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1 Introduction

We are interested in solving the heat equation mCD − ãm2
GGD = 5 on (−!, !) × (0, )),

with an initial condition and with Dirichlet boundary conditions. We will use a

Schwarz Waveform Relaxation (SWR) method and want to study the convergence of

this algorithm. More precisely our goal is to understand the influence of ) and ! on

the convergence. We therefore study the equation on an adimentionalized domain

LD :=
mD

mC
− a mD

mG2
= 5 on (−1, 1) × (0, 1),

D(−1, ·) = 6−1,

D(1, ·) = 61,

D(·, 0) = D0,

(1)

where a =
ã)
!2 > 0. Then it suffices to study the influence of a on the convergence

speed of the algorithm.

We will consider the SWR algorithm with Dirichlet boundary conditions (X > 0

is the overlap)

LD:
1
= 5 on (−1, X) × (0, 1), LD:

2
= 5 on (0, 1) × (0, 1),

D:
1
(X, ·) = D:−1

2
(X, ·) on (0, 1), D:

2
(0, ·) = D:

1
(0, ·) on (0, 1),

D:
1
(·, 0) = D0 on (−1, X), D:

2
(·, 0) = D0 on (0, 1),

D:
1
(−1, ·) = 6−1 on (0, 1), D:

2
(1, ·) = 61 on (0, 1).

(2)

M. J. Gander
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Fig. 1 Solution (in black) at several time steps of the heat equation (1) when 6−1 (C ) = sin(3cC ) ,
61 (C ) = 0 for a = 10 (left) or a = 0.1 (right). In red the bound given by Lemma 1.

The error 4:
9

:= D − D:
9
, 9 = 1, 2 satisfies by linearity again the same algorithm (2)

but with homogeneous data, i.e. 5 = 0, D0 = 0, 6−1 = 61 = 0.

In Sections 2 and 3 we recall convergence results proved using the maximum

principle and we give numerical illustrations to understand the domain of validity of

each convergence bound. Then we explain in Section 4 how the Fourier transform is

usually used to measure the convergence speed of the algorithm and we discuss this

strategy when it is applied to a stationary or to an unstationary equation. We end in

Section 5 with numerical results to summarize the different regimes of convergence

depending on the value of ! and ) (or equivalently on the value of a).

2 Linear bound due to the maximum principle

In [1] a theorem is proved which gives a linear bound for the error corresponding to

algorithm (2). It relies on

Lemma 1 If D is solution of the heat equation (1) with D0 = 0, 5 = 0 then

‖D(G, ·)‖∞ ≤ ((1 − G)‖6−1‖∞ + (G + 1)‖61‖∞)/2, −1 ≤ G ≤ 1,

where ‖6‖∞ = supC∈[0,1] |6(C) |.

Note that this bound does not depend on the value of a. If a is large then D tends

to satisfy mGGD ≃ 0 and then D tends to be linear. The bound is sharp in this case.

However, if a is small the solution tends to decay rapidly away from the boundary

and is close to 0 except near G = −1 and G = 1 where boundary layers appear. The

bound is not sharp in this case. In Figure 1 we show examples of the solution of the

heat equation in these two cases. Using Lemma 1, the following theorem is proved

in [1]:

Theorem 1 The error of algorithm (2) satisfies for any : ≥ 1
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‖4:1 (0, ·)‖∞ ≤
(
1 − X
1 + X

) :
‖40

1(0, ·)‖∞.

We expect this bound to be sharp for small spatial domains or large time,

corresponding to the case of a large value of a.

3 Superlinear bound

In [1] a superlinear bound is proved for the error of the algorithm (2):

Theorem 2 The error in algorithm (2) satisfies for any : ≥ 1 the superlinear bound

‖4:1 (0, ·)‖∞ ≤ erfc( :X
2
√
a
)‖40

1 (0, ·)‖∞,

where erfc(G) = 2√
c

∫ +∞
G

4−C
2

3C is the complementary error function.

The proof (see [1]) consists in comparing 4:
1
(0, ·) and 4:1 (0, ·) where 4:1 is defined

on an infinite spatial domain by





L4:1 = 0 on (−∞, X) × (0, 1),
4:1 (·, 0) = 0 on (−∞, X),
4:1 (X, C) = max

0≤g≤C
|4:−1

2 (X, g) | on (0, 1),

lim
G→−∞

4:1 (G, C) = 0 on (0, 1).

Using the maximum principle we have

|4:1 (0, C) | ≤ 4:1 (0, C) =
∫ C

0

‖4:−1
2 (X, ·)‖!∞ (0,g ) (X, C − g)3g,

where the last equality is obtained since in the infinite domain (−∞, X) the solution

4:1 (0, C) can be computed using the heat kernel (G, C) = G

2
√
c

4
− G2

4C

C3/2
. The result is then

obtained by induction. In Figure 2 we compare 4:
1

and 4:1 . We can see that for a large

value of a the superlinear bound is not sharp (due to the fact that 4:1 is computed on

an infinite spatial domain) while for a small a a boundary layer has appeared and the

superlinear bound gives a sharper estimate than the linear bound.

4 Analysis using Fourier arguments

While in [1] and [3] the SWR for the heat equation were studied using arguments

coming from the PDE analysis, in [5] a method is proposed to use the Fourier
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Fig. 2 Comparison of 4:
1
( ·, C ) (in black) and 4:1 ( ·, C ) (in blue) for several values of C . Here X = 0

and a = 10 (left) or a = 0.01 (right). In red the bound given by Lemma 1.

transform to obtain the convergence factor of a Schwarz algorithm for the stationary

convection-diffusion equation, and this technique was rapidly also applied to a time

dependent equation in [4], namely the heat equation.

In the infinite spatial domain R and infinite time domain R+, the strategy in

the time dependent case consists in solving algorithm (2) for the errors in Laplace

variables. If B := f + 8l, f, l ∈ R let 5̂ (B) =

∫ +∞
0

5 (C)4−BC 3C, ℜ(B) ≥ U be the

Laplace transform of the function 5 ∈ !1(R) such that | 5 (C) | ≤ �4UC , � > 0 and U

constants.

We first obtain

4̂:1 (G, B) = U:4
√

B

a
G and 4̂:2 (G, B) = V:4−

√
B

a
G .

We suppose that the algorithm for the error is initialized with 40
2
(X, C) = 6(C). By

induction using the Dirichlet boundary conditions we obtain

4̂:1 (0, B) = d(B) (2:−1) 6̂(B),

where d(B) := 4−
√

B

a
X is the convergence factor of the algorithm.

This formula seems to say that d(f + 8l) explains the convergence behavior

of the single frequency l. We will see in the next subsections that this is true for

a stationary problem like the screened Laplace equation. However the situation is

more complex for an unstationary problem like the heat equation. To understand this

point, let us back-transform the previous formula to obtain

4:1 (0, C) =
∫ C

0

6(C − g) ((2: − 1) X√
a
, g)3g, (3)

where  (G, C) = G

2
√
c

4
− G

2

4C

C3/2
is the heat kernel. We see that the error is expressed as a

convolution between the heat kernel and 6.
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Fig. 3 On the left, errors 4:
1
(0, H ) for the screened equation at iterations : = 1, : = 5 and : = 10

when the first guess is 40
2
( X, H ) = sin(3cH ) . On the right, errors 4:

1
(0, C ) for the heat equation at

iterations : = 1, : = 10 and : = 20 when the first guess is 40
2
( X, C ) = sin(3cC ) .

4.1 Using Fourier arguments is different for time dependent and

stationary problems

To understand the difference between the stationary case and the unstationary one,

we first consider the screened Laplace equation L̃D := [D−△D = 5 in Ω := R2, with

[ > 0. If the domainΩ is split into the two overlapping subdomainsΩ1 := (−∞, X)×R
and Ω2 := (0, +∞) × R, where X > 0 is the overlap parameter, then the classical

Schwarz algorithm (for the errors) solves for iteration index : = 1, . . .

L̃4:
1
= 0 on (−∞, X) × R, L̃4:

2
= 0 on (0, +∞) × R,

4:
1
(X, ·) = 4:−1

2
(X, ·) on R, 4:

2
(0, ·) = 4:

1
(0, ·) on R.

(4)

If the initial error is a pure sine signal on the interface, 40
2
(X, H) := sin(_H), then the

errors for each iteration : = 1, 2, . . . can be obtained by a direct computation to be

4:1 (0, H) = 4−(2:−1) X
√
[+_2

sin(_H) =: d̃(_)2:−1 sin(_H),

which means that at each iteration the initial sine error is contracted by the

convergence factor d̃(_). This result is consistent with the definition of the

convergence factor in [6] which was obtained by a Fourier transform in the H direction

with Fourier variable l.

In Figure 3 left, we can see the errors 4:
1
(0, H) at iterations : = 1, : = 5 and

: = 10. The initial sine is contracted as the iterations grow as predicted by the

previous formula. Let us see what happens for the heat equation (Figure 3, right): a

sine is introduced (40
2
(X, C) := sin(_C)) and we can see now that the sine is not just

contracted anymore, it is also transported! We can use the formula (3) to understand

that 4:
1
(0, C) is not anymore a sine function. We need therefore a more detailed

analysis which is given in the next section.
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4.2 Analysis for the heat equation

If the Fourier analysis were relevant for the heat equation, then introducing a pure sine

frequency in the algorithm would give a pure sine frequency at any iteration : > 0,

which is not the case as we saw in the previous subsection. A better understanding of

the behavior of the pure sine frequency can be obtained from the following theorem,

proved in [2].

Theorem 3 Let) = +∞ and ! = +∞. If the Schwarz Waveform Relaxationalgorithm

(2) is initialized with the pure sine frequency 40
2
(X, C) = sin(_C), then the error is

given by

4:1 (0, C) = |d(_) |2:−1 sin(_C − (2: − 1)X
√
_

2a
) + I2 ((2: − 1) X√

a
, C;_),

where I2 satisfies for large frequency _

I2 ((2: − 1) X√
a
, C;_) = 1

_
 ((2: − 1) X√

a
, C) + O( 1

_3
),

and for large iteration :

‖I2 ((2: + 1) X√
a
, ·;_)‖!∞ (0,+∞) ∼ ( 2: − 1

2: + 1
)2‖I2 ((2: − 1) X√

a
, ·;_)‖!∞ (0,+∞) .

An analogous result also holds for 4:
2
.

This theorem states that if you introduce a pure sine frequency as the initial guess,

then along the iterations the error becomes a sine which is contracted by d but which

is also translated. In addition the sine is distorted by a term proportional to the heat

kernel  .

5 Numerical results

In this section we illustrate the previous results with numerical experiments. An

implicit scheme in time is used to discretize the heat equation. The spatial and time

discretization parameters are ΔG = ΔC = 2
2001

and the overlap is X = 5ΔG. We will

consider two values for a so that we will obtain the different behaviors described in

the previous sections.

We first consider the value a = 1000 which corresponds to a small spatial domain,

or large time. The initial guess is the pure sine 40
2
(X, C) = sin(25C). In Figure 4 left,

we show the error at G = X as a function of C at iterations : = 0 and : = 100. We see

that the sine is exactly contracted, which we can understand using Figure 4 right: a

is so large that the error is linear and the convergence is dictated by the maximum

principle described in Section 2. This result is confirmed in Figure 5, left, where we
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Fig. 4 a = 1000. On the left, the error 4:
1
(0, C ) as a function of C . On the right, the error

4:
1
(G, C = 0.9965) as a function of G at iterations 1, 20, 50 and 100.
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Fig. 5 Error ‖4:
1
(0, · ) ‖∞ as function of the Schwarz Waveform Relaxation iterations :. On the

left a = 1000, on the right a = 0.05.

show the norm of the error versus the iterations: we exactly obtain the linear bound

described in Section 2.

We then consider the value a = 0.05 which corresponds to a large spatial domain,

or small time interval. The initial guess is the pure sine 40
2
(X, C) = sin(50C).

In Figure 6 we show the solution as a function of G at C = 0.1. We see that now

the boundary conditions at G = ±1 do not influence the solution and the behavior

is not linear anymore. In Figure 7 we show the error 4:
1
(X, C) as a function of C

for iterations : = 10, : = 30 and : = 45. We see that the initial guess sin(50C)
is not only contracted, it is also translated and transformed by the heat kernel. In

Figure 5 right, we show the error as a function of the iterations. The convergence is

first guided by the Fourier convergence factor. For later iterations however, the heat

kernel we observed in Figure 7 becomes dominant for the convergence mechanism

of the Schwarz Waveform Relaxation algorithm. Then the heat kernel leaves the time

domain and the superlinear regime dominates.

We have thus shown that for time dependentproblems, Fourier analysis techniques

can be applied to study Schwarz Waveform Relaxation algorithms, but care must be
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Fig. 6 a = 0.05. Error 4:
1
(G, C = 0.1) as a function of G at iterations 10 and 50.
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Fig. 7 a = 0.05. Error 4:
1
(0, C ) as a function of C from left to right at iterations : = 10 and : = 30.

In magenta the heat kernel term 1
_
 ( (2: − 1) X√

a
, C ) .

taken due to the evolution nature of the problem: Fourier modes initially still contract

for diffusion problems away from the initial conditions as expected, but eventually

heat kernel components dominate and change the convergence behavior.
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