
Users’ Guide for the code RADAR5 - Version 2

Nicola Guglielmi ∗

Gran Sasso Science Institute,
Formerly at Dip. di Matematica Pura e Applicata, Università dell’Aquila,

via Crispi 7, I-67010 L’Aquila, Italy,
e-mail: nicola.guglielmi@gssi.it, guglielm@univaq.it

and
Ernst Hairer

Section de Mathématiques, Université de Genève,
CH-1211 Genève 4, Switzerland,

e-mail: Ernst.Hairer@math.unige.ch

December 2004
©2000-2004–present N. Guglielmi, E. Hairer

Technical Report

Versions 2.1 and 2.2

These two versions are distributed on the websites of the authors. With respect to Version 2.1
(Dec ’04), Version 2.2 (Jan. ’24) fixes a few bugs, and makes other little changes with respect to
previous version 2.1. All changes have minimal impact, if any, on backward compatibility with
version 2.1. basic differences from version 2.1: concern the call to radar5, which now includes a
few further parameters concerning vector dimensions. The subroutine contr5 - which was given as
an external files - is now included in this file. the algorithm implementing the numerical integrator
has not changed with respect to version 2.1.

A Copyright Notice is given in Section 9.

1 The problem

We consider initial value problems for delay differential equations

M y′(t) = f
(
t, y(t), y(α1(t, y(t))), . . . , y(αm(t, y(t)))

)
,

y(t0) = y0, y(t) = g(t) for t < t0,
(1)

where M is a constant d× d matrix and αi(t, y(t)) ≤ t for all t ≥ t0 and for all i. The value g(t0)
may be different from y0, allowing for a discontinuity at t0.

∗Partially supported by the Italian M.U.R.S.T. (PRIN project: “Numerical methods for evolutionary problems”)
and I.N.D.A.M.-G.N.I.M. (project: “Numerical methods for ordinary differential equations and applications”.

1Partially supported by the Swiss National Science Foundation (project: 200020-105131 / 1 ”Analyse
numrique”) and by the Italian M.U.R.S.T. and G.N.C.S.

1

The presence of the matrix M in the problem formulation has several reasons. If a partial delay
differential equation is discretized in space by finite elements, we obtain an equation of the form (1)
where M is the mass matrix. A multiplication of the equation by M−1 would destroy the sparsity
pattern of the problem and is not recommended.

Since we allow the matrix M to be singular, the above formulation includes all kinds of
differential-algebraic delay equations. For M = diag(I, εI) with a very small ε > 0, we get sin-
gularly perturbed problems, which form an important class of stiff problems. Moreover, neutral
problems

y′(t) = f
(
t, y(t), y(α(t, y(t))), y′(t), y′(α(t, y(t)))

)
(2)

can be written in the form (1), if we introduce a new variable z(t) = y′(t) for the derivative. In
fact, this problem becomes equivalent to(

1 0
0 0

)(
y′(t)
z′(t)

)
=

(
z(t)

−z(t) + f
(
t, y(t), y(α(t, y(t))), z(t), z(α(t, y(t)))

)) . (3)

In this implementation, the special structure of the right-hand side is exploited on the linear algebra
level during the solution of arising nonlinear systems.

We assume throughout that a solution exists on the considered interval of integration (possibly
with discontinuities).

The aim of next section is to show how implicit Runge-Kutta methods, in particular collocation
methods based on Radau nodes, can be applied to solve problems of type (1). Many aspects of
the implementation are a straightforward extension of ideas implemented in the code RADAU5 for
ordinary differential equations, and described in Hairer & Wanner [13, Sect. IV.8].

Here we restrict our discussion to new difficulties that are due to the presence of small delays,
and to large elements in the derivative of f with repect to the retarded arguments. Some example
problems with their drivers for RADAR5 are provided at the end of the report.

2 Numerical Method

Our main interest is the numerical solution of stiff delay differential equations. Since collocation
methods based on Radau nodes have been successfully applied to stiff ordinary differential equations
(see the code RADAU5 of [13]), and since these methods have excellent stability properties also for
delay equations (see for example Zennaro [20] and Guglielmi & Hairer [9]), it is quite natural to
take them as a basis for a code solving stiff problems of the type (1).

For ease of presentation, we assume that only one lag term is present (m = 1) and that the
problem is autonomous:

M y′(t) = f
(
y(t), y(α(t, y(t)))

)
, (4)

where α(t, y(t)) ≤ t, y(t0) = y0, and y(t) = g(t) for t < t0. Needless to say that the presented code
is written for the general situation.

Radau IIA methods are implicit Runge-Kutta methods, whose coefficient matrix A = (aij) is
invertible, and whose weights satisfy bi = asi (“stiff accuracy”). We denote ci =

∑
j aij (see [13] for

more information on these methods). For an implementation we consider a grid t0 < t1 < t2 < . . .,
and we denote the stepsize by hn = tn+1 − tn.

2

An application of the Radau IIA methods to the problem (4) yields approximations yn ≈ y(tn)
by solving the nonlinear system

M
(
Y

(n)
i − yn

)
= hn

s∑
j=1

aijf
(
Y

(n)
j , Z

(n)
j

)
, yn+1 = Y (n)

s , (5)

where Z
(n)
i is a suitable approximation to y(α

(n)
i) with

α
(n)
i = α(tn + cihn, Y

(n)
i)

.
We put

Z
(n)
i =

 g(α
(n)
i) if α

(n)
i < t0

um(α
(n)
i) if α

(n)
i ∈ [tm, tm+1],

(6)

where um(t) is a polynomial approximation of the solution y(t) on the interval [tm, tm+1]. A natural
choice for um is the collocation polynomial, which is of degree s and passes through the values ym,

and Y
(m)
i for i = 1, . . . , s. Using the Lagrange interpolation formula it is seen to be of the form

um(tm + τhm) = ℓ0(τ)ym +
s∑

i=1

ℓi(τ)Y
(m)
i , (7)

where ℓi(τ) is the polynomial of degree s satisfying ℓi(ci) = 1 and ℓi(cj) = 0 for j ̸= i (here we add
c0 = 0 to the nodes c1, . . . , cs of the method).

Order of Convergence. If the matrix M is invertible, and if the delay is larger than the step
size (i.e., t− α(t, y(t)) ≥ h), it follows from the standard theory for ordinary differential equations

that the local error at grid points is O(h2s), and that the internal stages Y
(n)
i approximate the

local solution at tn+ cihn with an error of size O(hs+1). In the case of a state-dependent delay this
gives an additional O(hs+2) contribution to the local error (due to the multiplication by hn in (5)).
Therefore, on bounded intervals, the global error is of size O(hs+1). For stiff problems, a further
order reduction to O(hs) is possible, which is in complete analogy to stiff ordinary differential
equations (see e.g., [13, Chap.VI]).

If the delay is smaller than the step size, the theory for ordinary differential equations can no
longer be applied, and a more involved analysis is necessary. Such a study is beyond the scope of
this report. However, we want to emphasize that a general purpose code for stiff delay equations
should be able to allow for step sizes larger than the delay, because it is known that stiff solvers
are efficient only if ‘large’ step sizes can be used. Difficulties in an implementation that arise due
to the presence of large step sizes, are discussed in [10].

2.1 Solving the Nonlinear Equations

An efficient solution of the nonlinear equations (5) is the most demanding part of an implementation
of implicit Runge-Kutta methods. For stiff problems (or when M is singular), this system cannot be
solved by fixed point iteration, and one is obliged to use some kind of simplified Newton iterations.

3

As common in the implementation of implicit Runge-Kutta methods, we pre-multiply the system
(5) by A−1 = (ωij) and so obtain the nonlinear system F (Y) = 0, where Y = (Y1, . . . , Ys)

T and the
ith component of F (Y) is

Fi(Y) =
s∑

j=1

ωijM(Yj − yn)− hf(Yi, Zi) (8)

(here, we suppress the subscript n when it does not give rise to confusion). In view of an application
of simplified Newton iterations we compute (denoting as δij the Kronecker symbol

∂Fi

∂Yj
= ωijM − hδij

(
fy(Yi, Zi) + fz(Yi, Zi)u

′
m(αi)αy(tn + cih, Yi)

)
, (9)

where we have to add the term

−hfz(Yi, Zi)ℓj(σi) if σi := (α(tn + cih, Yi)− tn)/h > 0. (10)

For an efficient implementation, we replace the exact Jacobian of the nonlinear system with an
approximation which, written in tensor notation, is given by

A−1 ⊗M − hI ⊗
(
fy + fzu

′
m(α)αy

)
− hL⊗ fz. (11)

The arguments of fy, fz, α, and αy are choson independent of i. The s× s matrix L has elements
given by

lij =

{
ℓj(σi) if α(tn + cih, Yi) > tn
0 else.

For an implementation we distinguish the two situations:

Step size is smaller than the delay or, more precisely, if σi ≤ 0 for i = 1, . . . , s. For a
constant delay (i.e., α(t, y) = t − τ), this happens if and only if h ≤ τ (because ci ≤ cs = 1).
In this situation, the matrix L vanishes identically, and the matrix (11) has exactly the same
structure as for ordinary differential equations My′ = f(y). Transforming the matrix A−1 to
diagonal form, the linear system with matrix (11) can be solved efficiently as described in [13,
Sect. IV.8]. The user of our code can either provide a subroutine with the analytic expression
of fy(y, z) + fz(y, z)y

′(α(t, y))αy(t, y) (where z ≈ y(α(t, y(t)))), or he can choose the option of
computing it internally by numerical differentiation. Observe that the nasty second term of this
matrix is only present for state-dependent delays.

Step size is larger than the delay. In this case, the matrix L in (11) is non-zero. Since, in
general, the matrices A−1 and L are not simultaneously diagonalizable, the tensor product structure
cannot easily be exploited for an efficient solution of the linear systems with matrix (11). However,
when the delay is very small compared to the step size (i.e., α(tn + cih, Yi) ≈ tn + cih), we get
σi ≈ ci, and the matrix L becomes close to the identity. Consequently, the second and third terms
in (11) can be considered together, and the idea of diagonalizing the matrix A−1 can again be
applied.

In conclusion, we adopt the following strategy for approximating the Jacobian of the nonlinear
Runge-Kutta equations: if α(tn + cih, Yi) ≤ tn for at least one i, we let L = 0, otherwise we put

4

L = I (identity) in the Jacobian approximation of (11). In both cases standard techniques for stiff
ordinary differential equations can be applied, and the tensor product structure of the linear system
can be exploited. In case of difficulties in the convergence of the simplified Newton iterations we
use the correct L. This, however, requires the LR decomposition of the full matrix (11), which is
about 5 times as expensive for the 3-stage method (s = 3).

2.2 Error estimation

In the case of a state-dependent delay or of a variable stepsize integration, the O(hs+2) contribution
to the local error, due to the approximation of delayed variables, determines a global error O(hs+1).
Hence the 3-stage Radau IIA method has classical order p = 4 (when applied to (1)).

Now we briefly outline the stepsize control mechanism implemented by the code RADAR5 (this
means that we restrict our attention to the case s = 3). In ordinary differential equations the
stepsize is chosen accordingly to a suitable error estimation at grid points. However, for problems
of the form (1), the control of the only local error at grid points could be very misleading and in
many problems it turns out to be fundamental to estimate the error in the continuous numerical
approximation to the solution.

A classical error estimation at mesh points is obtained, as in the standard ODE framework, by
embedding a method of lower order into the Radau method. We call σn the estimated local error
at grid points.

In the general case, the local order of the error-estimating method turns out to be 4, that is

σn = O(h4n).

As we have mentioned, for delay equations, where the uniform accuracy of the numerical solution
has also influence on the local error, it is necessary to control the error uniformly in time.

To do this we may consider in general also the polynomial

vm(tm + ϑhm) =
s∑

i=1

ℓi(ϑ)Y
(m)
i , ϑ ∈ [0, 1], (12)

of degree s−1, which interpolates the values Y
(m)
i but not ym (compare with (7)). In the considered

case, that is s = 3, vm is a parabola. It turns out that

ηn = max
ϑ∈[0,1]

∥un(tn + hnϑ)− vn(tn + hnϑ)∥ = ∥un(tn)− vn(tn)∥ = O(h3n).

We use this quantity as an indicator for the uniform error and denote it as continuous component
of the local error.

The estimate used for the stepsize control is finally given by

errn = γ1σn + γ2 (ηn)
4/3 = O(h4n), (13)

with the parameters γ1, γ2 ≥ 0 possibly tuned by the user. This choice is the fruit of both theoretical
and empirical analyses. The order of the estimation is 4 when the solution is smooth, and is
obtained quite cheaply.

For the details of this technique we refer the reader to [10].

5

2.3 Breaking points

Discontinuities may occur in various orders of the derivative of the solution, independently of the
regularity of the right hand side. In fact, if either y0 ̸= g(t0) or some right-hand derivative of
the solution at t0 is different from the corresponding left-hand derivative (which means that the
solution is not smooth at t0) the discontinuity at t0 may propagate along the integration interval
by means of the deviating argument α(t, y(t)). Evidently, as soon as α(ξ, y(ξ)) = t0 for some
ξ ≥ t0, due to the fact that y is not regular at t0, f(t, y(t), y(α(t, y(t)))) is not smooth at ξ. Such
discontinuity points are referred in the literature as breaking points (see for example [2]). If the
deviating arguments do not depend on the solution itself, that is α = α(t), such points may be
computed and possibly inserted in advance into a mesh of integration. This allows for decomposing
the Cauchy problem (1) into a finite (if the number of breaking points is finite) sequence of regular
problems. But in the general case (so-called state-dependent) this computation is not possible and
one has to deal with a truly non-smooth problem.

If the breaking points are not included in the mesh and a variable stepsize integration is used,
the stepsize may be severely restricted near the low order jump discontinuities. In the sequel the
order of a breaking point ξ means that of the highest continuous derivative of the solution at ξ.

Detection of the breaking point

In order to discover the presence of a breaking point we have to detect the presence of a zero of the
function d(t) = α (t, u(t)) − ζ where ζ is a previous breaking point and u(·) a suitable continuous
approximation (e.g. (7) to the solution. We monitor the function d(t) only in three cases:

(i) if the Newton process does not converge;

(ii) if the estimated error is not under the given required tolerance;

(iii) if the error increases (from a step to the subsequent) over a prescribed threshold.

The search hence activates only in case of a stepsize rejection or of an excessive change ofthe
estimated error, and proceeds through the following phases (we focus attention on the n-th time
step, where we assume a stepsize rejection).

Algorithm 1

1). Assume that the step [tn, tn + h̄n] is not accepted;

2). Look for zeros of the functions

di(s) = α
(
s, un−1(s)

)
− ζi

for s ∈
[
tn, tn + h̄n

]
and for all previously computed breaking points ζi (i = 1, 2, . . .);

3). Let ı̂ such that d̂ı(tn) · d̂ı(tn + h̄n) < 0;

The breaking point will then be close to a zero of d̂ı(s). We indicate it by ξ̂, that is

α
(
ξ̂, un−1(ξ̂)

)
− ζ̂ı = 0.

6

Computation of the breaking point

Once a breaking point is detected the second phase of the algorithm activates with the goal to

compute it to the desired accuracy. Let us denote by Y = (Y
(n)
1 , · · · , Y (n)

s)T the vectors of unknown
stage values.

Algorithm 2

4). Solve equations (5) in tandem with

α
(
tn + h, un(tn + h)

)
− ζ̂ = 0 (14)

with respect to the unknowns Y and h.

5a). If the step is accepted (that is that the estimated local error is below the required error
tolerance) the point ξ = tn + h is inserted into the set of computed breaking points;

5b). Otherwise the stepsize is reduced according to the classical stepsize selection strategy.

Other authors considered techniques for approximating the breaking points (see e.g. [14] and [8]).
In contrast to our approach, they do not use the continuous output of the actually computed step,
but some approximation whose error is difficult to control.

The new basic idea presented here is related to the fact that in the algorithm which computes
the RK-step, the stepsize is not fixed but is variable; this allows for an accurate computation of
the breaking point to the discrete order p of the method (ξ̂ may instead be a quite inaccurate
approximation of it and is in any case related to the uniform order q of the method).

3 The code

The code RADAR5 is written in ANSI Fortran-90 and is made of the following routines, which
constitute the kernel of the program.

3.1 Main differences with respect to Version 1

The new version 2 of the code RADAR5 implements a new strategy - peculiar to implicit schemes
- allowing to detect automatically and then to compute very accurately those breaking points
which have to be inserted into the mesh to guarantee the required accuracy. In particular for
state-dependent delays, where breaking points are not known in advance, this treatment leads to a
significant improvement in accuracy. As a by-product we design strategies that are able to detect
points of non-uniqueness or non-existence of the solution so that the code can terminate when such
a situation occurs.

The Newton process for solving the Runge–Kutta equations has been also modified.

3.2 The main routine RADAR5

The typical CALL to the main subroutine is as follows.

7

RADAR5(N,FCN,PHI,ARGLAG,X,Y,XEND,H,

& RTOL,ATOL,ITOL,

& JAC,IJAC,MLJAC,MUJAC,

& JACLAG,NLAGS,NJACL,

& MAS,IMAS,MLMAS,MUMAS,SOLOUT,IOUT,

& WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID,

& GRID,LGRID,IPAST,NRDENS)

In version 2.1 the call was slightly different

CALL RADAR5(N,FCN,PHI,ARGLAG,X,Y,XEND,H,

& RTOL,ATOL,ITOL,

& JAC,IJAC,MLJAC,MUJAC,

& JACLAG,NLAGS,NJACL,

& IMAS,SOLOUT,IOUT,

& WORK,IWORK,RPAR,IPAR,IDID,

& GRID,IPAST,MAS,MLMAS,MUMAS)

List of arguments

N Denotes the dimension of the system.

FCN Name (external) of the subroutine computing the right hand-side of the system of delay dif-
ferential equations. This has to be provided by the user. For a description see Sect. 5.1 and
for examples see Sect. 8.

PHI Name (external) of the function providing the initial functions for the dependent variables
of the system of delay differential equations. This has to be provided by the user. For a
description see Sect. 5.2 and for examples see Sect. 8.

ARGLAG Name (external) of the function providing the deviating arguments. This has to be provided
by the user. For a description see Sect. 5.3 and for examples see Sect. 8.

X At the input denotes the initial value of the independent variable. At the output denotes the
last value for which the solution has been computed.

Y At the input denotes the initial values for the vector of dependent variables (it may be different
from the value of PHI at X; in this case it is highly recommended to set IWORK(13) and
GRID(1) (see below). At the output denotes the numerical solution at X.

XEND Final value of X (XEND-X has to be positive).

H Initial guess for the stepsize; for stiff equations with initial transient, H=1.D0/(norm of F’);
usually 1.D-3 or 1.D-5 is good. If H=0, the code puts H=1.D − 6. At output denotes the
predicted stepsize of the last accepted step.

RTOL Relative tolerance; can be both a scalar or a vector.

ATOL Absolute tolerance; can be both a scalar or a vector.

8

ITOL Switch for RTOL and ATOL. If ITOL=0 both RTOL and ATOL are scalars. The code keeps
(roughly) the local error as

RTOL ∗ABS(Y(I)) + ATOL.

If ITOL=1 both RTOL and ATOL are vectors. The code keeps (roughly) the local error as

RTOL(I) ∗ABS(Y(I)) + ATOL(I).

JAC Name (external) of the subroutine which computes the partial derivatives of F(X,Y,Z) (where
Z denotes the retarded variables) with respect to Y. This routine is only called if IJAC=1;
otherwise (if IJAC=0) a numerical approximation is provided by the code. In the case IJAC=0
the user has to supply a dummy subroutine For a description see Sect. 5.4 and for examples
see Sect. 8.

IJAC Switch for the computation of the Jacobian. If IJAC=0 the Jacobian is computed internally
by finite differences; the subroutine JAC is not necessary. If IJAC=1 the Jacobian is supplied
by the subroutine JAC.

MLJAC Switch for the banded structure of the Jacobian: If MLJAC = N the Jacobian is a full
matrix. If 0 <= MLJAC < N MLJAC is the lower bandwith of the Jacobian matrix.

MUJAC The upper bandwith of the Jacobian matrix. Does not need to be set if MLJAC = N .

JACLAG Name (external) of the subroutine which computes the partial derivatives of F(X,Y,Z) with
respect to Z (where Z denote the delayed variables). This has to be provided by the user
only if he sets NLAGS > 0 (in such case the user has to provide the derivative entries with
respect to the NLAGS deviating arguments). In the case NLAGS = 0 the user has to supply
a dummy subroutine. For a description see Sect. 5.5 and for examples see Sect. 8.

NLAGS Denotes the number of delay arguments which the user wants to take into account when
computing the partial derivatives of F(X,Y,Z) with respect to Z (see (10)). It is of interest
for the computation of the Jacobian of the nonlinear Runge–Kutta iteration. If it is set to
0 no derivatives with respect to delayed variables are considered; if set to P (> 0), NJACL
derivative entries with respect to P delayed variables are computed. For a detailed explanation
see Sect. 5.5 and for examples see Sect. 8.

NJACL Total number of derivative entries with respect to delayed variables which are intended to
be computed by the routine JACLAG.

MAS Name (external) of the subroutine computing the mass matrix M. If IMAS=0 the subroutine is
not needed and the mass matrix is assumed to be the identity; in such a case a dummy routine
has to be provided by the user. If IMAS=1 the matrix has to be provided. For a description
see Sect. 5.7 and for examples see Sect. 8. Finally if IMAS=2 this addresses neutral problems
where the matrix has a special structure.

IMAS Gives information on the mass matrix. If IMAS=0 then M is taken as the identity matrix.
If IMAS=1,2 the mass matrix is supplied by the user through the subroutime MAS.

9

MLMAS Switch for the banded structure of the mass matrix. If MLMAS=N, M is a full matrix; if
0 <= MLMAS < N , MLMAS is the lower bandwidth of the matrix M.

Constraint: MLMAS <= MLJAC.

MUMAS Upper bandwith of the mass matrix. Does not need to be set if MLMAS = N.

Constraint: MUMAS <= MUJAC.

SOLOUT Name (external) of the subroutine providing the numerical solutions during the integration.
If IOUT=1 it is called after every succesful step; if IOUT=0 it is never called; in such a case
the user should provide a dummy routine. It has also access to the continuous output of the
approximate solutions. For a description see Sect. 5.6 and for examples see Sect. 8.

IOUT Flag for calling the subroutine SOLOUT. If IOUT=1 it is called after every accepted step. If
IOUT=0 it is never called. This option is recommended when doing tests on performances.

WORK Array of state parameters of real kind for controlling and tuning the execution. WORK(1),
WORK(2),.., WORK(20) serve as parameters for the code; for a standard use of the code
(default values) they can be set to 0 by the user before calling RADAR5. For a description
see Sect. 3.3.2 and for examples see Sect. 8.

LWORK Dimension of the array WORK.

IWORK Array of state parameters of integer kind for controlling and tuning the execution. IWORK(1),
IWORK(2),.., IWORK(20) serve as parameters for the code; for a standard use of the code
(default values) they can be set to 0 by the user before calling RADAR5. For a description
see Sect. 3.3.1 and for examples see Sect. 8.

LIWORK Dimension of the array IWORK.

RPAR Array of real parameters which can be used for communication between your calling program
and the routines/functions FCN, JAC, MAS, SOLOUT, ARGLAG, PHI, JACLAG. It is
useful to pass the variables which parametrize the differential system. For further details see
the examples in Sect. 8.

IPAR Array of integer parameters which can be used for communication between your calling
program and the routines/functions FCN, JAC, MAS, SOLOUT, ARGLAG, PHI, JACLAG.

IDID Reports on succesfullness of the integration upon return:

IDID= 1: Succesful computation;,

IDID= 2: Succesful computation interrupted by routine SOLOUT;

IDID=-1: Non-consistent input values;

IDID=-2: Too many stepsizes required (> NMAX)

IDID=-3: Stepssize becomes too small;

IDID=-4: Jacobian matrix repeteadly singular;

IDID=-5: Computation interrupted by routine YLAGR5;

IDID=-6: The equation makes use of advanced arguments.

10

GRID Array of length LGRID (which must be at least IWORK(13)+1). Contains prescribed mesh
points, which the integration method has to take as grid points. For a correct use it is
necessary that X < GRID(1) < GRID(2) < . . . < GRID(NGRID) <= XEND.

LGRID Dimension of the array GRID.

IPAST Integer array of dimension IWORK(15) (number of components for which dense output is
required). For 0 < IWORK(15) < N the components for which dense output is required have
to be specified in IPAST(1),...,IPAST(IWORK(15)) (for NRDENS=N this is done automat-
ically).

NRDENS Number of components for which is required to store dense output (this is the number of
components which appear as delayed in the right-hand-side of the system to be solved.

3.3 Input work parameters to be specified by the user

Several parameters of the code are tuned to make it work well. They may be defined by setting
WORK(1),...,WORK(10) as well as IWORK(1),...,IWORK(15) different from zero. For zero input
the code automatically choses default values.

3.3.1 The IWORK array (integer parameters)

IWORK(1) If IWORK(1) ̸= 0, the code transfoms the Jacobian matrix to Hessenberg form. This is
particularly advantageous for large systems with full Jacobian.

It does not work for banded Jacobian and for implicit systems (IMAS=1).

IWORK(2) This is the maximal number of allowed steps. The default value is 100000.

IWORK(3) This is the maximum number of Newton iterations for the solution of the algebraic
system of equations in each step. The default value is 7.

IWORK(4) If IWORK(4) = 0 the extrapolated collocation polynomial is taken to provide starting
values for Newton itaration. If IWORK(4) ̸= 0 no extrapolation is done but the initial
solution value is used. The latter is recommended if Newton’s method has difficulties with
convergence. The default value is 0.

IWORK(5), IWORK(6), IWORK(7) Are relevant to delay differential algebraic systems of index > 1
(see explanations inside the code).

IWORK(8) Switch for stepsize strategy If IWORK(8) = 1 the modified predictive control (developed
by Gustaffson) is used. If IWORK(8) = 2 the classical stepsize control is used (for a detailed
description see [13]) The first choice often produce safer results while the second is generally
faster. The default value is 1.

IWORK(9), IWORK(10) Parameters relevant to systems with special structure; see the explanation
inside the code.

11

IWORK(11) Step size selection strategies for stiff ordinary differential equations are usually based on
error estimations at grid points. For delay equations, where the accuracy of the dense output
strongly influences the performance, such an approach often is not sufficient (see [10]). For
this reason the code also controls the error in the dense output.

IWORK(11) switches to different types of error controls.

-1: pure control of the dense output (makes use of a quadratic and a linear polynomials
interpolating the stage values);

0: mixed control of dense output and discrete output;

1: simpler mixed control;

2: pure control of the discrete output (is provided by the routine ESTRAD).

Default value is 0. When the solution is definitely smooth 2 is recommended.

IWORK(12) Maximum number of steps stored in the dense output array (PAST). It has to be
declared in the calling driver program. Has to be sufficiently large if the delays can be large
so that many back steps has to be stored.

IWORK(13) Number of prescribed grid points in the integration mesh. In the integration, typically,
at these points the solution or one of its derivative may have a discontinuity. These points
have to be set by the user as GRID(1),...,GRID(NGRID). Default value is 0.

IWORK(14) An efficient solution of the nonlinear equations (5) is the most demanding part of an
implementation of implicit Runge-Kutta methods. We consider two possible iterations (see
[10] for a detailed explanation).

IWORK(14) is the selector for the iteration. If is set to 1 it forces the code to a simplified
iteration (always preserving the block tensor structure of the Jacobian). If set to 2 it possi-
bly executes a full iteration (when the selected stepsize is larger than some delays and the
simplified iteration does not converge). Default value is 1.

IWORK(15) Number of solution components for which the dense output is required in the compu-
tation of the right-hand side (often denoted as NRDENS).

IWORK(16) it gives the integer NDIMN Option valid for neutral problems. Number of derivative
components (Z variables) of the neutral problem excluded true solution components.

3.3.2 The WORK array (real parameters)

WORK(1) The rounding unit. Default value is 10−16.

WORK(2) The safety factor in stepsize prediction. Default value is 0.9.

WORK(3) Determines whether the Jacobian should be recomputed. If negative forces the code to
compute the Jacobian after every accepted step. Suggested values: 0.1 if Jacobian evaluations
are expensive, 0.001 if Jacobian evaluations are not expensive. Default value is 0.001.

WORK(4) Stopping criterion for Newton iteration (usually chosen < 1). Smaller values make the
code solower but safer. Default value: min (0.03,

√
RTOL(1)).

12

WORK(5), WORK(6) If WORK(5) < HNEW/HOLD < WORK(6), then the stepsize is not changed.
This saves LU-decompositions and computing time for large systems. Suugested values:
WORK(5)=1.0, WORK(6)=1.2 for small systems, WORK(5)=0.99, WORK(6)=2.0 for large
full systems. Default values: WORK(5)=1.0, WORK(6)=1.2.

WORK(7) Maximal allowed stepsize. Default value: XEND-X.

WORK(8), WORK(9) Parameters controlling the stepsize selection. The new stepsize is chosen sub-
ject to the restriction:

WORK(8) ≤ HNEW/HOLD ≤ WORK(9)

Default values: WORK(8)=0.2, WORK(9)=8.0.

WORK(10) Parameter for tuning the error control of dense output (it is active if IWORK(11) = 0).
Range of admissible values 0 ≤ WORK(10) ≤ 1. For smaller values the control is stronger.
Suggested values: 0.0 for problems with almost discontinuous solutions (like shocks), 1.0 for
problems with fairly smooth solutions, intermediate values for intermediate problems. Default
value: 0.D0.

WORK(11) Parameter for controlling the search of breaking points: if the error increases of a factor
larger than WORK(11) (from a step to the following), the routine searching breaking points
activates. Default value: 5.D0

3.4 Output parameters for statistics

IWORK(13) Number of full Newton iterations.

IWORK(14) Number of function evaluations (those for numerical evaluation ot the Jacobian are not
taken into account).

IWORK(15) Number of Jacobian evaluations (either analytically or numerically).

IWORK(16) Total number of computed steps.

IWORK(17) Total number of accepted steps.

IWORK(18) Total number of rejected steps due to error test (step rejections in the first step are not
taken into account).

IWORK(19) Number of LU-decompositions.

IWORK(20) Number of forward-backward substitutions of both systems; the NSTEP forward back-
ward substitutions needed for stepsize selection are not taken into account.

3.5 The routine LAGR5

It provides the position in the dense output array (PAST) for every delayed component which is
present in the problem.

The typical call is as follows.

CALL LAGR5(IL,X,N,Y,ARGLAG,PAST,THETA,IPOS,RPAR,IPAR,PHI,IPAST,NRDS)

Note the the last three arguments were not present in Version 1.

13

List of arguments

IL The index addressing the required delayed argument.

X,Y The argument for the delay term αIL.

N Denotes the dimension of Y.

ARGLAG The name of the function computing the deviating arguments.

PAST The array storing the dense output.

IPOS Captures the position (in the dense output array) of the interval where the deviating argu-
ments falls.

THETA Relative position (its value is between 0 and 1) of the deviating argument within the interval
addressed by IPOS.

RPAR,IPAR User-defined arrays containing optional parameters for the delay equation.

PHI The initial function.

IPAST Integer vector which identifies delayed variables.

NRDS Number of delayed components.

3.6 The routine YLAGR5

It provides an approximation to the IC-th component of the solution at any abscissa of the integra-
tion interval. Such an approximation is determined by means of the computed piecewise polynomial
continuous extension of the discrete numerical solution. Its call has to be preceeded by a call of
LAGR5.

The typical call is as follows.

CALL YLAGR5(IC,THETA,IPOS,PHI,RPAR,IPAR,PAST,IPAST,NRDS)

List of arguments

IC The index addressing the required component.

THETA,IPOS As in LAGR5. The required component (addressed by IC) has to be approximated at
the abscissa addressed by means of IPOS and THETA.

PHI The initial function.

PAST The array storing the dense output.

IPAST Integer array specifying the indexes of the components whose continuous approximation are
stored into PAST during integration.

NRDS Total number of components for which dense output is required.

RPAR,IPAR As in RADAR5.

14

3.7 The new routines BPDTCT and BPACC

Provide the detection and the computation of possible breaking points (not described here for sake
of conciseness).

4 Modules common to all the routines

Version 2.2 does not use modules. Version 2.1 uses a module.
The module IP ARRAY at the beginning of the main file radar5.f makes common (to all routines which declare it) the

vector IPOSV which is a useful multiple pointer to the dense output for different delays. Its dimension is set to 10. If the
equation to be solved makes use of more than 10 delays, the user has to modify the dimension of the vector IPOSV and set it
to the desired value and finally has to recompile (or to remake if using the make command).

4.1 Workspace
The module in version 2.1 has to be as follows:

MODULE IP_ARRAY

INTEGER, dimension(#NL) :: IPOSV

END MODULE IP_ARRAY

where #NL is larger than the number of considered (different) delays.

5 Routines to be provided by the user

Each user-defined subroutine is described in this section. The argument lists of each subroutine
contain arguments in one of three classifications:

Input The argument is read, but not written to.

Modified The argument is both read and written.

Output The argument is only written.

5.1 Subroutine FCN

The FCN subroutine computes the right hand side of the considered system. It has to be declared
external in the calling program and its name may be chosen by the user.

5.1.1 Argument list

SUBROUTINE FCN(N,X,Y,F,ARGLAG,PHI,RPAR,IPAR,PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,K,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(N) :: F

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

REAL(kind=DP), dimension(1) :: RPAR

EXTERNAL PHI

15

5.1.2 Input

N,ARGLAG,PHI,RPAR,IPAR,IPAST As in the main routine RADAR5

X,Y Values of the independent and dependent variables at which the function has to be evaluated.

PAST Array containing the required dense output.

NRDS Number of components for which dense output is required.

5.1.3 Output

F Vector of values assumed by the right hand side.

5.2 Function PHI

The PHI function provides initial functions for the components which appear in the system with
delays. It has to be declared external in the calling program and its name may be chosen by the
user.

5.2.1 Argument list

FUNCTION PHI(I,X,RPAR,IPAR)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(1) :: RPAR

5.2.2 Input

I Index of the component.

X Value of the independent variable at which the function has to be evaluated.

RPAR, IPAR As in the main routine RADAR5

5.2.3 Output

PHI Required value of the initial function.

5.3 Subroutine ARGLAG

The ARGLAG function provides the deviating arguments αi(t, y(t)), i = 1, 2, . . . , in the system. It
has to be declared external in the calling program and its name may be chosen by the user.

16

5.3.1 Argument list

FUNCTION ARGLAG(IL,X,N,Y,RPAR,IPAR,PHI,PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(1) :: Y

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

INTEGER, dimension(1) :: IPAR

REAL(kind=DP), dimension(1) :: RPAR

Note the the last four arguments were not present in Version 1.

5.3.2 Input

IL Index of the deviating argument.

X,Y Values of the independent and dependent variables at which the function has to be evaluated.

N Denotes the dimension of the system.

RPAR, IPAR As in the main routine RADAR5

PHI The initial function.

PAST The memory array.

IPAST Integer vector which identifies delayed variables.

NRDS Number of delayed components.

5.3.3 Output

ARGLAG Required value of the deviating argument.

5.4 Subroutine JAC

The JAC subroutine provides the Jacobian of the function f
(
t, y(t), y(α1(t, y(t))), . . . , y(αm(t, y(t)))

)
(FCN) with respect to y(t) (Y variables). It is optional (it is activated if IJAC=1). If used, it has
to be declared external in the calling program and its name may be chosen by the user. If not
provided set IJAC=0 and put a dummy name in the call statement to the main routine RADAR5.

5.4.1 Argument list

SUBROUTINE JAC(N,X,Y,DFY,LDFY,ARGLAG,PHI,RPAR,IPAR,PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,K,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(LDFY,N) :: DFY

REAL(kind=DP), dimension(1) :: PAST

17

INTEGER, dimension(1) :: IPAST

REAL(kind=DP), dimension(1) :: RPAR

EXTERNAL PHI

5.4.2 Input

N,ARGLAG,PHI,RPAR,IPAR,IPAST As in the main routine RADAR5

X,Y Values of the dependent and independent variable at which the function has to be evaluated.

RPAR, IPAR As in the main routine RADAR5

PAST, NRDS As in the routine FCN

LDFY Leading dimension of the Jacobian.

5.4.3 Output

DFY Matrix containing the standard Jacobian evaluated at X,Y.

5.5 Subroutine JACLAG

The JACLAG subroutine provides the derivatives of f
(
t, y(t), y(α1(t, y(t))), . . . , y(αm(t, y(t)))

)
(FCN)

with respect to y(α1(t, y(t))), . . . , y(αm(t, y(t))) (delayed variables). It may be very important when
the code uses stepsizes larger than delays and aims to perform exact Newton iterations. It is sug-
gested but optional (if the user does not want to use this option he has to set IWORK(14)=1 and
NLAGS=0). If used, it has to be declared external in the calling program and its name may be
chosen by the user. If not provided set NLAGS=0 and put a dummy name in the call statement
to RADAR5.

5.5.1 Argument list

SUBROUTINE JACLAG(N,X,Y,DFYL,ARGLAG,PHI,IVE,IVC,IVL,

& RPAR,IPAR,PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(1) :: DFYL

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

REAL(kind=DP), dimension(1) :: RPAR

INTEGER, dimension(1) :: IVE,IVC,IVL

EXTERNAL PHI

18

5.5.2 Input

N,ARGLAG,PHI,RPAR,IPAR,IPAST As in the main routine RADAR5

X,Y Values of the dependent and independent variable at which the function has to be evaluated.

RPAR, IPAR As in the main routine RADAR5

PAST, NRDS As in the routine FCN

5.5.3 Output

IVE,IVC,IVL Vector of indeces which address the derivative entries with respect to delayed terms
in the right hand side.

For the K-th entry,

IVE(K) has to indicate the number of the relevant equation;

IVC(K) has to indicate the number of the relevant component;

IVL(K) has to indicate the number of the relevant delay.

DFYL Array containing the values of the derivative entries with respect to delayed components. For
the K-th entry,

DFYL(K) has to store the value of the derivative.

This array will be used by the code – when required – to construct the full Jacobian matrix.

5.6 Subroutine SOLOUT

The SOLOUT subroutine provides the numerical approximation of the solution during the integration.

5.6.1 Argument list

SUBROUTINE SOLOUT (NR,XOLD,X,HSOL,Y,CONT,LRC,N,RPAR,IPAR,IRTRN)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), PARAMETER :: XSTEP=0.01D0

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(LRC) :: CONT

REAL(kind=DP), dimension(1) :: RPAR

EXTERNAL PHI

5.6.2 Input

X,Y Values of the dependent and independent variable at which the function has to be evaluated.

N,RPAR,IPAR As in the main routine RADAR5

LRC Dimension of the array CONT.

19

Table 1: Source files in the RADAR5 package
files description

radar5.f main routines implementing the integration scheme
dc decdel.f routines involving error estimation
decsol.f rotines providing the necessary linear algebra
contr5.f (only in version 2.1) routine providing continuous output

5.6.3 Modified

CONT Vector of dense output for the current stepsize and for all components (used for output aims).

5.6.4 Output

NR Number of the mesh point at which the solution is furnished.

XOLD The preceeding mesh point.

HSOL The value of the stepsize for the current step.

IRTRN If set < 0, serves to interrupt the integration.

5.7 Subroutine MAS

The MAS subroutine computes the mass matrix M of the implicit system. It has to be declared
external in the calling program and its name may be chosen by the user. If is not provided the
system is considered explicit, that is M is taken as the identity matrix.

5.7.1 Argument list

SUBROUTINE MAS(N,Q,LQ,RPAR,IPAR)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(1) :: RPAR

REAL(kind=DP), dimension(LQ,N) :: Q

5.7.2 Input

N,RPAR,IPAR As in the main routine RADAR5

LQ Leading dimension of the mass matrix.

5.7.3 Output

Q The N×N mass matrix of the system.

20

5.8 Neutral problems

When dealing with neutral problems (2)–(3), the structure requires to insert first the delayed
components and then the delayed derivative components in the vector IPAST (see for example the
driver of the problem NEUTLOG).

In this case the user should add in the driver the following instructions (where NRDENS addresses
the number of components of the solution - the delayed ones - for which it is required to store the
dense output). If

I1,...,IM

are the indices of the variables z = ẏ which appear with delays they have to be stored in the vector
IPAST as follows.

C --- NEUTRAL PROBLEMS, TAKING INTO ACCOUNT OF DERIVATIVE COMPONENTS

IWORK(16)=1

IPAST(NRDENS+1)=I1

....

IPAST(NRDENS+M)=IM

As an example consider the neutral problem (which is coded in the example NEUTLOG, which
is distributed with Radar5):

y′1(t) = f1(t, y(t)) = y1(t) (1− y1(t− τ)− ρz1(t− τ))− y2(t)y1(t)
2

1 + y1(t)2

y′2(t) = y2(t)

(
y1(t)

2

1 + y1(t)2
− α

)
(15)

0 = f1(t, y(t))− z1(t)

with constant delay τ and parameteres ρ and α. The state vector Y has the 3 components (in
ascending order) Y(1) = y1, Y(2) = y2 and Y(3) = z1 = y′1.

In the driver program the user should include the following

INTEGER, PARAMETER :: NRDENS=2

...

C SELECT IMPLICIT FORM ASSOCIATED TO NEUTRAL PROBLEMS

IMAS=2

C THE COMPONENTS WHICH REQUIRE DENSE OUTPUT, Y(1) AND

C Y(3), WHICH REPRESENTS FIRST DERIVATIVE OF Y(1)

IPAST(1)=1

IPAST(2)=3

C --- DERIVATIVE COMPONENTS

IWORK(16)=1

IPAST(NRDENS+1)=1

so that the third state variable is z1 = y′1 (as appears clear from the statement IPAST(NRDENS+1)
= 1 being NRDENS+1=3).

21

6 How to install RADAR5

This section describes how to obtain and install RADAR5.

6.1 Getting the files and installing the code

The code, together with nine driver programs, is available at the addresses
‘http://www.unige.ch/~hairer’ under item ‘software’, as well as at the address
‘https://www.gssi.it/people/professors/lectures-maths/item/545-guglielmi-nicola’

and is mirrored at the address
‘http://univaq.it/~.guglielm’ .

The user can download the tar-file archive and generate the directory of the program and the
directories including the examples in its own computer by making use of the Unix command
tar -xvf radar5.f

People who do not use UNIX operative systems may either use standard routines to extract files
from compressed archives or may contact directly the authors and will be provided of the package
in the desired format.

RADAR5 Version 2.1 consists of 4 ANSI Fortran-90 files, while RADAR5 Version 2.2 consists
of 3 ANSI Fortran-90 files. Both versions are given plus the present documentation/installation
pdf file (manrad5-v2). Also included in the distribution are eleven drivers for the test programs.
Makefiles for automatic compilation are also provided.

7 Examples provided

RADAR5 comes with 11 examples:

a) ENZYME, kinetics with an inhibitor molecule, dimension 4, one constant delay;

b) HAYASHI, an almost singular state dependent neutral problem, dimension 2 as differential-
algebraic problem, one vanishing delay;

c) HEPATITIS, acute hepatitis B virus infection, dimension 10, 5 constant delays;

d) OREGONATOR, chemical kinetics, dimension 2, one constant delay;

e) ROBERTSON, chemical reaction with steady state solution, dimension 3, one constant delay,
very large time interval (step sizes larger than the delay);

f) SDISC, non smooth artificial problem, dimension 1, 1 constant delay;

g) WALTMAN, threshold model for antibody production, dimension 6, 2 state-dependent delays
tending to zero, discontinuities in the right-hand side of the equations,

h) PAUL, state-dependent artificial problem, various order discontinuities,

i) ELSNOR, problem with solution termination (see [5]).

j) MODCEG, neutral problem with state dependent delays, modification of Castletone and
Grimme model.

k) NEUTLOG, artificial neutral problem.

22

Remarks

An improvement in the accuracy and computational cost with respect to Version 1 has been observed
in problems b), c), g), h), i). In the other examples the performances essentially coincide.

8 Example of use

8.1 The Oregonator model.

This problem, taken from [7], consists of two equations and one constant delay. They are given by

y′1(t) = kM1Ay2(t)− kM2 y1(t) y2(t− τ) + kM3B y1(t)− 2 kM4 y1(t)
2

y′2(t) = −kM1Ay2(t)− kM2 y1(t) y2(t− τ) + fr kM3By1(t)

with
kM1 = 1.34
kM2 = 1.6 · 109
kM3 = 8.0 · 103
kM4 = 4.0 · 107
kM5 = 1.0
fr = 1.0
A = 6.0 · 10−2

B = 6.0 · 10−2

τ = 0.15

Initial values and functions are y1(t) = 10−10 and y(t) = 10−5 for t ≤ 0. We consider the
integration interval [0, 100.5] and Atol = 10−9 · Rtol.

The driver program

IMPLICIT REAL*8 (A-H,O-Z)

REAL*4 start,finish

INTEGER, PARAMETER :: DP=kind(1D0)

C ---> PARAMETERS FOR RADAR5 (FULL JACOBIAN) <---

INTEGER, PARAMETER :: ND=2

INTEGER, PARAMETER :: NRDENS=1

INTEGER, PARAMETER :: NGRID=1

INTEGER, PARAMETER :: NLAGS=1

INTEGER, PARAMETER :: NJACL=2

INTEGER, PARAMETER :: MXST=4000

INTEGER, PARAMETER :: LWORK=30

INTEGER, PARAMETER :: LIWORK=30

REAL(kind=DP), dimension(ND) :: Y

REAL(kind=DP), dimension(NGRID+1) :: GRID

REAL(kind=DP), dimension(LWORK) :: WORK

INTEGER, dimension(LIWORK) :: IWORK

INTEGER, dimension(NRDENS+2*ND) :: IPAST

DIMENSION IPAR(1),RPAR(10)

DIMENSION ATOL(1),RTOL(1)

23

INTEGER, dimension(23) :: ISTAT

EXTERNAL FCN,PHI,ARGLAG,JFCN,JACLAG,SOLOUT

C ------ FILE TO OPEN ----------

OPEN(9,FILE=’sol.out’)

OPEN(10,FILE=’cont.out’)

REWIND 9

REWIND 10

C PARAMETERS IN THE DIFFERENTIAL EQUATION

C --- kM1

RPAR(1)=1.34

C --- kM2

RPAR(2)=1.6D9

C --- kM3

RPAR(3)=8.0D3

C --- kM4

RPAR(4)=4.0D7

C --- kM5

RPAR(5)=1.D0

C --- fr

RPAR(6)=1.D0

C --- A

RPAR(7)=6.D-2

C --- B

RPAR(8)=6.D-2

C --- Tau

RPAR(9)=15.D-2

C ---

C

C --- DIMENSION OF THE SYSTEM

N=ND

C --- COMPUTE THE JACOBIAN ANALYTICALLY

IJAC=1

C --- JACOBIAN IS A FULL MATRIX

MLJAC=N

C --- DIFFERENTIAL EQUATION IS IN EXPLICIT FORM

IMAS=0

C --- OUTPUT ROUTINE IS USED DURING INTEGRATION

IOUT=1

C --- INITIAL VALUES

X=0.0D0

Y(1)= 1.D-10

Y(2)= 1.D-5

C Consistent with initial function

C --- DELAY

TAU=RPAR(9)

C --- ENDPOINT OF INTEGRATION

XEND=100.5D0

C --- REQUIRED (RELATIVE AND ABSOLUTE) TOLERANCE

24

ITOL=0

RTOL=1.D-9

ATOL=RTOL*1.D-9

C --- INITIAL STEP SIZE

H=1.0D-6

C --- DEFAULT VALUES FOR PARAMETERS

IWORK=0

WORK=0.0D0

C --- MAX NUMBER OF STEPS

IWORK(2)=100000

C --- WORKSPACE FOR PAST

IWORK(12)=MXST

C --- THE SECOND COMPONENT USES RETARDED ARGUMENT

IWORK(15)=NRDENS

IPAST(1)=2

C --- SET THE PRESCRIBED GRID-POINTS

DO I=1,NGRID

GRID(I)=I*TAU

END DO

LGRID = NGRID+1

C --- WORKSPACE FOR GRID

IWORK(13)=NGRID

C --- CONTROL OF NEWTON ITERATION

IWORK(14)=1

C ___

C --- CALL OF THE SUBROUTINE RADAR5

CALL cpu_time(start)

CALL RADAR5(N,FCN,PHI,ARGLAG,X,Y,XEND,H,

& RTOL,ATOL,ITOL,

& JFCN,IJAC,MLJAC,MUJAC,

& JACLAG,NLAGS,NJACL,

& FCN,IMAS,MLMAS,MUMAS,SOLOUT,IOUT,

& WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID,

& GRID,LGRID,IPAST,NRDENS)

CALL cpu_time(finish)

C --- PRINT FINAL SOLUTION SOLUTION

WRITE (6,90) X,Y(1),Y(2)

C --- PRINT STATISTICS

DO J=14,20

ISTAT(J)=IWORK(J)

END DO

WRITE(6,*)’ *** TOL=’,RTOL,’ TIME=’,finish-start,’ ***’

WRITE (6,91) (ISTAT(J),J=14,20)

WRITE (6,92) ISTAT(23)

90 FORMAT(1X,’X =’,F8.2,’ Y =’,2E18.10)

91 FORMAT(’ fcn=’,I7,’ jac=’,I6,’ step=’,I6,

& ’ accpt=’,I6,’ rejct=’,I6,’ dec=’,I6,

& ’ sol=’,I7)

92 FORMAT(’ full Newt. its =’,I7)

WRITE(6,*) ’SOLUTION IS TABULATED IN FILES: sol.out & cont.out’

STOP

25

END

The subroutine SOLOUT

Determines the updating of the files sol.out and cont.out where the solution is stored. The
format of such files has to be chosen according to the graphics packages one intends to use for
drawing the solution. The file sol.out contains the values of the approximate solution components
at the (adaptively) computed mesh-points. The file cont.out contains the values of the approximate
solution components at points prescribed by the user (in the present case a uniform grid has been
chosen for the output representation).

SUBROUTINE SOLOUT (NR,XOLD,X,HSOL,Y,CONT,LRC,N,

& RPAR,IPAR,IRTRN)

C ----- PRINTS THE DISCRETE OUTPUT AND THE CONTINUOUS OUTPUT

C AT EQUIDISTANT OUTPUT-POINTS

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), PARAMETER :: XSTEP=0.01D0

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(LRC) :: CONT

DIMENSION IPAR(1),RPAR(10)

C XOUT IS USED FOR THE DENSE OUTPUT

COMMON /INTERN/XOUT

WRITE (9,99) X,Y(1),Y(2)

C

IF (NR.EQ.1) THEN

WRITE (10,99) X,Y(1),Y(2)

XOUT=XSTEP

ELSE

10 CONTINUE

IF (X.GE.XOUT) THEN

WRITE (10,99) XOUT,CONTR5(1,N,XOUT,CONT,X,HSOL),

& CONTR5(2,N,XOUT,CONT,X,HSOL)

XOUT=XOUT+XSTEP

GOTO 10

END IF

END IF

99 FORMAT(1X,’X =’,F12.8,’ Y =’,2E18.10)

RETURN

END

The function ARGLAG

Provides the deviating argument α1.

FUNCTION ARGLAG(IL,X,N,Y,RPAR,IPAR,PHI,PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(1) :: PAST

26

INTEGER, dimension(1) :: IPAST

DIMENSION IPAR(1),RPAR(10)

ARGLAG=X-RPAR(9)

RETURN

END

The subroutine FCN

Provides the right hand side of the differential system, that is

f1 = kM1Ay2 − kM2 y1 z2 + kM3B y1 − 2 kM4 y21

f2 = −kM1Ay2 − kM2 y1 z2 + fr kM3By1

where z2 := y2(α1(t)) and α1(t) denotes the deviating argument (α1(t) = t− τ in the present case).

SUBROUTINE FCN(N,X,Y,F,ARGLAG,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,K,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(N) :: F

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

DIMENSION IPAR(1),RPAR(10)

EXTERNAL PHI,ARGLAG

kM1=RPAR(1)

kM2=RPAR(2)

kM3=RPAR(3)

kM4=RPAR(4)

kM5=RPAR(5)

fr =RPAR(6)

A =RPAR(7)

B =RPAR(8)

F(1)= kM1*A*Y(2) - kM2*Y(1)*Y2L1 + kM3*B*Y(1)-2.D0*kM4*Y(1)**2

F(2)= -kM1*A*Y(2) - kM2*Y(1)*Y2L1 + fr*kM3*B*Y(1)

RETURN

END

C Evaluates the unique deviating arguments (IL=1) and sets

C its value into THETA1 and the position of the relative interval

C into IPOS1

CALL LAGR5(1,X,N,Y,ARGLAG,PAST,THETA1,IPOS1,RPAR,IPAR,

& PHI,IPAST,NRDS)

C Evaluates the (only) component requiring dense output (which is Y(2))

27

C and puts the result into Z2

Z2=YLAGR5(2,THETA1,IPOS1,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)

C Computes F

F(1)= kM1*A*Y(2) - kM2*Y(1)*Z2 + kM3*B*Y(1)-2.D0*kM4*Y(1)**2

F(2)= -kM1*A*Y(2) - kM2*Y(1)*Z2 + fr*kM3*B*Y(1)

RETURN

END

The subroutine JFCN

Provides the Jacobian (with respect to the variables y1 and y2) of the right hand side analytically.
We remark that this function could be provided numerically. In this case we have

∂f

∂y
=

(
−kM2 z2 + kM3B − 4 kM4 y1 kM1A

−kM2 z2 + fr kM3B −kM1A

)
where α1(t) = t− τ and z2 = y2(α1(t)). Hence the routine is written as follows.

SUBROUTINE JFCN(N,X,Y,DFY,LDFY,ARGLAG,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)

C ----- STANDARD JACOBIAN OF THE EQUATION

IMPLICIT REAL*8 (A-H,K,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(LDFY,N) :: DFY

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

DIMENSION IPAR(1),RPAR(10)

EXTERNAL PHI,ARGLAG

kM1=RPAR(1)

kM2=RPAR(2)

kM3=RPAR(3)

kM4=RPAR(4)

kM5=RPAR(5)

fr =RPAR(6)

A =RPAR(7)

B =RPAR(8)

CALL LAGR5(1,X,N,Y,ARGLAG,PAST,THETA1,IPOS1,RPAR,IPAR,

& PHI,IPAST,NRDS)

Z2=YLAGR5(2,THETA1,IPOS1,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)

C Jacobian matrix (2x2) with respect to Y(1) and Y(2)

DFY(1,1)= -kM2*Z2 + kM3*B - 4.D0*kM4*Y(1)

DFY(1,2)= kM1*A

DFY(2,1)= -kM2*Z2 + fr*kM3*B

DFY(2,2)= -kM1*A

RETURN

END

28

The subroutine JACLAG

Provides the Jacobian (with respect to the retarded variablexs z2(t) = y2(α1(t))) of the right hand
side analytically. This is stored in a one dimensional array as described in Sect. 5.5. We remark
that this function could not be provided numerically (at present time). In this case we have

∂f

∂z
=

(
0 −kM2 y1
0 −kM2 y1

)
where α1(t) = t− τ and zi(t) = yi(α1(t)), i = 1, 2. Since we store such matrix in a vector (because
we assume it is sparse), the routine is written as follows.

SUBROUTINE JACLAG(N,X,Y,DFYL,ARGLAG,PHI,IVE,IVC,IVL,

& RPAR,IPAR,PAST,IPAST,NRDS)

C ----- JACOBIAN OF DELAY TERMS IN THE EQUATION

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(2) :: DFYL

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

DIMENSION IPAR(1),RPAR(10)

INTEGER, dimension(2) :: IVE,IVC,IVL

EXTERNAL PHI,ARGLAG

kM1=RPAR(1)

kM2=RPAR(2)

A =RPAR(7)

B =RPAR(8)

C --- The Jacobian has two entries;

C the first entry ((1)) is relevant to

C - the first (and only) delay, whose index is hence equal to 1 (IVL(1)=1)

C - the first equation (IVE(1)=1)

C - the second component of the solution (IVC(1)=2)

IVL(1)=1

IVE(1)=1

IVC(1)=2

C The value of the derivative with respect to the delayed second

C component in the first equation is finally given by

DFYL(1)=-kM2*Y(1)

C the second entry ((2)) is relevant to

C - the first (and only) delay, whose index is hence equal to 1 (IVL(2)=1)

C - the second equation (IVE(2)=2)

C - the second component of the solution (IVC(2)=2)

IVL(2)=1

IVE(2)=2

IVC(2)=2

C The value of the derivative with respect to the delayed second

C component in the second equation is finally given by

DFYL(2)=-kM2*Y(1)

RETURN

29

END

The initial function PHI

Provides the initial functions.

FUNCTION PHI(I,X,RPAR,IPAR)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

DIMENSION IPAR(1),RPAR(10)

SELECT CASE (I)

CASE (2)

PHI= 1.D-5

END SELECT

RETURN

END

Compilation

We create a file, called “dr-oregon.f”, including all previous routines, and put it in a subdirectory
(called OREGON) of the main directory RADAR5, where the source and the object files of the
main routines of the code are installed. The following makefile is also created in the directory
OREGON,

FC = f90

FCFLAGS = -c

DEBUGFLAGS = -g

LIB = /lib /usr/lib

.f.o:

$(FC) $(FCFLAGS) $(DEBUGFLAGS) $*.f

OBJ2 = ../radar5.o ../dc_ladel.o ../lapack.o ../lapackc.o

OBJ1 = dr-oregon.o

prog : $(OBJ1)

$(FC) $(DEBUGFLAGS) -o driver $(OBJ1) $(OBJ2)

The simple use of the Unix command make generates the compilation and the linking phase for
the program. The executable file is called “driver”. In case of troubles check whether the fortran
libraries are stored in the directories /lib and /usr/lib.

Execution

Executing the program driver generates the following output.

STARTING INTEGRATION...

NUMBER OF PRESCRIBED GRID POINTS: 1

NUMBER OF DELAYED COMPONENTS: 1

INTEGRATION...

42 COMPUTED BREAKING POINTS:

X = 100.50 Y = 0.2749861728E-09 0.3559046560E-06

30

*** TOL= 1.000000000000001E-009 TIME= 0.2812500 ***

fcn= 71367 jac= 5140 step= 9391 accpt= 9132 rejct= 233 dec= 7710 sol= 20743

full Newt. its = 0

SOLUTION IS TABULATED IN FILES: sol.out & cont.out

The program also generates two output files, sol.out and cont.out, which contain - respectively
- the discrete computed solution and an approximation of the solution on a uniform mesh with
density chosen by the user.

8.2 Artificial neutral problem.

Our second example, which is a modification by Enright & Hayashi [6] of a problem considered
originally by Castleton & Grimm [4], is

v′(t) = cos (t)
(
1 + v(t v2(t))

)
+ c v(t) v′(tv2(t))

+ (1− c) sin t cos (t sin2 t)− sin (t+ t sin2 t)
(16)

with initial value v(0) = 0. For every choice of the parameter c, it has v(t) = sin t as exact solution.
It has a vanishing delay at t = 0, π/2, 3π/2, . . ., and for c = 1 it has a singularity at t = π/2 (i.e.,
y′(π/2) is not well defined by the equation (16). For this problem, the numerical solution of the
nonlinear Runge-Kutta equations causes some difficulties.

We have rewritten the neutral equation (16) in the form (1) by setting y1(t) = v(t) and
introducing the new variable y2(t) = v′(t) and z1(t) = y1(α1(t, y)), z2(t) = y2(α1(t, y)), with
α1(t, y) = ty21(t), as explained in the first section,(

1 0
0 0

)(
y′1(t)
y′2(t)

)
=

(
f1(t, y, z)
f2(t, y, z)

)
. (17)

with

f1(t, y1, y2, z1, z2) = y2(t)

f2(t, y1, y2, z1, z2) = −y2(t) + cos (t)(1 + z1(t)) + c y1(t) z2(t) +

(1− c) sin t cos (t sin2 t)− sin (t+ t sin2 t).

Then we have applied our code RADAR5 with Rtol = Atol = 10−8. We display the total
number of steps (accepted and rejected), the number of steps where difficulties appeared in solving
the nonlinear system (so that the correct matrix L had to be used in (11)), and the global error at
the endpoint of integration. We observe that such difficulties appear only for values close to ±1.
It is somewhat surprising that our code solves the problem correctly even for c = 1 (the singular
case).

For conciseness we do not report the driver program and present only part of the user-defined
routines.

31

Table 2: Statistics for the problem (16) with Rtol = Atol = 10−8

c nr. of steps nr. of full Jac error at t = π

−1.0 55 2 0.20 · 10−7

−0.7 54 0 0.50 · 10−8

−0.3 44 0 0.59 · 10−8

0.0 41 0 0.46 · 10−8

0.3 42 1 0.22 · 10−9

0.7 56 4 0.56 · 10−8

1.0 83 9 0.36 · 10−8

The function ARGLAG

Provides the deviating argument, α1(t, y) = t y21.

FUNCTION ARGLAG(IL,X,N,Y,RPAR,IPAR,PHI,PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

DIMENSION IPAR(1),RPAR(2)

C ARGLAG=MIN(X,X*Y(1)**2)

ARGLAG=X*Y(1)*Y(1)

RETURN

END

The subroutine FCN

Provides the right hand side of the differential system (17).

SUBROUTINE FCN(N,X,Y,F,ARGLAG,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,K,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(N) :: F

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

DIMENSION IPAR(1),RPAR(2)

EXTERNAL PHI,ARGLAG

C Contains the parameter in the equation

P=RPAR(1)

CALL LAGR5(1,X,N,Y,ARGLAG,PAST,THETA,IPOS,RPAR,IPAR,

& PHI,IPAST,NRDS)

Y1L1=YLAGR5(1,THETA,IPOS,PHI,RPAR,IPAR,

32

& PAST,IPAST,NRDS)

Y2L1=YLAGR5(2,THETA,IPOS,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)

RPAR(2)=COS(X)*(1.D0+Y1L1)+ P*Y(1)*Y2L1

C & +(1.D0-P)*SIN(X)*COS(X*SIN(X)*SIN(X)) -

C & SIN(X+X*SIN(X)*SIN(X))

F(1)= RPAR(2)

F(2)=-Y(2)+RPAR(2)

RETURN

END

The subroutine JACLAG

Provides the Jacobian (with respect to the variables z1 and z2) of the right hand side analytically.
In this case we have

∂f

∂z
=

(
0 0

cos t c y1

)
Hence both entries are relevant to the second equation and the routine is written as follows.

SUBROUTINE JACLAG(N,X,Y,DFYL,ARGLAG,PHI,IVE,IVC,IVL,

& RPAR,IPAR,PAST,IPAST,NRDS)

C ----- JACOBIAN OF DELAY TERMS IN THE EQUATION

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(4) :: DFYL

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

DIMENSION IPAR(1),RPAR(2)

INTEGER, dimension(4) :: IVE,IVC,IVL

EXTERNAL PHI,ARGLAG

P=RPAR(1)

C the first entry ((1)) is relevant to

C - the first (and only) delay, whose index is hence equal to 1 (IVL(1)=1)

C - the second equation (IVE(1)=2)

C - the first component of the solution (IVC(1)=1)

IVL(1)=1

IVE(1)=2

IVC(1)=1

C The value of the derivative with respect to the delayed second

C component in the first equation is finally given by

DFYL(1)=COS(X)

C the second entry ((2)) is relevant to

C - the first (and only) delay, whose index is hence equal to 1 (IVL(2)=1)

C - the second equation (IVE(2)=1)

33

C - the second component of the solution (IVC(2)=2)

IVL(2)=1

IVE(2)=2

IVC(2)=2

DFYL(2)=P*Y(1)

RETURN

END

The subroutine JAC

Is not provided. In this case the standard Jacobian is approximated numerically (see the released
driver program).

The initial function PHI

Provides the necessary initial functions, if required.

FUNCTION PHI(I,X,RPAR,IPAR)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(1) :: RPAR

SELECT CASE (I)

CASE (1)

PHI=SIN(X)

CASE (2)

PHI=COS(X)

END SELECT

RETURN

END

The mass matrix subroutine

Provides the mass matrix for the implicit DDE.

SUBROUTINE QFUN(N,Q,LQ,RPAR,IPAR)

C ---- MATRIX "M" FOR THE NEUTRAL PROBLEM

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(1) :: RPAR

REAL(kind=DP), dimension(LQ,N) :: Q

Q(1,1)=1.D0

Q(1,2)=0.D0

Q(2,1)=0.D0

Q(2,2)=0.D0

RETURN

END

34

8.3 State dependent scalar problem.

We consider Problem 1.3.10 of [17]. It is a state dependent scalar problem with known solution on
the considered interval. The equation is

y′(t) = y(y(t)) for t ≥ 2 (18)

with initial condition y(t) = 0.5 for t < 2, and y(2) = 1. The discontinuity of the solution at ξ0 = 2
creates breaking points at ξ1 = 4 and ξ2 = 4 + 2 ln 2 ≈ 5.386. The exact solution is y(t) = t/2 for
ξ0 ≤ t ≤ ξ1, y(t) = 2 exp(t/2− 2) for ξ1 ≤ t ≤ ξ2, and y(t) = 4− 2 ln(1 + ξ2 − t) for ξ2 ≤ t ≤ 5.5.

To get the same accuracy of about five digits, we applied the version 1 of the code [10] with
tolerance RTOL = 10−7, and the actual version 2 with RTOL = 10−4. As initial step size we
take h = 0.01. A large number of steps are needed with version 1-code to overcome breaking
points, whereas with the version 2-code the breaking points are hit exactly. For the integration
over the interval [2, 5.5], the version 1-code requires 31 accepted and has 20 step rejections (15 to
step over the first breaking point); the version 2-code gives the same accuracy with 11 accepted
and 3 rejected steps. Two of them are necessary to detect the breaking points, and the other is
due to error estimation. It is interesting to mention that for tolerances RTOL > 10−3 only the first
breaking point ξ1 is computed, and for more stringent tolerances both of them are computed with
high accuracy. We consider the integration interval [2, 5.5] and Atol = Rtol.

The driver program

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

C ---> PARAMETERS FOR RADAR5 (FULL JACOBIAN) <---

INTEGER, PARAMETER :: ND=1

INTEGER, PARAMETER :: NRDENS=1

INTEGER, PARAMETER :: NGRID=0

INTEGER, PARAMETER :: NLAGS=1

INTEGER, PARAMETER :: NJACL=1

INTEGER, PARAMETER :: MXST=5000

INTEGER, PARAMETER :: LWORK=30

INTEGER, PARAMETER :: LIWORK=30

REAL*4 start,finish

REAL(kind=DP), dimension(ND) :: Y

REAL(kind=DP), dimension(NGRID+1) :: GRID

REAL(kind=DP), dimension(LWORK) :: WORK

REAL(kind=DP), dimension(1) :: RTOL

REAL(kind=DP), dimension(1) :: ATOL

INTEGER, dimension(LIWORK) :: IWORK

INTEGER, dimension(NRDENS+2*ND) :: IPAST

INTEGER, dimension(22) :: ISTAT

DIMENSION IPAR(1),RPAR(1)

EXTERNAL FCN,JFCN,PHI,ARGLAG,JACLAG,QFUN,SOLOUT

C ------ FILE TO OPEN ----------

OPEN(10,FILE=’cont.out’)

REWIND 10

TOL =1.0D-6

35

C ---

C

C --- DIMENSION OF THE SYSTEM

N=ND

C --- COMPUTE THE STANDARD JACOBIAN ANALYTICALLY

IJAC=0

C --- JACOBIAN IS A FULL MATRIX

MLJAC=N

C --- DIFFERENTIAL EQUATION IS IN EXPLICIT FORM

IMAS=0

MLMAS=N

C --- OUTPUT ROUTINE IS USED DURING INTEGRATION

IOUT=1

C --- INITIAL VALUES

X=2.0D0

Y(1)=1.0D0

C Consistent with initial function

C --- ENDPOINT OF INTEGRATION

XEND=5.5D0

C XEND=2.D0

C --- REQUIRED (RELATIVE AND ABSOLUTE) TOLERANCE

ITOL=0

RTOL=TOL

ATOL=RTOL

C --- INITIAL STEP SIZE

H=1.0D-2

C --- DEFAULT VALUES FOR PARAMETERS

IWORK=0

WORK=0.0D0

C --- ERROR CONTROL

IWORK(11)=1

C --- STEPSIZE RATIOS

C WORK(8)=0.5D0

C WORK(9)=2.0D0

C --- WORKSPACE FOR PAST

IWORK(12)=MXST

C --- BOTH COMPONENTS USE RETARDED ARGUMENT

IWORK(15)=NRDENS

IPAST(1)=1

C --- CONTROL OF NEWTON ITERATION

IWORK(3)=10

IWORK(14)=1

C --- GRID

IWORK(13)=NGRID

LGRID=NGRID+1

C ___

C --- CALL OF THE SUBROUTINE RADAR5

CALL cpu_time(start)

CALL RADAR5(N,FCN,PHI,ARGLAG,X,Y,XEND,H,

& RTOL,ATOL,ITOL,

36

& JFCN,IJAC,MLJAC,MUJAC,

& JACLAG,NLAGS,NJACL,

& QFUN,IMAS,MLMAS,MUMAS,SOLOUT,IOUT,

& WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID,

& GRID,LGRID,IPAST,NRDENS)

CALL cpu_time(finish)

C ---

WRITE (6,*) ’Time = ’,finish-start

YT=-2.D0*LOG(EXP(-2.D0)*(1.D0-XEND+LOG(4.D0*EXP(4.D0))))

C --- PRINT FINAL SOLUTION SOLUTION

WRITE (6,90) X,Y(1),ABS(Y(1)-YT)

C --- PRINT STATISTICS

DO J=13,20

ISTAT(J)=IWORK(J)

END DO

WRITE(6,*)’ ***** TOL=’,RTOL,’ ****’

WRITE (6,91) (ISTAT(J),J=14,20)

WRITE (6,92) ISTAT(13)

90 FORMAT(1X,’X =’,F8.2,’ Y =’,2E23.15)

91 FORMAT(’ fcn=’,I7,’ jac=’,I6,’ step=’,I6,

& ’ accpt=’,I6,’ rejct=’,I6,’ dec=’,I6,

& ’ sol=’,I7)

92 FORMAT(’ full Newt. its =’,I7)

WRITE(6,*) ’SOLUTION IS TABULATED IN FILES: sol.out & cont.out’

CLOSE(10)

STOP

END

C

The subroutine SOLOUT

Determines the updating of the files sol.out and cont.out where the solution is stored.

SUBROUTINE SOLOUT (NR,XOLD,X,HSOL,Y,CONT,LRC,N,

& RPAR,IPAR,IRTRN)

C ----- PRINTS THE DISCRETE OUTPUT AND THE CONTINUOUS OUTPUT

C AT EQUIDISTANT OUTPUT-POINTS

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), PARAMETER :: XSTEP=0.002D0

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(LRC) :: CONT

REAL(kind=DP), dimension(1) :: RPAR

C EXTERNAL PHI

C XOUT IS USED FOR THE DENSE OUTPUT

COMMON /INTERN/XOUT

IF (NR.EQ.1) THEN

WRITE (10,99) X,Y(1)

XOUT=XSTEP

ELSE

37

10 CONTINUE

IF (X.GE.XOUT) THEN

WRITE (10,99) XOUT,CONTR5(1,N,XOUT,CONT,X,HSOL)

XOUT=XOUT+XSTEP

GOTO 10

END IF

END IF

99 FORMAT(1X,’X =’,F12.8,’ Y =’,2E18.10)

RETURN

END

The function ARGLAG

Provides the deviating argument.

DOUBLE PRECISION FUNCTION ARGLAG(IL,X,N,Y,RPAR,IPAR,

& PHI,PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

INTEGER, dimension(1) :: IPAR

REAL(kind=DP), dimension(1) :: RPAR

ARGLAG=Y(1)

RETURN

END

The subroutine FCN

Provides the right hand side of the differential system.

SUBROUTINE FCN(N,X,Y,F,ARGLAG,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)

IMPLICIT REAL*8 (A-H,K,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(N) :: F

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST,IPAR(1)

REAL(kind=DP), dimension(1) :: RPAR

REAL RN

EXTERNAL PHI,ARGLAG

CALL LAGR5(1,X,N,Y,ARGLAG,PAST,THETA,IPOS,RPAR,IPAR,

& PHI,IPAST,NRDS)

Y1L1=YLAGR5(1,THETA,IPOS,PHI,RPAR,IPAR,

& PAST,IPAST,NRDS)

38

F(1)= Y1L1

RETURN

END

The subroutine JFCN

Could provide the Jacobian (with respect to the variable y) of the right hand side analytically. In
this case (IJAC=0) an approximation of the Jacobian is obtained numerically.

The subroutine JACLAG

Provides the Jacobian (with respect to the retarded variablexs z(t) = y(α(t, y)))) of the right hand
side analytically. This is stored in a one dimensional array as described in Sect. 5.5. We remark
that this function could not be provided numerically (at present time). In this case we have

∂f

∂z
= 1

where α(t, y) = y(t). Since we store such matrix in a vector (because we assume it is sparse), the
routine is written as follows.

SUBROUTINE JACLAG(N,X,Y,DFYL,ARGLAG,PHI,IVE,IVC,IVL,

& RPAR,IPAR,PAST,IPAST,NRDS)

C ----- JACOBIAN OF DELAY TERMS IN THE EQUATION

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(N) :: Y

REAL(kind=DP), dimension(1) :: DFYL

REAL(kind=DP), dimension(1) :: PAST

INTEGER, dimension(1) :: IPAST

REAL(kind=DP), dimension(1) :: RPAR

INTEGER, dimension(1) :: IVE,IVC,IVL

EXTERNAL PHI,ARGLAG

IVL(1)=1

IVE(1)=1

IVC(1)=1

DFYL(1)=1.D0

RETURN

END

The initial function PHI

Provides the initial functions.

DOUBLE PRECISION FUNCTION PHI(I,X,RPAR,IPAR)

IMPLICIT REAL*8 (A-H,O-Z)

INTEGER, PARAMETER :: DP=kind(1D0)

REAL(kind=DP), dimension(1) :: RPAR

PHI=0.5D0

RETURN

END

39

Compilation

We create a file, called “dr-paul.f”, including all previous routines, and put it in a subdirectory
(called PAUL) of the main directory RADAR5, where the source and the object files of the main
routines of the code are installed. The following makefile is also created in the directory PAUL,

FC = f90 FCFLAGS = -c DEBUGFLAGS = -g LIB = /lib /usr/lib .f.o:

$(FC) $(FCFLAGS) $(DEBUGFLAGS) $*.f

OBJ2 = ../radar5.o ../dc_decdel.o ../decsol.o OBJ1 = dr-paul.o

prog : $(OBJ1)

$(FC) $(DEBUGFLAGS) -o driver $(OBJ1) $(OBJ2)

The simple use of the Unix command make generates the compilation and the linking phase for
the program. The executable file is called “driver”. In case of troubles check whether the fortran
libraries are stored in the directories /lib and /usr/lib.

Execution

Executing with Rtol = 10−4 the program driver generates the following output.

STARTING INTEGRATION...

NUMBER OF PRESCRIBED GRID POINTS: 0

NUMBER OF DELAYED COMPONENTS: 1

INTEGRATION...

3 COMPUTED BREAKING POINTS:

Time = 0.0000000E+00

X = 5.50 Y = 0.424141226333301E+01 0.317235091529255E-07

***** TOL= 1.000000000000001E-006 ****

fcn= 120 jac= 6 step= 17 accpt= 13 rejct= 2 dec= 16 sol= 35

full Newt. its = 0

SOLUTION IS TABULATED IN FILES: sol.out & cont.out

The program also generates two output files, sol.out and cont.out, which contain - respectively
- the discrete computed solution and an approximation of the solution on a uniform mesh with
density chosen by the user.

Table 1 illustrates the global number of steps (accepted and rejected) and the obtained accuracy
by the two different versions of the code (V1 and V2) for different tolerances (and an initial stepsize
h = 10−6). The gain obtained by the automatic computation of breaking point is quite evident.

9 Copyright Notice

The RADAR5 Package, Versions 2.1 - 2.2, double-precision, Copyright (C) 2000–2004, Nicola
Guglielmi and Ernst Hairer,

COPYRIGHT NOTICE. The RADAR5 Package is a set of subroutines developed by Nicola
Guglielmi and Ernst Hairer (the Authors) at the University of L’Aquila and at the University of
Geneva. The package has been made available to you (the User) under the following terms and
conditions. Your use of RADAR5 is an implicit agreement to these conditions.

40

Table 3: Statistics for the problem (18) with different tolerances.

TOL steps-V1 accuracy steps-V2 accuracy

1e− 4 35 0.14 · 10−3 16 0.20 · 10−5

1e− 7 53 0.27 · 10−5 21 0.12 · 10−7

1e− 10 89 0.20 · 10−6 39 0.17 · 10−9

1e− 12 127 0.16 · 10−7 68 0.33 · 10−10

1. RADAR5 may only be used for educational and research purposes by the person or organi-
zation to whom they are supplied (the “User”).

2. Code that uses RADAR5 (a code that calls subroutines in RADAR5) does not fall under
this Copyright Notice. However, code derived from RADAR5 does fall under this Copyright
Notice.

3. RADAR5 is provided without warranty of any kind, either expressed or implied. Neither the
University of Geneva nor the Authors shall be liable for any direct or consequential loss or
damage whatsoever arising out of the use of RADAR5 by the User.

4. Any use of RADAR5 in any commercial application shall be subject to prior written agreement
between the Authors and the User on suitable terms and conditions.

10 Final comments

As soon as you download a copy of RADAR5, please send email to us at nicola.guglielmi@gssi.it
(guglielm@univaq.it) or Ernst.Hairer@math.unige.ch, so that we can put you on a mailing
list for news and updates. Please include your postal address as well.

While we would appreciate hearing any bug reports and comments, we cannot promise that we
can fix any specific bugs. We would also appreciate receiving copies of publications that refer to
the package.

If you find this software to have a different performance than the software you were previously
using, we would be very interested in getting copies of your delay equations. Of particular interest
are large stiff problems coming from real-life applications.

Acknowledgments

We thank Alfredo Bellen, Marino Zennaro and Gerhard Wanner for fruitful discussions concerning
the development of the code.

References

[1] C.T.H. Baker, J.C. Butcher, C.A.H. Paul, Experience of STRIDE applied to delay differential
equations, Technical Report 208, Univ. Manchester, 1992.

41

[2] A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical Math-
ematics and Scientific Computation Series, Oxford University Press, 2003.

[3] G.A. Bocharov, G.I. Marchuk, A.A. Romanyukha, Numerical solution by LMMs of stiff delay
differential systems modelling an immune response, Numer. Math. 73, 131–148 (1996).

[4] R.N. Castleton, L.J. Grimm, A first order method for differential equations of neutral type,
Math. Comp. 27, 571–577 (1973).

[5] L.E. El’sgol’ts, S.B. Norkin: Introduction to the theory and application of differential equations
with deviating arguments, Academic Press, New York, 1973.

[6] W.H. Enright, H. Hayashi, A delay differential equation solver based on a continuous Runge-
Kutta method with defect control, Numer. Algorithms 16, 349–364 (1998).

[7] I. Epstein, Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the
cross-shaped phase diagram and the Oregonator, J. Chemical Physics 95, 244–254 (1991).

[8] A. Feldstein and K.W. Neves, High order methods for state-dependent delay differential equa-
tions with nonsmooth solutions, SIAM J. Numer. Anal. 21, 844–863 (1984).

[9] N. Guglielmi, E. Hairer, Order stars and stability for delay differential equations, Numer. Math.
83, 371–383 (1999).

[10] N. Guglielmi and E. Hairer, Implementing Radau II-A methods for stiff delay differential
equations, Computing 67, 1–12 (2001).

[11] N. Guglielmi and E. Hairer, Computing breaking points in implicit delay differential equations,
Advances in Computational Mathematics , (2008).

[12] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Prob-
lems, 2nd edition, Springer Series in Computational Mathematics 8, Springer-Verlag Berlin,
1993.

[13] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems, 2nd edition, Springer Series in Computational Mathematics 14, Springer-
Verlag Berlin, 1996.

[14] R. Hauber, Numerical treatment of retarded differential-algebraic equations by collocation meth-
ods, Adv. Comput. Math. 7, 573–592 (1997).

[15] Z. Jackiewicz, E. Lo, The numerical solution of neutral functional-differential equations by
Adams predictor-corrector methods, Appl. Numer. Math. 8, 477–491 (1991).

[16] M. Okamoto, K. Hayashi, Frequency conversion mechanism in enzymatic feedback systems, J.
Theor. Biol. 108, 529–537 (1984).

[17] C.A.H Paul, A test set of functional differential equations, Technical Report 243, Univ. Manch-
ester (1994).

42

[18] P. Waltman, A threshold model of antigen–stimulated antibody production, Theoretical Im-
munology (Immunology Ser. 8), Dekker, New York, 437–453 (1978).

[19] R. Weiner, K. Strehmel, A type insensitive code for delay differential equations basing on
adaptive and explicit Runge-Kutta interpolation methods, Computing 40, 255–265 (1988).

[20] M. Zennaro, P-stability properties of Runge-Kutta methods for delay differential equations,
Numer. Math. 49, 305–318 (1986).

43

