having a Butcher tableau72

(2.5)
c A

b
:=

c1 a1,1 . . . a1,s
...

...
. . .

...

cs as,1 . . . as,s

b1 . . . bs

,73

the corresponding IRK method applied to (2.3) at the m-th time step gives the ap-74

proximation um ≈ u(tm) as75

(2.6) um = um−1 + τ

s∑
i=1

bik
m
i ,76

where the vectors km
1 , . . . ,km

s ∈ Rn are the solutions of the linear system77

(2.7)


I . . .

I

− τ
h2

a1,1L . . . a1,sL
...

. . .
...

as,1L . . . as,sL


km =


1
h2Lu

m−1 + b(ST)(tm−1 + c1τ)
...

1
h2Lu

m−1 + b(ST)(tm−1 + csτ)

 ,78

with79

km :=
[
km
1 · · · km

s

]T ∈ Rns.80

Using the Kronecker product formulation (denoted by ⊗; see [29] and references81

therein), (2.7) becomes82

(2.8)
(
Is ⊗ In − τ

h2
(A⊗ L)

)
︸ ︷︷ ︸

=:M

km =


1
h2Lu

m−1 + b(ST)(tm−1 + c1τ)
...

1
h2Lu

m−1 + b(ST)(tm−1 + csτ)

 .83

We note that (2.8) can be reformulated into a matrix equation, which is in general84

better suited for using a Krylov solver (see [22]). Here we focus on the analysis of85

the results in [23] and thus we do not address this any further but a study of the86

preconditioners from [23] in the matrix equations setting seems worthwhile. Having87

p ≤ 2s as the order of convergence of the IRK method we assume that it is balanced88

with the spatial discretization error, i.e., that h2 = Ceτ
p for some Ce > 0.89

The problem (2.8) with the sparse system matrix M can be very large for h (and90

τ) small, suggesting an iterative solver such as GMRES, BiCG or GCR should be91

used, which in turn requires a preconditioner to attain efficiency. In [23], the authors92

introduce the block preconditioners93

(2.9)
P d = Is ⊗ In − τ

h2
diag(A)⊗ L,

P u = Is ⊗ In − τ

h2
DAUA ⊗ L and P l = Is ⊗ In − τ

h2
LADA ⊗ L,

94

where LA, DA, UA are the LDU factors of the Butcher tableau matrix A. In addition,95

the authors also consider the block triangular preconditioners96

(2.10) PGSL = Is ⊗ In − τ

h2
AL ⊗ L and PGSU = Is ⊗ In − τ

h2
AU ⊗ L,97
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4 M. J. GANDER AND M. OUTRATA

where GSL/GSU stands for Gauss-Seidel lower/upper, and AL,U is the lower/upper98

triangular part of A, i.e.,99

(AL)ij =

{
aij if i ≥ j

0 otherwise
, (AU )ij =

{
aij if i ≤ j

0 otherwise
.100

Some of these – P d and PGSL – were considered already in [28]. Notice that if aii > 0101

for all i = 1, . . . , s, then the preconditioners are invertible as L is symmetric, negative-102

definite. More general conditions for non-singularity of the preconditioners can be also103

derived analogously to [27, Lemma 1].104

Using GMRES for a linear system Cx = f with C being diagonalizable, i.e.,105

C = SΛS−1 and Λ = diag(λ1, . . . , λd), a standard convergence bound for the residuals106

rℓ reads107

(2.11)
∥rℓ∥
∥r0∥

≤ κ(S) min
φ(0)=1

deg(φ)≤ℓ

max
1≤i≤d

|φ(λi)|,108

where κ(S) is the 2-norm condition number of the matrix S, see, e.g., [18, Section109

5.7.2]. We highlight some aspects of the bound (2.11) that are often used to study110

GMRES convergence behavior.111

Remark 2.1. As indicated above, the spectral information of the system matrix112

in GMRES (in our case of the preconditioned system) does not generally govern the113

convergence (see [12], [11] and [1] and also [18, Chapter 2 and 5.7] and the references114

therein). If the system matrix is normal, i.e., it is diagonalizable with S unitary,115

then the spectral information is enough to evaluate the ideal GMRES bound (2.11).116

However, if C is non-normal, then a convincing argument needs to be put forward to117

validate linking spectral information with the convergence behavior of GMRES as the118

authors in [18, p. 303, Remark 1] point out.119

Moreover, particular knowledge of the interaction of S and the initial residual r0120

can lead to a qualitative and quantitative improvement on (2.11), see, e.g., [17]. How-121

ever, studying GMRES behavior with the bound (2.11), this interaction is completely122

lost.123

In cases where (2.11) is justifiable, the next step is usually to bound from above124

the mixed1 min-max problem in the right-hand side of (2.11) by replacing the discrete125

set over which we take the maximum, let us denote it by σdiscr, by a non-discrete one,126

which we denote by σnon−discr, so that we have σdiscr ⊂ σnon−discr. We highlight two127

important aspects of this step:128

(a) It is functional only if we can further bound or evaluate the solution of the129

min-max problem over σnon−discr and obtain a reasonably fast convergence130

estimate.131

(b) It is appropriate only if2 ∂Cσ
non−discr is reasonably uniformly covered by132

σdiscr.3 In case of clusters, we should consider having σnon−discr as a union133

1Mixed in the sense that the minimum is over a non-discrete set while the maximum is over a
discrete one.

2We denote the boundary of a set S ⊂ C in C by ∂CS.
3Intuitively, we could expect that the bound will be appropriate only if σdiscr covers the entirety

of σnon−discr but because polynomials of complex variables are harmonic we can conclude that the
maximum of the modulus of a polynomial over the set σnon−discr is attained along ∂Cσ

non−discr and
therefore only the relation of ∂Cσ

non−discr and σdiscr is important for the GMRES bound, see [5,
Section 2].
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of separate non-discrete sets σnon−discr
i each of which captures one of the134

clusters, i.e., is covered by one of the clusters reasonably uniformly.135

For example, in (2.11) we can replace the spectrum σdiscr = {λ1, . . . , λd} by a disc136

containing all of the eigenvalues σnon−discr = {z ∈ C | |z − c| ≤ η}. Assuming |c| > η,137

a crude but sometimes useful approximation of the original bound is available,138

(2.12)
∥rℓ∥
∥r0∥

≤ κ(S)

(
η

|c|

)k

,139

see [25, Section 6.11.2, Corollary 6.33 and Lemma 6.26 and below]. Here, σnon−discr =140

{z ∈ C | |z − c| ≤ η} was clearly chosen with the functionality aspect in mind as we141

know the polynomial that realizes the bound (see [25, Lemma 6.26]) and it gives142

a good convergence bound as long as η ̸≈ |c|. However, it is usually far from being143

appropriate if the eigenvalues don’t spread uniformly over the circle bounding the disc.144

One notable exception is the case of tightly clustered eigenvalues around a single point145

c – in this case the clustering usually makes this bound appropriate as we can choose η146

very small. We emphasize that the adjectives functional and appropriate make sense147

only if the original bound (2.11) was itself descriptive of the GMRES convergence148

bound, i.e., only if the system matrix is either close to normal or the initial residual is149

restricted to a subspace on which the system matrix is not too far from being normal.150

3. Analysis of the block preconditioners. We start by transforming the151

calculations into the eigenbasis of the spatial operator. Denoting the eigenpairs of152

L by (λk,vk), we organize the eigenvectors into an n-by-n matrix V and define the153

block transformation matrix Q,154

(3.1) V := [v1, . . . ,vn] , and Q :=

V . . .

V

 ∈ Rsn×sn.155

Transforming M blockwise into the V basis gives M̃ := QMQT ,156

(3.2) M̃ =

I . . .

I

− τ

h2

a1,1Λ . . . a1,sΛ
...

. . .
...

as,1Λ . . . as,sΛ

 ,157

with Λ = diag(λ1, . . . , λn). With the preconditioners proposed in (2.9-2.10) we write158

the spectrum of the preconditioned system as159

sp(MP−1) = sp(QTMP−1Q) = sp(QTMQQTP−1Q) = sp
(
M̃P̃−1

)
,160

where P̃ := QTPQ stands for one of the right-preconditioners P d,GSU,u and an anal-161

ogous formulation follows also for the left-preconditioners PGSL,l. As the precondi-162

tioners are defined blockwise as scalar multiplications of L and I, their blockwise163

transformation into the eigenbasis of L is a straight-forward calculation - replacing L164

with Λ (and keeping I). Next, such matrices – block matrices with each block being165

a square, diagonal matrix – can be permuted into classical block-diagonal matrices as166

the following lemma shows.167

Lemma 3.1 (see [10, Lemma 1]). Let C ∈ Rns×ns be a real matrix with block168
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6 M. J. GANDER AND M. OUTRATA

structure such that every block is a square diagonal matrix, i.e.,169

(3.3) C =

Λ11 . . . Λ1s

...
. . .

...
Λs1 . . . Λss

 , with Λij = diag
(
λ
(ij)
1 , . . . , λ(ij)

n

)
∀ij.170

Then there exists a permutation matrix Π ∈ Rns×ns such that171

(3.4) ΠTCΠ =

C1

. . .

Cn

 with Cℓ =


λ
(11)
ℓ . . . λ

(1s)
ℓ

...
. . .

...

λ
(s1)
ℓ . . . λ

(ss)
ℓ

 ∈ Rs×s,172

for any ℓ = 1, . . . , n.173

Hence, C is diagonalizable if and only if Cℓ is diagonalizable for all ℓ = 1, . . . , n,174

and if Cℓ = V −1
ℓ DℓVℓ is the eigendecomposition of Cℓ with Dℓ = diag(µ

(1)
ℓ , . . . , µ

(s)
ℓ ),175

then176

sp(C) =

n⋃
ℓ=1

s⋃
i=1

µ
(i)
ℓ ,177

and if (µ,v) is an eigenpair of some Cℓ, then
(
µ,ΠT (v ⊗ eℓ)

)
is an eigenpair of C.178

As a result, if C is diagonalizable with C = V −1DV , then179

κ(V ) = max
ℓ=1,...,s

κ(Vℓ),180

where κ(·) is the 2-norm condition number.181

Remark 3.2. We note that an analogous lemma to Lemma 3.1 can also be for-182

mulated for non-normal matrices (replacing QT by Q−1). Considering the Jordan183

canonical (or the Schur decomposition form) of Cℓ, Lemma 3.1 can be reformulated184

to obtain a block upper bi-diagonal (or block upper-triangular) matrix.185

We take W as the matrix of eigenvectors of L, and in order to shorten the notation186

we set187

(3.5) θk :=
τ

h2
λk and Θ :=

τ

h2
Λ,188

as these quantities always appear together in the computations, and we use p as the189

order of the Runge-Kutta scheme (see [31, Section II.1, Definition 1.2]). Assuming190

the time and space discretization errors are kept in balance, i.e., there exists a C so191

that h2 = Cτp, a direct calculation (see [21, Appendix B.8, pages 228–229]) leads us192

to the following limit behavior of θk as τ, h → 0:,193

(3.6)

(θn, θ1) → (− 8

Ce
, 0),

(θ−1
1 , θ−1

n ) →
(
−∞,−Ce

8

)
,︸ ︷︷ ︸

(LIM)p=1

(θn, θ1) → (−∞, 0),

(θ−1
1 , θ−1

n ) → (−∞, 0).︸ ︷︷ ︸
(LIM)p>1

194
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Next we define the s-by-s matrices195

Mk :=


1− a11θk −a12θk . . . −a1sθk

−a21θk 1− a22θk
...

...
. . .

...
−as1θk . . . . . . 1− assθk

 and P ⋆
k :=


1− α11θk −α12θk . . . −α1sθk

−α21θk 1− α22θk
...

...
. . .

...
−αs1θk . . . . . . 1− αssθk

 ,196

where αij are the entries of the replacement for A in M , e.g., taking ⋆ = d we have197

αij = aij for i = j and αij = 0 otherwise, while taking ⋆ = u we have αij = (DAUA)ij198

where A = LADAUA is the LDU factorization of A and so on. Using Lemma 3.1, we199

obtain the following result.200

Proposition 3.3. Take M as in (2.8) and a preconditioner P from (2.9, 2.10).201

Assuming P is invertible, the spectrum of MP−1 (or P−1M) is given as the union of202

the spectra of the matrices Xk given by203

(3.7) X⋆
k := Mk (P

⋆
k )

−1
(or (P ⋆

k )
−1

Mk),204

for k = 1, . . . , n. If all X⋆
k are diagonalizable with205

(3.8) (S⋆
k)

−1X⋆
kS

⋆
k = diag(ξ

(k)
1 , . . . , ξ(k)s ),206

then the condition number of the matrix of the eigenvectors of the preconditioned207

system is given by208

κ (W ) · max
k=1,...,n

κ (S⋆
k) .209

If the θk have multiplicity at most m, then the eigenvalues of the preconditioned system210

have algebraic multiplicity at most ms. In particular, the preconditioned system can211

be non-diagonalizable but the longest Jordan vector chain has length at most ms.212

Proof. Transforming MP−1 (or P−1M) into the basis of Q we use Lemma 3.1213

for the matrix M̃P̃−1 (see (3.2)) and obtain the result.214

Now we are ready to generalize the results shown in [10] for s = 2 to a general s-stage215

method.216

Corollary 3.4 ([21, Proposition 7.5]). Under the assumptions of Proposi-217

tion 3.3, we have for the right-preconditioner P d the formula218

(3.9) Xd
k =


1 − a12θk

1−a22θk
. . . − a1sθk

1−assθk

− a21θk
1−a11θk

1
...

...
. . .

...

− a1sθk
1−a11θk

. . . . . . 1

 ,219

with the characteristic polynomial220

p
(s)
k (λ) = (1− λ)s + βs−2(1− λ)s−2 + βs−3(1− λ)s−3 + . . .+ β1(1− λ) + β0,221

where βj are continuous functions of θk and aii for i = 1, . . . , s. Hence, the eigenvalues222

become 1− µ, where µ is a root of the parametrized polynomial223

p̃
(s)
k (t) = ts + βs−2t

s−2 + βs−3t
s−3 + . . .+ β1t+ β0.224
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8 M. J. GANDER AND M. OUTRATA

Corollary 3.5 ([21, Proposition 7.6]). Under the assumptions of Proposi-225

tion 3.3, the block upper-triangular preconditioners PGSU,u give226

(3.10)

XGSU,u
k =


1 0 . . . . . . . . . 0
⋆
...
⋆

(
Mk(P

GSU,u
k )−1

)
2:s,2:s

 , XGSL,l
k =


1 ⋆ . . . . . . . . . ⋆
0
...
0

(
(PGSL,l

k )−1Mk

)
2:s,2:s

 ,227

and hence have one eigenvalue equal to one for each k. The entries replaced by ⋆228

above do not affect the spectrum, only the eigenbasis.229

These results suggest 1 as a natural “central point” of the spectrum of the pre-230

conditioned system, generalizing the observations made for s = 2. We note that using231

these results we get both quantitative and qualitative insight into the spectra shown232

in [23, Figure 4.1 – 4.4], e.g., we see that for s = 3 the eigeninformation of M(P u)−1233

and (P l)−1M can still be obtained explicitly (see also [21, Section 7.4]) and on the234

other hand for s ≥ 6 there is no hope for these in general – but any bound on the235

eigeninformation of L can be used to obtain a bound on the eigeninformation of the236

preconditioned system by calculating with Xk, see [10, Section 4].237

We show the spectra of the preconditioned systems and the corresponding GM-238

RES convergence behavior in Figure 1 and 2, demonstrating observations and results239

from above. Notably, the bounds leave something to be desired, especially for P d240

where they are not descriptive at all. Moreover, increasing s seems to noticeably af-241

fect the quality of the preconditioners – see also [23] for further numerical tests with242

various s and h. These numerical examples (as well as the ones in [3, 10]) are, as243

far as we can tell, representative of the general experience with these preconditioners.244

We highlight several key features illustrated in Figures 1 and 2 that remained true in245

all of our experiments:246

1. For s small, we have observed the staircase-like convergence behavior visible247

in the left upper-most plot in Figure 2 (and also in the first row of Figure 5),248

where GMRES makes very little progress for a number of iterations, then249

improves notably in one iteration and repeats this cycle going forward. This250

behavior was most pronounced for the preconditioner P d, and for s = 2 was251

described and explained in [10, Figure 2 and below].252

2. We have usually not observed the desired superlinear convergence behavior,253

except for a speed-up after an initial stagnation (or slower speed convergence)254

phase.255

3. In the vast majority of cases, the number of GMRES iterations to reach a256

certain tolerance grows only very moderately under mesh refinement and for257

P u, P l it remains almost constant.258

4. In all of the experiments the spectra had the characteristic arc-like structure259

that we see in Figure 1.260

Our goal is to explain all these features here as well as to investigate other bounds261

or estimates that would be more descriptive of the convergence behavior. This insight262

is of clear interest on its own but can be also used to further improve the used263

methods, e.g., looking at numerical optimization of the Butcher tableau in the spirit264

of [10, Section 4]. We also note that the above results translate in a straight-forward265

fashion to the transformed system after we multiply (2.8) with (A−1 ⊗ In) from the266
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Fig. 1. The spectra of the preconditioned systems M
(
Pu,d

)−1
and

(
P l

)−1
M for s = 4, 6, 8 and

for three classical choices of fully implicit Runge-Kutta schemes - Gauss, RadauIIA and LobattoIIIC.
The spectra seemingly assemble in s “branches” in the first row and into s − 1 “branches” in the
other two with a central point at 1 + 0i. We set N = 50.

left, obtaining267

(
A−1 ⊗ In − τ

h2
Is ⊗ L

)
︸ ︷︷ ︸

=:Mtransf

km = (A−1 ⊗ In)


1
h2Lu

m−1 + b(BC)(tm−1 + ciτ)
...

1
h2Lu

m−1 + b(BC)(tm−1 + ciτ)

 ,268

and getting analogously the preconditioners,269

Rd = diag
(
A−1

)
⊗ In − τ

h2
Is ⊗ L,

Rl = (DA−1UA−1)⊗ In − τ

h2
Is ⊗ L and Ru = (LA−1DA−1)⊗ In − τ

h2
Is ⊗ L,

RGSL =
(
A−1

)
L
⊗ In − τ

h2
Is ⊗ L and RGSU =

(
A−1

)
U
⊗ In − τ

h2
Is ⊗ L,

270

where A−1 has the LDU factorization A−1 = LA−1DA−1UA−1 and
(
A−1

)
L,U

are271

defined analogously to (2.10). These preconditioners were proposed in [20] and then272

used further in [19] but also [27, 26]. For a general Butcher tableau, it is not possible to273

say whether the preconditioned transformed system gives a better performance than274

the original one. However, in [27, 26] the authors propose different preconditioners275

and our analysis adapted to their framework is going to be considered elsewhere. Also,276

we note that the extension of the above analysis for FEM discretization is a straight-277

forward task – more details on both of these topics can be found in [21, Sections 7.6278

and 7.7].279

3.1. Spectral analysis. Next we turn to the spectral analysis, keeping in mind280

its limitation in the sense of Remark 2.1. For block-diagonal problems we obtain281

(3.11)
∥rℓ∥
∥r0∥

≤ min
φ(0)=1

deg(φ)≤ℓ

max
j=1,...,n

∥φ (Xj)∥ ,282
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Fig. 2. The preconditioned GMRES convergence behavior for the preconditioned systems

M
(
Pu,d

)−1
and

(
P l

)−1
M for s = 4, 6, 8 and three classical choices of fully implicit Runge-Kutta

schemes - Gauss, RadauIIA and LobattoIIIC – together with the GMRES bound (2.12) with c = 1
(we set the values to 1 if η ≥ 1). We set N = 50.

which was studied in [9], where the authors showed that the extremal polynomials283

(i.e., the polynomial realizing the above bound) satisfies the equioscillation property284

but only every s iterations, where s is the size of the diagonal blocks. Relabeling the285

blocks in (3.11) we get286

∥rℓ∥
∥r0∥

≤ min
φ(0)=1

deg(φ)≤ℓ

max
j=1,...,n

∥φ (Xj)∥ = min
φ(0)=1

deg(φ)≤ℓ

max
θj∈sp( τ

h2 L)

∥∥φ (
Xθj

)∥∥ .287

Assuming each Xθj is diagonalizable as in Proposition 3.3, we notice that {θj} covers288

reasonably well the intervals Ih,τ,... as h → 0 (see (3.6)) and, in the spirit of Section 2,289

the natural bound of (3.11) becomes290

∥rℓ∥
∥r0∥

≤ min
φ(0)=1

deg(φ)≤ℓ

max
θ∈Ih,τ,...

∥φ (Xθ)∥ .291

First, let us assume there is a uniform bound κ (Sθ) ≤ κS for all θ ∈ Ih,τ,..., which292

experimentally seems to be the case (see [21]) and can be confirmed analytically for293

s = 2, 3 (see [10]) – this is an important and non-trivial assumption and a proper jus-294

tification is an open problem. Next, we notice that the matrices Xθ depend smoothly4295

on θ and as a result so do their eigenproperties. In particular, the eigenvalues ξ
(i)
θ of296

Xθ will – by definition – form an algebraic curve5 with s arcs (sometimes also called297

branches) some of which can be degenerate, e.g., reduced to just a point (incidentally,298

4That is, for our model problem of the negative-definite Laplacian. However in most cases of
interest this assumption is also satisfied, partially due to the stability assumptions/conditions coming
from the Runge-Kutta scheme.

5We say that Γ is an algebraic curve provided there exists a bi-variate polynomial p(θ, t) such
that Γ = {(θ, ξ) | p(θ, ξ) = 0}. Locally, this can also be viewed through the lens of perturbation
theory, see [14, Chapter 2 Section 1.1].
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this is the case for at least one arc of the algebraic curve for any of the triangular299

preconditioners due to Corollary 3.5). Denoting the algebraic curve for the given300

Butcher tableau A and a choice of preconditioner P ⋆ by Γ, we obtain301

(3.12)
∥rℓ∥
∥r0∥

≤ min
φ(0)=1

deg(φ)≤ℓ

max
θ∈Ih,τ,...

κ (Sθ) max
i=1,...,s

∣∣∣φ(
ξ
(i)
θ

)∣∣∣ ≤ κS min
φ(0)=1

deg(φ)≤ℓ

max
ξ∈Γ

|φ (ξ)| .302

Notice that if we replace in (3.12) the interval Ih,τ,... with its limit Ilim as h, τ → 0303

(see (3.6)), we obtain a bound for all mesh sizes. Noticing that, in our case, the304

preconditioned system matrix has a limit as θ tends to either of the endpoints of305

Ilim, it follows that the arcs of the corresponding algebraic curve correspond to the306

eigenvalues of these limit matrices. Hence, the effect of mesh refinement becomes307

sampling more points along Γ and stretching it towards these fixed endpoints (and308

possibly in increasing κS). This suggests that from a certain mesh size onward, the309

mesh refinement will have little effect on Γ and hence will not affect the min-max part310

of (3.12), shedding some light on why these preconditioners are quite robust under311

mesh refinement.312

Remark 3.6. Note that the numerical experiments in [23, 3] as well as in [21]313

and in Section 4 clearly show that the spectra of the preconditioned systems cover314

reasonably well an algebraic curve. For two-stage methods, this behavior has been315

observed, proved and used to obtain descriptive GMRES bounds in [10]. Moreover,316

for any algebraic curve Γ we have Γ = ∂CΓ, which is convenient from the point of317

view of choosing σnon−discr, see Remark 2.1 and below.318

We also emphasize that, in general, these preconditioners do not cluster eigenval-319

ues (that is, any more than the θ ∈ Ih,τ,... already are) but rather place them along320

a particular algebraic curve Γ ⊂ C. Hence, if the conditioning of the eigenbasis is321

not very bad, we can reasonably expect linear convergence as opposed to superlinear,322

which can often be linked with clusters and numbers of outliers, in the sense of [18,323

Section 5.6.4].324

Remark 3.6 also explains that the bound (2.12) is unlikely to be very descriptive or325

even usable. Indeed, the algebraic curves can reach into the left half-plane {Re(z) < 0}326

(making the bound useless due to 0 being included in the bounding circle) or, in the327

more favorable case, the arcs of the algebraic curve are extremely unlikely to align with328

the circle so that the bound have some resemblance of being what we earlier called329

appropriate. Naturally, the bound on the right-hand side of (3.12) is constructed to330

remedy that but the key question becomes if this bound is also functional, namely if331

we can (approximately) evaluate it.332

To this end, we follow the excellent paper [5] on this topic and start by looking at333

the asymptotic convergence factor (justified by Remark 3.6 above). Considering (3.12)334

we are led to look at the so-called logarithmic capacity of Γ, denoted by cap(Γ), which335

can be viewed as a measure of a compact set without isolated points in C; see [24, 13, 5]336

for the definition and further reading, but also [2] for progress on the calculation of337

logarithmic capacities. Importantly, cap(Γ) is known to asymptotically correspond to338

the maximal modulus of the extremal polynomials (sometimes also called Chebyshev339

polynomials) associated with Γ, namely340

(3.13)

(
min

deg(φ)≤ℓ
max
z∈Γ

|φ(z)|
)1/ℓ

→ cap(Γ), as ℓ → +∞,341

where the quantity on the left-hand side relates to the quantities we have seen in the342
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GMRES bounds. There are two important caveats to using cap(Γ). The first one,343

which has been also highlighted as a caveat for using the analysis in [5] overall, is the344

fact that (3.13) only provides some information about the limit behavior as ℓ → +∞,345

whereas we are interested in the behavior for relatively small values of ℓ, say ℓ ≤ 50 or346

100. To large extent this issue is addressed by Remark 3.6 that states that we expect347

a linear convergence throughout the iteration. The second one is the fact that (3.13)348

describes the limit scaling of the maximal modulus over all polynomials – it lacks the349

crucial scaling φ(0) = 1 of Krylov methods. This issue can be fixed by re-scaling350

(see [5, Section 2]), shifting our attention from the logarithmic capacity to Green’s351

functions associated with Γ, as long as Γ is compact and without any isolated points.352

Things simplify considerably if we assume that Γ is connected as then the nor-353

malized quantity354  min
φ(0)=1

deg(φ)≤ℓ

max
z∈Γ

|φ(z)|


1/ℓ

355

can be evaluated directly using conformal maps, in particular the Schwarz-Christoffel356

maps. Without going into the details (the interested reader can find these in [5,357

Sections 2 and 3]), we obtain the asymptotic convergence factor estimate ρest as358

(3.14) ρest := lim
ℓ→+∞

 min
φ(0)=1

deg(φ)≤ℓ

max
z∈Γ

|φ(z)|


1/ℓ

=
1

|Φ(0)|
,359

where Φ(z) is the Schwarz-Chriostoffel map that maps the exterior of Γ to the ex-360

terior of the unit circle. In [5, Section 3, Theorem 2 and below], the authors put this as361

362
“. . . if Γ is connected, the estimated asymptotic convergence factor
for a matrix iteration depends on how far the origin is from Γ –
provided that this distance is measured by level curves associated with
the exterior conformal map.”

363

364

365

We would like to emphasize the word estimate when talking about ρest because we366

truly do not get a bound anymore – in fact we get an underestimate as highlighted367

also in [5, Section 5, equation (STEP1) and also Table 1]. However, we expect this368

estimate to be descriptive as explained above.369

For not too complicated connected, compact sets the map Φ and its value at the370

origin can be calculated using the Schwarz-Christoffel MATLAB toolbox [4], but we371

immediately notice that in Figure 1 the set of eigenvalues along Γ is not connected372

and the actual algebraic curve Γ itself is also not available in an easy form, i.e., neither373

of these can be directly given as an input to the SC toolbox. We take the natural next374

step and approximate Γ by its linear interpolation based on the available eigenvalues375

ξ
(i)
θ . The linear interpolation gives us a good approximation of the arcs of Γ and we376

use the point 1 + 0i as the natural point to join them (also by linear interpolation)377

and denote the resulting set Γh. Recalling the limit behavior in (3.6), we also see that378

Γh will tend towards Γ as h → 0 for our model problem.379

The calculation of ξ
(i)
θ is independent for each k = 1, . . . , n but for large n the SC380

toolbox can suffer numerically when calculating with Γh that is densely populated by381
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Fig. 3. The eigenvalues of the matrices Xθk (red) and Xϑk
(blue, for different values of q),

using the preconditioner Pd. Joining these together with line segments would yield the curves Γh

(red) and Γq (blue).

the interpolation points – both in the sense of large computational complexity as well382

as in the sense of numerical issues (called over-crowding, see [4] but also [6, Section383

2.6]). Moreover, we usually have only rough estimates on the extremal eigenvalues384

θmin and θmax of L rather than its full spectrum. To this end, we recall the idea in [10,385

Section 4] and instead of calculating Γh we use the information about θmin,max and386

artificially sample a fixed number of “fake” points ϑk between them, say q of them.387

Then we replace θk by ϑk in the definition of Γh, obtaining Γq – an approximation of388

Γh (and a further approximation of Γ) based on the linear interpolation given by the389

eigenvalues of the matrices Xϑk
. We illustrate these points in Figure 3.390

Another key point is that using the SC toolbox6 – namely the functions extermap391

and evalinv – has difficulties (as far as we understand it) when the arcs of Γq intersect,392

e.g., as is the case for s = 8 and the preconditioner P l, see Figure 1. Intuitively,393

this makes sense as the exterior of Γq then has multiple components, making the394

original set-up more complicated (a theoretical treatment of such problems could be395

approached based on [8]). We address this issue by taking the “envelope” of the396

arcs – if two arcs intersect, we follow the one staying outwards, e.g., in the case397

of s = 6 (or s = 8) and the preconditioner P l we would exclude a portion of the398

densely populated end of the arc (two arcs) closer to the real axis as these portions lie399

“inward” relative to the arcs with the larger imaginary part, see Figure 1 and Figure 4400

ahead. Finally, we illustrate the calculated Schwarz-Christoffel maps – or rather their401

contours – in Figure 4 together with the used inputs Γq (with the exception of s = 6, 8402

and the preconditioner P l, where we used the “envelopes”) and also the asymptotic403

convergence factor estimate ρest in Figure 5. First, we see that the results in Figure 5404

fully support the arguments in Remark 3.6 for considering ρest as the descriptive405

quantity for the convergence factor. Including an estimate for κS then gives also406

an estimate for GMRES convergence – not just its rate, see Section 4. Second, we407

note that for s = 8 and the preconditioner P u, the arcs turned so that the right-408

6In our case, Γq qualifies as a degenerate polygon acceptable by the toolbox.
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Fig. 4. In red: the curves Γq (first plots 1 to 7) and their “envelopes” (plots 8 and 9) for
the Gauss Butcher tableau, taking q = 15. In black: the contours of the corresponding Schwarz-
Christoffel map of the exterior of these curves (or envelopes) mapped to the exterior of the unit
circle, see extermap in [4].

most arcs almost intersect themselves. This causes problems for the toolbox, which409

during the calculations raises a flag stating that the calculated map did not converge410

as expected. Although the predicted ρest seems accurate, we see in Figure 4 that411

contours have ripples, confirming that the calculated results should be taken with412

caution. This can be fixed by a similar “envelope-like” approach we described for413

s = 6, 8 and the preconditioner P l, see Section 4, obtaining a further approximation.414

Although there are a few similar caveats concerning the implementation of the above415

ideas, we have always found that a simple solution (such as considering the envelope416

or pruning the fake points in order to alleviate the crowding) can be used to fix them417

and still give an appropriate insight into the GMRES convergence factor. As long as418

κS does not completely dominate the ideal GMRES bound (2.11) this then translates419

to descriptive GMRES convergence estimates, see Section 4.420

The above analysis also gives insight into the staircase-like behavior, which has421

been observed and explained for s = 2 and the preconditioner P d in [10] working with422

the minimal residual polynomial φMR
ℓ (sometimes also called the GMRES polynomial;423

see [18, Section 5.7.1]). The arguments used in [10] remain valid as long as the424
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Fig. 5. The convergence behavior of preconditioned GMRES, using the Gauss Butcher tableau,
together with the convergence factor estimates based on ρest.

branches are not very close to each other7 – as long as the branches are far apart,425

the maximum of the polynomial φMR
ℓ will decrease significantly more at the steps426

ℓ = s · j for j = 1, 2, . . . because only then each branch can get some attention. If the427

branches become close, then we do not expect this extra jump because keeping the428

absolute value of the polynomial small along one of the branches naturally translates429

into keeping the absolute value of the polynomial also small enough along another430

one. This is most pronounced in the first s iterations of GMRES, as we can see431

in Figure 5, where the convergence curves begin with a slower convergence phase –432

precisely s steps – for P d and P u, in contrast to the ones of P l, where the arcs intersect433

and are, in general, closer to each other. We illustrate this further in Figure 6 for434

the preconditioner P d for s = 4, 8 by looking at the polynomial φMR
ℓ and its roots435

(called harmonic Ritz values). We see that in the first row (4 branches, far apart) the436

possibility of “placing” one root along each of the branches was much more crucial437

(resulted in a more significant decrease of the modulus of the polynomial over the438

spectrum of the preconditioned system) than for the second row (8 branches with two439

complex conjugate pairs of branches that are close to each other). We note that an440

example of explanation (and prediction) of a complete staircase behavior of GMRES441

can be found in [5, Figure 9 and below].442

Having analyzed the model problem, we want to emphasize that the approach443

relied on two assumptions – (a) the spectrum of L covers (reasonably) uniformly a444

real interval Iτ,h,... and (b) the condition numbers κ(Sθ) stay bounded for θ ∈ Iτ,h,....445

Importantly, in many problems (a) is not satisfied even though the spectrum of L still446

shows the crucial “one-dimensionality”, i.e., the eigenvalues of L densely populate a447

curve Ψ ⊂ C. To demonstrate, we consider a model problem of 1D advection-diffusion,448

(3.15) ∂tu = (∂x − κ∂xx)u+ f in R× (0, Tend),449

which we discretize in space with a centered finite difference scheme with a mesh size450

7In [10], the branches are two line segments parallel to the imaginary axis that are, moreover,
reasonably well separated along the real line, i.e., a natural case of being “not very close to each
other”.
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Fig. 6. The level curves of the GMRES polynomials φMR
ℓ for the preconditioned system(

Pd
)−1

M together with the spectrum of this system as well as the roots of φMR
ℓ (so-called har-

monic Ritz values). We set N = 50.

h, obtaining an infinite tri-diagonal matrix L with the stencil8451 
. . . h− κ

−h− κ 2κ h− κ

−h− κ
. . .

 ,452

which can be in real calculations replaced by a finite matrix with, e.g., the periodic453

boundary conditions. To remain concise we focus only on the bound here and postpone454

an example with GMRES convergence graphs to Section 4. The advection-diffusion455

problem is suitable as the eigenpairs can be calculated explicitly,456

(3.16) λk = 2κ− 2κ cos(kπh) + i · 2h sin(kπh) vk = [exp(ikπjh)]j∈Z for any k,457

and hence we see that θk densely populate the ellipse Ψ centered at 2κτ/h2 with458

semi-axis parallel to the real and imaginary axis and with width 4κτ/h2 and height459

2τ/h. First, we note that both Corollary 3.4 and 3.5 still hold. Importantly, we can460

sample ϑk from Ψ and proceed in completely analogous manner, only now having461

Xϑk
∈ Cs×s. This seems to suggest that the symmetry of the branches of Γq wrt to462

the real axis is lost. However, as long as we sample ϑk symmetrically wrt to the real463

axis the branch symmetry is preserved as we show next.464

Proposition 3.7. Let ϑ ∈ C have positive imaginary part. Taking Mϑ, P
⋆
ϑ and465

X⋆
ϑ as in Proposition 3.3 for any ⋆ ∈ {d,GSU,u,GSL, l} we get466

X⋆
ϑvϑ = ξϑvϑ =⇒ X⋆

ϑ
vϑ = ξϑ vϑ,467

where ·̄ stands for the entry-wise complex conjugation. In particular, the eigenvalues468

of X⋆
ϑ
are complex conjugate to those of X⋆

ϑ.469

8We keep the notation consistent with Section 2 and hence L has the 1/h2 scaling in front.
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Fig. 7. In red: the eigenvalues of the preconditioned systems showing the symmetry predicted
in Proposition 3.7 when taking λk as in (3.16), with κ = 0.01 and h = 1/50 and the Gauss Butcher
tableau. In black: the contours of the corresponding Schwarz-Christoffel map of the exterior of these
curves (or envelopes) mapped to the exterior of the unit circle, see extermap in [4]. We also show
for each case the estimated linear convergence factor of GMRES ρest, see (3.14). To obtain these
we use the techniques described above, i.e., calculating “envelopes” (which are not visible) based on
suitable sparsification of the boundaries of the spectra.

Proof. The proof is identical for all choices of ⋆ and we show it for ⋆ = d. Through-470

out the proof we understand ·̄ as the entry-wise complex conjugation without any471

transposition of the vectors or matrices.472

First, we notice that473

Mϑ = Mϑ and P d
ϑ
= P d

ϑ.474

Next, we recall that (E+ iF )−1 = (E+FE−1F )−1− iE−1F (E+FE−1F )−1 (for any475

E,F ∈ Rs×s and E invertible) and hence476 (
P d
ϑ

)−1
=

(
P d
ϑ

)−1
.477

Recalling that for any X ∈ Cs×s and v ∈ Cs, we have Xv = Xv we take the matrix478
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Xd
ϑ with an eigenpair (ξϑ,vϑ) and calculate479

Xd
ϑ
vϑ = Mϑ

(
P d
ϑ

)−1
vϑ = Mϑ

(
P d
ϑ

)−1
vϑ = Xd

ϑ vϑ = ξϑ vϑ,480

finishing the proof.481

In other words, as long as Ψ is symmetrical wrt to the real axis and we sample482

pairs of complex conjugate points along it, the analysis and techniques described above483

can be used without any need for adjustments. We show the plots corresponding to484

the discretization of the model problem (3.15) in Figure 7. We comment on some485

direct generalizations next.486

Remark 3.8. Importantly, some relevant, higher-dimensional problems lead to L487

with spectrum along unions of 1D curves, i.e., along Ψ1, . . . ,Ψm, see, e.g. [17, Sec-488

tion 6]. The above techniques can be applied to each Ψi separately and then taking489

the appropriate mix of the resulting envelopes in order to obtain GMRES estimates.490

If Ψ is not symmetrical, then the techniques need to be adjusted when using the491

Schwarz-Christoffel toolbox, as Γq is possibly non-symmetric wrt the real axis but492

otherwise the results still apply.493

We also want to comment on a similarity with the results in [16, 17]. There, the494

authors addressed the question of delay of convergence by using similar formulations495

to ours, also obtaining a GMRES problem reformulated as for a block-diagonal ma-496

trix using Kronecker-product-like techniques as in Lemma 3.1. In particular, in [17,497

Section 3.1] the authors use the equality498

∥rℓ∥ = min
φ(0)=1

deg(φ)≤ℓ

∥∥∥∥∥∥∥φ

X1

. . .

Xn


 r0

∥∥∥∥∥∥∥ = min
φ(0)=1

deg(φ)≤ℓ

√√√√ n∑
j=1

∥∥∥φ (Xj) s
(i)
0

∥∥∥,499

where s
(i)
0 is the i-th subvector of length s of QTΠr0, to obtain a lower bound500

(3.17) ∥rℓ∥2 = min
φ(0)=1

deg(φ)≤ℓ

n∑
j=1

∥∥∥φ (Xj) s
(i)
0

∥∥∥2 ≥
n∑

j=1

min
φ(0)=1

deg(φ)≤ℓ

∥∥∥φ (Xj) s
(i)
0

∥∥∥2501

on the GMRES convergence behavior, explaining the initial stagnation phase in an502

advection-diffusion problem. This way they bound the global minimization problem503

(corresponding to solving a problem with the block-diagonal matrix diag(X1, . . . , Xn))504

by the sum of the local minimization problems (each given by the small s-by-s matrix505

Xj). By careful analysis of the interplay of the right-hand side (or initial residual)506

and the diagonal blocks in [17, Section 3.1] (there the diagonal blocks are, moreover,507

tridiagonal and Toeplitz), the authors conclude508

509
“. . . the presence of at least one system with tridiagonal Toeplitz ma-
trix Tj = tridiag(γj , λj , µj) that is ’close to the Jordan block’ (cf. [17,
Section 3.3] but see also [16]), and with l representing the index of
the first significant entry of the corresponding right-hand side, pre-
vents fast convergence of GMRES for the first N − l steps (N being
the size of the blocks Tj) . . .
. . .As explained in Section 3.1, the lower bound is useless for an-
alyzing the convergence behavior after the step N − l, possibly even
earlier. Hence the above approach cannot be used for quantifying any
possible acceleration of convergence after the initial phase. ”

510
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511

512

We see that the approach is fundamentally different – both in the intended direction513

as well as in the results it can deliver – in spite of the fact that it works with the same514

technique.515

We finalize this section with a remark on the field of values (sometimes also516

called the numerical range) and pseudospectra, which sometimes are extremely useful517

to understand and predict GMRES convergence behavior, especially if the eigenbasis518

of the system matrix is ill-conditioned, see, e.g., [7] and also [18, Section 5.7.3, pp.519

296] and the references therein.520

Remark 3.9. Another commonly used bound for GMRES uses the field of values521

ν(C) or the δ-pseudospectrum σδ(C) of the system matrix C. By a direct calculation522

we obtain, for our model problem, the field of values as523

ν
(
MP−1

)
=

n∑
i=1

ν (Xk)
(
and analogously for ν

(
P−1M

))
,524

where the Xk are given as in (3.7) and the set addition is understood element-wise,525

i.e., ν(X1) + ν(X2) = {α1 + α2 |α1 ∈ ν(X1), α2 ∈ ν(X2)}, or, more generally526

ν
(
MP−1

)
⊂ κ(Q)

n∑
i=1

ν (Xk)
(
and analogously for ν

(
P−1M

))
.527

For the pseudospectrum we obtain an analogous formula, namely528

σδ

(
MP−1

)
⊂ κ(Q)

n∑
i=1

σδ (Xk)
(
and analogously for ν

(
P−1M

))
.529

In other words, the principle of working with the small matricesXk instead of the large530

matrix MP−1 naturally applies also to the other standard techniques for analyzing531

GMRES convergence behavior. However, adapting and using bounds based on field532

of values or the pseudospectrum of the preconditioned system for this set-up remains533

a topic for future research.534

4. Numerical Examples. In this section we use the above analysis for more in-535

volved settings and also to demonstrate the convergence estimates (instead of only the536

convergence factor estimates). To be precise, we consider the convergence estimates537

(4.1)
∥rℓ∥
∥r0∥

⪅ min
{
κest
S ρℓest, 1

}
,538

where the estimate κest
S of κS is computed from the eigenbasis condition numbers of539

the “fake sampled” matrices Xϑk
for k = 1, . . . , q. The convergence factor estimates540

reflect only the spectral part of the bound (2.11). Including an estimate of the term541

κ(S) in (2.11) then gives us a convergence estimates, which we show in this section.542

We recall that the seeming independence of the preconditioner quality on the543

spatial mesh size h was sufficiently documented elsewhere (see [23, 20, 3, 10, 21]) and544

explained in Section 3 so that in our eyes, there is no need to address this direction545

here. Illustration of the solutions as well as further numerical experiments can be546

found in [21, Chapter 7]. For the sake of simplicity, we fix the number of time steps547

to balance the spatial and time error (see the (L2) definition in Section 2), namely we548
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Fig. 8. The initial triangulations for Example 1 and 2 together with the boundary condition
types and, for Example 1, also with highlighting the points with lower heat conductivity.

consider second order space discretization schemes, p-th order Runge-Kutta schemes549

and fix550

τ = h
2
p .551

Last but not least, we have not set a relative residual tolerance criterion for stopping552

GMRES, meaning that GMRES went on until either the relative residual was on the553

level of machine precision or the maximum number of iterations was reached. This is554

not a good choice from the point of view of the solution process efficiency but since555

our primary focus is on studying the preconditioners, we found this reasonable.556

Diffusion problems. We consider FEM discretizations in space9 for discontinu-557

ous diffusion coefficient and for perforated domain in Example 1 and 2 with varying558

boundary conditions, see Figure 8.559

Example 1: Cookies in the oven. The first problem is a simulation of baking560

cookies in an electrical oven projected in 2D, an idea borrowed from [15]. The cookies561

have a worse heat conductivity than the surrounding air (piecewise constant in space562

and constant in time) and the setting demands various boundary conditions, resulting563

in564

∂u

∂t
u = div (σ∇u) + f in Ω× (0, T ],

∂u

∂n
u = 0 on ΓN × (0, T ],

∂u

∂n
u+ pu = 0 on ΓR × (0, T ],

u = 0 at Ω× {0},

565

9Wherever we talk about a FEM discretization, we use linear Lagrange polynomials on conform-
ing triangular meshes. Those are refined by the standard quadrisection of a triangle, with additional
post-smoothing of the mesh.
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Fig. 9. The GMRES convergence behavior with the convergence estimates based on ρest for
Example 1 with n = 26985.
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Fig. 10. The (sparsified) polygon approximations of the algebraic curves that are used in the
Schwarz-Christoffel MATLAB toolbox to calculate ρest for Example 1 – for some settings these

approximations correspond to the eigenvalues ξ
(i)
ϑ and in some these approximations only enclose

ξ
(i)
ϑ .

with Ω = (0, 4)× (0, 4) and the boundary of Ω is split into the Neumann and Robin566

parts ΓN ,ΓR. We set the data as567

ΓN = {x = 0} ∪ {y = 0} ∪ {y = 4}, ΓR = {x = 4}, p = 1, σ =

{
103 if (x, y) ∈ Cookie,

1 otherwise,

f(x, y, t) =

{
3 if ∥(x, y)− (2, 2)∥ ≤ 1,

0 otherwise,

568

and show the GMRES convergence behavior with the estimates in Figure 9 as well as569

the sampling of the algebraic curves in Figure 10.570
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Fig. 11. The GMRES convergence behavior with the convergence estimates based on ρest for
Example 2 with n = 26985.

Example 2: The cabin heating. The second problem uses the 2D projection of an571

attic room of a cabin in the western Bohemia region, whose primary heating is the572

chimney (bottom-right corner, modeled with a Dirichlet boundary condition changing573

in time), with two windows (top and bottom) and a door (right), modeled with574

Robin boundary conditions with Robin parameters pw and pd, and a good insulation575

otherwise, modeled with a Neumann condition. We obtain the problem576

∂u

∂t
u = div (σ∇u) in Ω× (0, T ],

∂u

∂n
u = 0 on ΓN × (0, T ],

∂u

∂n
u+ pu = 0 on ΓR × (0, T ],

u = 0 at Ω× {0},

577

and take the data as578

σ = 1, pw = 0.1, pd = 10, gD(x, y, t) =

{
min{t, 0.7} if (x, y) ∈ ΓD,

0 otherwise,
579

and show the GMRES convergence behavior with the estimates in Figure 11 as well580

as the sampling of the algebraic curves in Figure 12.581

Summary. The convergence factor estimates are virtually as accurate as for the582

model problems in Section 3 – in Figures 9 and 11 this is clearly visible by comparing583

the slopes of the red and black “lines”, similarly to Figure 5. But the conditioning of584

the matrices Xϑk
notably deteriorated as we increased s, hence worsening a bit the585

convergence estimates. The fact that this does not show up in the GMRES conver-586

gence behavior suggests that more delicate bounds, such as mentioned in Remark 3.9587

could give a more detailed insight into the matter. However, in all cases the conver-588

gence estimates lag behind the actual convergence behavior by 10-20 iterations (which589

is in many if not most situations considered to be reasonably accurate).590

We also showed the polygons used in the Schwarz-Christoffel toolbox. In our591

experience, large values of q lead to crowding problems in the SC toolbox but luckily592
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Fig. 12. The (sparsified) polygon approximations of the algebraic curves that are used in the
Schwarz-Christoffel MATLAB toolbox to calculate ρest for Example 2 – for some settings these

approximations correspond to the eigenvalues ξ
(i)
ϑ and in some these approximations only enclose

ξ
(i)
ϑ .

even a very small value was usually enough. We also found that spacing the fake593

points ϑk logarithmically in the corresponding interval somewhat alleviates this is-594

sue and leads to more accurate predictions of the arcs of the given algebraic curve.595

Nevertheless, notice that in many of the plots we excluded part of the arcs, mainly596

because either (a) the arcs intersected and we took the envelope of the algebraic curve597

(usually for the preconditioner P l) or (b) the points sampled along the arcs crowded598

sections of the arcs, which caused issues for the toolbox. In such cases we sparsified599

these regions by dropping some of these points. As a result, the Schwarz-Christoffel600

external map converged better and faster than for the problem in Section 3.1 and the601

contours were “ripple-free” for all of our problems, otherwise looking almost precisely602

as the ones in Figure 4.603

Advection problem. We consider a centered FD discretization in space of a 2D604

advection problem on a unit square, i.e.,605

(4.2)

∂u

∂t
= a · ∇u+ f in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ], u = 0 at Ω× {0},
606

with Ω = (0, 1)× (0, 1) and607

a = [1, 1]T and f(x, y, t) =

{
10 if ∥(x, y)− (0.5, 0.5)∥ ≤ 0.2,

0 otherwise,
608

and show the GMRES convergence behavior with the estimates in Figure 13 as well609

as the sampling of the algebraic curves in Figure 14.610

We used a larger value of q = 300 in order to capture the branches of Γq (which is611

not possible with q = 15 but can plausibly be done with lower values than 300), and612

used sparsification of the envelopes to ensure smooth convergence of the SC toolbox.613

We see that the convergence rate estimates are again very accurate in most cases.614

This manuscript is for review purposes only.



24 M. J. GANDER AND M. OUTRATA

0 20 40 60 80 100

10 11

10 9

10 7

10 5

10 3

10 1

r
/r

0

s = 4

Pd

0 20 40 60 80 100

s = 6

0 20 40 60 80 100

s = 8

0 10 20 30 40 50 60

10 13

10 10

10 7

10 4

10 1

r
/r

0

Pu

0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 10 20 30 40 50 60

10 13

10 10

10 7

10 4

10 1

r
/r

0

Pl

0 10 20 30 40 50 60 0 10 20 30 40 50 60

GMRES convergence GMRES convergence estimate

Fig. 13. The GMRES convergence behavior with the convergence estimates based on ρest for
the advection problem (4.2) with n = 22210.
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Fig. 14. The (sparsified) polygon approximations of the algebraic curves that are used in the
Schwarz-Christoffel MATLAB toolbox to calculate ρest for the advection problem (4.2).

Notably, for s = 6 and P u the GMRES convergence estimate is more accurate than for615

the diffusive problems because GMRES convergence suffered from the non-normality616

of the system eigenbasis, and hence including the condition number estimate in (4.1)617

reflected an actual GMRES behavior. Unfortunately, for s = 8 and P d,u the term618

κest
S seems to fully dominate the bound.619

5. Concluding remarks. Our main goal has been to understand the block620

preconditioners considered in [23, 3, 20] in more detail, and to try to explain their621

success and/or limitations. This goal was, in our eyes, mostly achieved but could be622

further improved in the sense of Remark 3.9 or by considering a more refined version of623

the bound (2.11), see [7, Section 2.1, equations (2.1) and (EV’)] – this remains an area624

of interest for us for the future. Moreover, the above analysis can be directly used to625
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try to optimize Runge-Kutta methods, following the ideas in [23, 21, 10]. We also note626

that in practice, solving with either of the matrices P d,u,l,GSU,GSL,... is often done with627

some level of inaccuracy, e.g., using a multigrid method. The question of interaction628

of this inaccuracy with the overall GMRES convergence is an important one and to629

the best of our knowledge has been addressed only numerically in [21, Chapter 7]. We630

also note that adapting the above analysis to the framework presented in [27, 26], or631

reformulating it from the vector equation to the matrix equation as suggested in [22],632

and to study in detail the comparison of these approaches for the IRK setting are633

attractive directions for future research.634
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