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A numerical one-step methodyn+1 = Φh(yn) is calledsymplecticif, when applied
to a Hamiltonian system, the discrete flowy 7→ Φh(y) is a symplectic transforma-
tion for all sufficiently small step sizes. Pioneering work on symplectic integrators
is due to de Vogelaere (1956)1, Ruth (1983)2, and Feng Kang (1985)3.

1 Basic symplectic integration schemes

The most simple symplectic integrators are motivated by thetheory of generating
functions for symplectic transformations (see Lecture 1).We consider the Hamil-
tonian system in the variablesy = (p, q),

ṗ = −∇qH(p, q)

q̇ = ∇pH(p, q)
or equivalently ẏ = J−1∇H(y).

1R. de Vogelaere,Methods of integration which preserve the contact transformation property
of the Hamiltonian equations, Report No. 4, Dept. Math., Univ. of Notre Dame, Notre Dame, Ind.
(1956)

2R.D. Ruth,A canonical integration technique, IEEE Trans. Nuclear Science NS-30 (1983)
2669–2671.

3K. Feng,On difference schemes and symplectic geometry, Proceedings of the 5-th Intern.
Symposium on differential geometry & differential equations, Aug. 1984, Beijing (1985) 42–58.
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Theorem 1 (symplectic Euler) The so-called symplectic Euler methods

pn+1 = pn − h∇qH(pn+1, qn)

qn+1 = qn + h∇pH(pn+1, qn)
or

pn+1 = pn − h∇qH(pn, qn+1)

qn+1 = qn + h∇pH(pn, qn+1)
(1)

are symplectic methods of order1.

Proof. Symplecticity is an immediate consequence of the first two characteriza-
tions of Theorem 5 (Lecture 1). Consistency of the scheme is obvious.

The methods (1) are implicit for general Hamiltonian systems. For separable
H(p, q) = T (p)+U(q), however, both variants turn out to be explicit. This is also
the case for the methods of the next theorem.

Theorem 2 (Sẗormer–Verlet) The Sẗormer–Verlet schemes

pn+1/2 = pn −
h

2
∇qH(pn+1/2, qn)

qn+1 = qn +
h

2

(

∇pH(pn+1/2, qn) + ∇pH(pn+1/2, qn+1)
)

pn+1 = pn+1/2 −
h

2
∇qH(pn+1/2, qn+1)

(2)

and
qn+1/2 = qn +

h

2
∇pH(pn, qn+1/2)

pn+1 = pn −
h

2

(

∇qH(pn, qn+1/2) + ∇qH(pn+1, qn+1/2)
)

qn+1 = qn+1/2 +
h

2
∇pH(pn+1, qn+1/2)

(3)

are symplectic methods of order2.

Proof. The statement follows from the fact that the Störmer–Verlet scheme is the
composition of the two symplectic Euler methods (1) with step sizeh/2. Even
order2 follows from its symmetry.

For a second order differential equationq̈ = −∇U(q), for which the Hamilto-
nian is H(p, q) = 1

2
pTp + U(q) , method (2) becomes

qn+1 − 2 qn + qn−1 = −h2 ∇U(qn), pn =
qn+1 − qn−1

2h
. (4)

Theorem 3 (implicit midpoint) The implicit midpoint rule

yn+1 = yn + hJ−1∇H
(yn+1 + yn

2

)

(5)

is a symplectic method of order2.
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Figure 1: Area preservation of numerical methods for the pendulum; same initial
sets as in Figure 3 of Lecture 1; first order methods (left column): h = π/4;
second order methods (right column):h = π/3; dashed: exact flow.

Proof. Symplecticity is a consequence of the third characterization of Theorem 5
(Lecture 1), and order2 follows from the symmetry of the method.

We consider the pendulum problem with HamiltonianH(p, q) = 1
2
p2 − cos q.

We apply six different numerical methods to this problem: the explicit Euler
method, the symplectic Euler method (1), and the implicit Euler method, as well
as a second order method of Runge, the Störmer–Verlet scheme (2), and the im-
plicit midpoint rule (5). For two sets of initial values(p0, q0) we compute several
steps with step sizeh = π/4 for the first order methods, andh = π/3 for the sec-
ond order methods. One clearly observes in Figure 14 that the explicit Euler, the
implicit Euler and the second order explicit method of Rungeare not symplectic
(not area preserving).

4This figure and most of the text are taken from the monographGeometric Numerical Integra-
tion by Hairer, Lubich & Wanner.
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2 Symplectic Runge–Kutta methods

An s-stage Runge–Kutta method, applied to an initial value problem ẏ = f(t, y),
y(t0) = y0 is given by the formulas

ki = f
(

t0 + cih, y0 + h

s
∑

j=1

aijkj

)

, i = 1, . . . , s

y1 = y0 + h

s
∑

i=1

biki,
(6)

whereci =
∑s

j=1 aij . We allow a full matrix(aij) of non-zero coefficients, so that
the slopeski are defined implicitly. For the study of their symplecticitywe follow
the approach of Bochev & Scovel5. It relates symplecticity to the conservation
of quadratic first integrals. Recall that a functionI(y) is a first integral of the
differential equatioṅy = f(y), if I ′(y)f(y) = 0 for all y.

Theorem 4 If a Runge–Kutta method (6) conserves quadratic first integrals (i.e.,
I(y1) = I(y0) wheneverI(y) = yTCy, with symmetric matrixC, is a first integral
of ẏ = f(y)), then it is symplectic.

Proof. Symplecticity of the discrete flowy 7→ Φh(y) means that for a Hamiltonian
problem the quadratic expressionΨTJ Ψ (with Ψ = Φ′

h(y)) is a first integral of
the variational equation. The statement of the theorem is therefore a consequence
of the fact that for Runge–Kutta methods the following diagram commutes:

ẏ = f(y), y(0) = y0 −→
ẏ = f(y), y(0) = y0

Ψ̇ = f ′(y)Ψ, Ψ(0) = I






y

method







y

method

{yn}
−→ {yn, Ψn}

(horizontal arrows mean a differentiation with respect toy0). Therefore, the nu-
merical resultyn, Ψn, obtained from applying the method to the problem aug-
mented by its variational equation, is equal to the numerical solution forẏ = f(y)
augmented by its derivativeΨn = ∂yn/∂y0.

5P.B. Bochev & C. Scovel,On quadratic invariants and symplectic structure, BIT 34 (1994)
337–345.
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The commutativity of the above diagram is proved by implicitdifferentiation.
Let us illustrate this for the explicit Euler method

yn+1 = yn + hf(yn).

We consideryn andyn+1 as functions ofy0, and we differentiate with respect to
y0 the equation defining the numerical method. For the Euler method this gives

∂yn+1

∂y0
=

∂yn

∂y0
+ hf ′(yn)

∂yn

∂y0
,

which is exactly the relation that we get from applying the method to the varia-
tional equation. Since∂y0/∂y0 = I, we have∂yn/∂y0 = Ψn for all n.

An elegant proof of symplecticity is possible for Gauss collocation methods.
They are defined as follows: letc1, . . . , cs be the zeros of the shifted Legendre
polynomial ds

dxs

(

xs(1−x)s
)

, and letu(t) be the polynomial of degrees satisfying

u(t0) = y0

u̇(t0 + cih) = f
(

t0 + cih, u(t0 + cih)
)

, i = 1, . . . , s,
(7)

then the numerical solution of theGauss collocation methodis defined byy1 =
u(t0 + h).

Puttingki = u̇(t0 + cih), and expressinġu(t0 + τh) and by integration also
u(t0+τh) in terms of theki, one see that these methods are special case of implicit
Runge–Kutta methods. The implicit midpoint rule (5) is the special cases = 1 of
the Gauss methods.

Theorem 5 The Gauss collocation methods conserve quadratic first integrals and
are thus symplectic by Theorem 4.

Proof. Let u(t) be the collocation polynomial of the Gauss methods, and assume
that I(y) = yTC y, with symmetricC, is a first integral ofẏ = f(y). Since
d
dt

I
(

u(t)
)

= 2u(t)TCu̇(t), it follows from u(t0) = y0 andu(t0 + h) = y1 that

yT

1 C y1 − yT

0 C y0 = 2

∫ t0+h

t0

u(t)TC u̇(t) dt. (8)

The integrandu(t)TCu̇(t) is a polynomial of degree2s − 1, which is integrated
without error by thes-stage Gaussian quadrature formula. It therefore follows
from the collocation condition

u(t0 + cih)TC u̇(t0 + cih) = u(t0 + cih)TC f
(

u(t0 + cih)
)

= 0

that the integral in (8) vanishes.
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The following criterion on the conservation of quadratic first integrals is due
to Cooper6, that on the symplecticity has been found independently by Lasagni7,
Sanz-Serna8, and Suris9.

Theorem 6 If the coefficients of a Runge–Kutta method satisfy

biaij + bjaji = bibj for all i, j = 1, . . . , s, (9)

then it conserves quadratic first integrals and it is symplectic (by Theorem 4).

Proof. The Runge–Kutta relationy1 = y0 + h
∑s

i=1 biki yields

yT
1 Cy1 = yT

0 Cy0 + h
s

∑

i=1

bi k
T
i Cy0 + h

s
∑

j=1

bj yT
0 Ckj + h2

s
∑

i,j=1

bibj kT
i Ckj. (10)

We then writeki = f(Yi) with Yi = y0 + h
∑s

j=1 aijkj . The main idea is to
computey0 from this relation and to insert it into the central expressions of (10).
This yields (using the symmetry ofC)

yT
1 Cy1 = yT

0 Cy0 + 2h

s
∑

i=1

bi Y
T
i Cf(Yi) + h2

s
∑

i,j=1

(bibj − biaij − bjaji) kT
i Ckj.

The condition (9) together with the assumptionyTCf(y) = 0, which states that
yTCy is a first integral ofẏ = f(y), imply yT

1 Cy1 = yT
0 Cy0.

All results of this section can be extended topartitioned Runge–Kutta meth-
ods, where the components ofp and q in a Hamiltonian system are treated by
different Runge-Kutta methods. The most prominent examples are the symplectic
Euler method (combination of explicit and implicit Euler) and the Störmer–Verlet
method (combination of the trapezoidal rule and the implicit midpoint rule).

6G.J. Cooper,Stability of Runge–Kutta methods for trajectory problems, IMA J. Numer.
Anal. 7 (1987) 1–13.

7F.M. Lasagni,Canonical Runge–Kutta methods, ZAMP 39 (1988) 952–953.
8J.M. Sanz-Serna,Runge–Kutta schemes for Hamiltonian systems, BIT 28 (1988) 877–883.
9Y.B. Suris,On the conservation of the symplectic structure in the numerical solution of Hamil-

tonian systems(in Russian), In: Numerical Solution of Ordinary Differential Equations, ed. S.S.
Filippov, Keldysh Inst. of Appl. Math., USSR Academy of Sciences, Moscow, 1988, 148–160.
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3 The Adjoint of a Method

The flowϕt of an autonomous differential equationẏ = f(y) satisfiesϕ−1
−t = ϕt.

This property is in general not shared by the one-step mapΦh of a numerical
method. An illustration is presented in the upper picture ofFigure 2 (a), where we
see that the one-step mapΦh for the explicit Euler method is different from the
inverse ofΦ−h, which is the implicit Euler method.

Definition 1 The adjoint methodΦ∗

h of a methodΦh is the inverse map of the
original method with reversed time step−h, i.e.,

Φ∗

h := Φ−1
−h (11)

(see Figure 2 (b)). In other words,y1 = Φ∗

h(y0) is implicitly defined by the relation
Φ−h(y1) = y0. A method for whichΦ∗

h = Φh is calledsymmetric.

y0

y1Φh

Φ−h

y0

y1Φh

Φ−h

(a)

Φ−h

Φ∗

h

(b)

y0

y1
ϕh(y0)

Φ−h

Φ∗

h

Φ−h

Φ∗

h

e

e∗(c)

Figure 2: Definition and properties of the adjoint method

The adjoint method satisfies the usual properties such as(Φ∗

h)
∗ = Φh and

(Φh ◦ Ψh)
∗ = Ψ∗

h ◦ Φ∗

h for any two one-step methodsΦh andΨh. The implicit
Euler method is the adjoint of the explicit Euler method. Theimplicit midpoint
rule is symmetric (see the lower picture of Figure 2 (a)), andthe trapezoidal rule
and the Störmer–Verlet method are also symmetric.

Theorem 7 Letϕt be the exact flow oḟy = f(y) and letΦh be a one-step method
of orderr satisfying

Φh(y0) = ϕh(y0) + C(y0)h
r+1 + O(hr+2). (12)

The adjoint methodΦ∗

h then has the same orderr and we have

Φ∗

h(y0) = ϕh(y0) + (−1)rC(y0)h
r+1 + O(hp+r). (13)

If the method is symmetric, its (maximal) order is even.
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Proof. The idea of the proof is exhibited in drawing (c) of Figure 2. From a given
initial valuey0 we computeϕh(y0) andy1 = Φ∗

h(y0), whose differencee∗ is the
local error ofΦ∗

h. This error is then projected back byΦ−h to becomee. We see
that−e is the local error ofΦ−h, i.e., by hypothesis (12),

e = (−1)rC(ϕh(y0))h
r+1 + O(hr+2). (14)

Sinceϕh(y0) = y0 + O(h) ande = (I + O(h))e∗, it follows that

e∗ = (−1)rC(y0)h
r+1 + O(hr+2)

which proves (13). The statement for symmetric methods is animmediate con-
sequence of this result, becauseΦh = Φ∗

h implies C(y0) = (−1)rC(y0), and
thereforeC(y0) can be different from zero only for evenr.

4 Composition methods

Let Φh be a basic method andγ1, . . . , γs real numbers. Then we call its composi-
tion with step sizesγ1h, γ2h, . . . , γsh, i.e.,

Ψh = Φγsh ◦ . . . ◦ Φγ1h, (15)

the corresponding composition method (see Figure 3(a)). The aim is to increase
the order while preserving desirable properties like symplecticity of the basic
method.

Theorem 8 LetΦh be a one-step method of orderr. If

γ1 + . . . + γs = 1

γr+1
1 + . . . + γr+1

s = 0,
(16)

then the composition method(15) is at least of orderr + 1.

Proof. The proof is presented in Figure 3(b) fors = 3. It is very similar to the
proof of Theorem 7. Starting withy0, we letyi = Φγih(yi−1), so thatΨh(y0) = ys.
By hypothesis we haveei+1 = ϕγih(yi) −Φγih(yi) = C(yi) γr+1

i hr+1 + O(hr+2),
and the transported local error satisfiesEi = (I + O(h))ei for all i. Because of
yi = y0 + O(h) it follows from

∑s
i=1 γi = 1 (consistency requirement) that

ϕh(y0) − Ψh(y0) = E1 + . . . + Es = C(y0)(γ
r+1
1 + . . . + γr+1

s )hr+1 + O(hr+2)

which shows that under conditions (16) theO(hr+1)-term vanishes.
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Ψh

(a)

y0 y1
y2

y3

ϕΣγih(y0)

Φγ1h
Φγ2h

Φγ3h
e1

e2

e3 =E3

E2

E1(b)

y0 y1
y2

Ψh(y0)

ϕΣγih(y0)

Φγ1h
Φγ2h

Φγ3h

Figure 3: Composition of methodΦh with three step sizes

Example 1 (The Triple Jump) Equations (16) have no real solution for oddr.
Therefore, the order increase is only possible for evenr. In this case, the smallest
s which allows a solution iss = 3. We then have some freedom for solving
the two equations. If we impose symmetryγ1 = γ3, then we obtain (Creutz &
Gocksch10, Forest11, Suzuki12, Yoshida13)

γ1 = γ3 =
1

2 − 21/(r+1)
, γ2 = −

21/(r+1)

2 − 21/(r+1)
. (17)

This procedure can be repeated: we start with a symmetric method of order2,
apply (17) withr = 2 to obtain order3; due to the symmetry of theγ’s this new
method is in fact of order4 (see Theorem 7). With this new method we repeat
(17) with r = 4 and obtain a symmetric9-stage composition method of order6,
then withr = 6 a27-stage symmetric composition method of order8, and so on.
One obtains in this wayanyorder, however, at the price of a terrible zig-zag of the
step points (see Figure 4).

−1 0 1 2 −1 0 1 2 −1 0 1 2

γ1

−γ2

γ3
p=4 p=6 p=8

Figure 4: The Triple Jump of order 4 and its iterates of orders6 and 8

10M. Creutz & A. Gocksch,Higher-order hybrid Monte Carlo algorithms, Phys. Rev. Lett. 63
(1989) 9–12.

11E. Forest,Canonical integrators as tracking codes, AIP Conference Proceedings 184 (1989)
1106–1136.

12M. Suzuki,Fractal decomposition of exponential operators with applications to many-body
theories and Monte Carlo simulations, Phys. Lett. A 146 (1990) 319–323.

13H. Yoshida,Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990)
262–268.
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Example 2 (Suzuki’s Fractals) If one desires methods with smaller values ofγi,
one has to increases even more. For example, fors = 5 the best solution of (16)
has the sign structure+ + − + + with γ1 = γ2 (Suzuki 1990). This leads to

γ1 = γ2 = γ4 = γ5 =
1

4 − 41/(r+1)
, γ3 = −

41/(r+1)

4 − 41/(r+1)
. (18)

The repetition of this algorithm forr = 2, 4, 6, . . . leads to a fractal structure of
the step points (see Figure 5).

0 1 0 1 0 1

γ1 γ2

−γ3

γ4 γ5
p=4 p=6 p=8

Figure 5: Suzuki’s ‘fractal’ composition methods

Composition with the Adjoint Method. If we replace the composition (15) by
the more general formula

Ψh = Φαsh ◦ Φ∗

βsh ◦ . . . ◦ Φ∗

β2h ◦ Φα1h ◦ Φ∗

β1h, (19)

the condition for orderr + 1 becomes, by using the result (13) and a similar proof
as above,

β1 + α1 + β2 + . . . + βs + αs = 1

(−1)rβr+1
1 + αr+1

1 + (−1)rβr+1
2 + . . . + (−1)rβr+1

s + αr+1
s = 0.

(20)

This allows an order increase for oddr as well. In particular, we see at once the
solutionα1 = β1 = 1/2 for r = s = 1, which turns every consistent one-step
method of order1 into a second-order symmetric method

Ψh = Φh/2 ◦ Φ∗

h/2. (21)

For example, ifΦh is the explicit (resp. implicit) Euler method, thenΨh in (21) be-
comes the implicit midpoint (resp. trapezoidal) rule. IfΦh is the symplectic Euler
method, then the composed methodΨh in (21) is the Störmer–Verlet method.

A Numerical Example. To demonstrate the numerical performance of the above
methods, we choose the Kepler problem on the interval[0, 7.5] with initial values
corresponding to an eccentricitye = 0.6 (see Lecture 1). As the basic method we
use the Störmer–Verlet scheme and compare in Figure 6 the Triple Jump (17) and
Suzuki (18) compositions for a large number of different equidistant basic step
sizes and for ordersr = 4, 6, 8, 10, 12. The maximal final error is compared with

10
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Figure 6: Numerical results of the Triple Jump and Suzuki step sequences (grey
symbols) compared to optimal methods (black symbols)

the total number of function evaluations in double logarithmic scales. We observe
that the wild zig-zag of the Triple Jump (17) is a more serioushandicap than the
large number of small steps of the Suzuki sequence (18).

Optimized composition methods. The construction of optimal methods (large
order with minimals) needs an elaborate order theory and cumbersome numerical
search algorithms. We just present the coefficients of an8th order method14 15 16

γ1 = γ15 = 0.74167036435061295344822780
γ2 = γ14 =−0.40910082580003159399730010
γ3 = γ13 = 0.19075471029623837995387626
γ4 = γ12 =−0.57386247111608226665638773
γ5 = γ11 = 0.29906418130365592384446354
γ6 = γ10 = 0.33462491824529818378495798
γ7 = γ9 = 0.31529309239676659663205666

γ8 =−0.79688793935291635401978884

0 1

p8 s15

(22)

The results of this8th order method and of an optimized method of order6 are
included in Figure 6 with black symbols. They outperform those of the previous
approaches.

14M. Suzuki & K. Umeno,Higher-order decomposition theory of exponential operators and its
applications to QMC and nonlinear dynamics, Springer Proceedings in Physics 76 (1993) 74–86.

15M. Suzuki,Quantum Monte Carlo methods and general decomposition theory of exponential
operators and symplectic integrators, Physica A 205 (1994) 65–79.

16R.I. McLachlan,On the numerical integration of ordinary differential equations by symmetric
composition methods, SIAM J. Sci. Comput. 16 (1995) 151–168.
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5 Splitting methods

We consider an arbitrary systeṁy = f(y) in R
n, and suppose that the vector field

is “split” as (Figure 7)
ẏ = f [1](y) + f [2](y). (23)

If the exact flowsϕ[1]
t andϕ

[2]
t of the systemṡy = f [1](y) andẏ = f [2](y) can be

calculated explicitly, we can compose them to get numericalapproximations.

f = f [1] + f [2]

Figure 7: A splitting of a vector field.

Lie–Trotter 17 splitting. If, from a given initial valuey0, we first solve the first
system to obtain a valuey1/2, and from this value integrate the second system to
obtainy1, we get numerical integrators

Φ∗

h = ϕ
[2]
h ◦ ϕ

[1]
h

Φh = ϕ
[1]
h ◦ ϕ

[2]
h

Φ∗

h

y0 y1/2

y1

ϕ
[1]
h

ϕ
[2]
h Φh

y0

y1/2 y1

ϕ
[2]
h

ϕ
[1]
h

(24)

where one is the adjoint of the other. By Taylor expansion we find that(ϕ[1]
h ◦

ϕ
[2]
h )(y0) = ϕh(y0) +O(h2), so that both methods give approximations of order1

to the solution of (23).

Strang18 splitting or Marchuk 19 splitting. Another idea is to use a symmetric
version and put

Φ
[S]
h = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2 , Φ

[S]
h

y0

y1

ϕ
[1]
h/2

ϕ
[2]
h

ϕ
[1]
h/2

(25)

By breaking up in (25)ϕ[2]
h = ϕ

[2]
h/2 ◦ ϕ

[2]
h/2, we see that the Strang splitting

17H.F. Trotter,On the product of semi-groups of operators, Proc. Am. Math. Soc.10 (1959)
545–551.

18G. Strang,On the construction and comparison of difference schemes, SIAM J. Numer.
Anal. 5 (1968) 506–517.

19G. Marchuk, Some applications of splitting-up methods to the solution of mathematical
physics problems, Aplikace Matematiky 13 (1968) 103–132.
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Φ
[S]
h = Φh/2 ◦ Φ∗

h/2 is the composition of the Lie-Trotter method and its adjoint
with halved step sizes. The Strang splitting formula is therefore symmetric and of
order2 (see formula (21)).

Example 3 (The Symplectic Euler and the Sẗormer–Verlet Schemes)Suppose
we have a Hamiltonian system with separable HamiltonianH(p, q) = T (p) +
U(q). We consider this as the sum of two Hamiltonians, the first onedepending
only onp, the second one only onq. The corresponding Hamiltonian systems

ṗ = 0

q̇ = ∇pT (p)
and

ṗ = −∇qU(q)

q̇ = 0
(26)

can be solved without problem to yield

p(t) = p0

q(t) = q0 + t∇pT (p0)
and

p(t) = p0 − t∇qU(q0)

q(t) = q0.
(27)

Denoting the flows of these two systems byϕT
t andϕU

t , we see that the symplectic
Euler method (1) is just the compositionϕT

h ◦ ϕU
h , and its adjoint isϕU

h ◦ ϕT
h . The

Störmer–Verlet scheme (2) isϕU
h/2 ◦ ϕT

h ◦ ϕU
h/2, the Strang splitting (25).

General Splitting Procedure. In a similar way to the general idea of composi-
tion methods (19), we can form with arbitrary coefficientsa1, b1, a2, . . . , am, bm

(where, eventually,a1 or bm, or both, are zero)

Ψh = ϕ
[2]
bmh ◦ ϕ

[1]
amh ◦ ϕ

[2]
bm−1h ◦ . . . ◦ ϕ

[1]
a2h ◦ ϕ

[2]
b1h ◦ ϕ

[1]
a1h (28)

and try to increase the order of the scheme by suitably determining the free coef-
ficients.

A close connection between the theories of splitting methods (28) and of com-
position methods (19) was discovered by McLachlan (1995). Indeed, if we put
β1 = a1 and break upϕ[2]

b1h = ϕ
[2]
α1h ◦ ϕ

[2]
β1h (group property of the exact flow)

whereα1 is given in (30), furtherϕ[1]
a2h = ϕ

[1]
β2h ◦ ϕ

[1]
α1h and so on (cf. Figure 8), we

see, using (24), thatΨh of (28) is identical withΨh of (19), where

Φh = ϕ
[1]
h ◦ ϕ

[2]
h so that Φ∗

h = ϕ
[2]
h ◦ ϕ

[1]
h . (29)

A necessary and sufficient condition for the existence ofαi andβi satisfying (30)
is that

∑

ai =
∑

bi, which is the consistency condition anyway for method (28).
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Φ∗

β1h

Φα1h

Φ∗

β2h

Φα2h

Φ∗

β3h

y0

y1

ϕ
[1]
a1h

ϕ
[2]
b1h ϕ

[1]
a2h

ϕ
[2]
b2h ϕ

[1]
a3h

ϕ
[2]
b3h

a1 = β1

b1 = β1 + α1

a2 = α1 + β2

b2 = β2 + α2

a3 = α2 + β3

b3 = β3

(30)

Figure 8: Equivalence of splitting and composition methods.

Combining Exact and Numerical Flows. If the splitting (23) is such that only
the flow of, say,ẏ = f [1](y) can be computed exactly, we can consider

Φh = ϕ
[1]
h ◦ Φ

[2]
h , Φ∗

h = Φ
[2]∗
h ◦ ϕ

[1]
h (31)

as the basis of the composition method (19). Hereϕ
[1]
t is the exact flow ofẏ =

f [1](y), andΦ
[2]
h is some first-order integrator applied toẏ = f [2](y). SinceΦh

of (31) is consistent with (23), the above interpretation ofsplitting methods as
composition methods implies that the resulting method

Ψh = ϕ
[1]
αsh ◦ Φ

[2]
αsh ◦ Φ

[2]∗
βsh ◦ ϕ

[1]
(βs+αs−1)h ◦ Φ

[2]
αs−1h ◦ . . . ◦ Φ

[2]∗
β1h ◦ ϕ

[1]
β1h (32)

has the desired high order. Notice that replacingϕ
[2]
t with a low-order approxima-

tion Φ
[2]
t in (28) would not retain the high order of the composition, becauseΦ[2]

t

does not satisfy the group property.

Splitting into More than Two Vector Fields. Consider a differential equation

ẏ = f [1](y) + f [2](y) + . . . + f [N ](y), (33)

where we assume that the flowsϕ
[j]
t of the individual problemṡy = f [j](y) can be

computed exactly. There are many possibilities for extending (28) and for writing
the method as a composition ofϕ

[1]
ajh, ϕ

[2]
bjh, ϕ

[3]
cjh, . . . . A simple and efficient way

is to consider the first-order method

Φh = ϕ
[1]
h ◦ ϕ

[2]
h ◦ . . . ◦ ϕ

[N ]
h

together with its adjoint as the basis of the composition (19). Without any addi-
tional effort this yields splitting methods for (33) of arbitrary high order.
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6 Integrators based on generating functions

To construct symplectic numerical methods of high order, Feng Kang20 and Chan-
nell & Scovel21 proposed computing an approximate solution of the Hamilton–
Jacobi equation.

Recall that a mapping(pn, qn) 7→ (pn+1, qn+1) defined by

pn+1 = pn −∇qS
1(pn+1, qn), qn+1 = qn + ∇pS

1(pn+1, qn) (34)

is always symplectic (Section 5 of Lecture 1) and that it reproduces the exact
solution (after timeh) of the Hamiltonian system (Section 6 of Lecture 1) if

S1(p, q, t) = h G1(p, q) + h2 G2(p, q) + h3 G3(p, q) + . . .
where

G1(p, q) = H(p, q),

G2(p, q) =
1

2

(∂H

∂p

∂H

∂q

)

(p, q),

G3(p, q) =
1

6

(

∂2H

∂p2

(∂H

∂q

)2

+
∂2H

∂p∂q

∂H

∂p

∂H

∂q
+

∂2H

∂q2

(∂H

∂P

)2
)

(p, q).

If we use the truncated series

S1(p, q) = h G1(p, q) + h2 G2(p, q) + . . . + hr Gr(p, q) (35)

and insert it into (34), we obtain a symplectic one-step method of orderr. We
remark that forr ≥ 2 the methods obtained require the computation of higher
derivatives ofH(p, q), and for separable HamiltoniansH(p, q) = T (p) + U(q)
they are no longer explicit (compared to the symplectic Euler method (1)).

7 Variational integrators

All previous approaches start from extremizing theaction integral

S(q) =

∫ tN

t0

L
(

q(t), q̇(t)
)

dt,

then deriving the Euler–Lagrange equations and the equivalent Hamiltonian equa-
tions, and finally discretize the resulting differential equations.

20K. Feng,Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comp.
Math. 4 (1986) 279–289.

21P.J. Channell & J.C. Scovel,Symplectic integration of Hamiltonian systems, Nonlinearity 3
(1990) 231–259.
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Variational integrators start from discretizing the action integral followed by
extremizing it in a finite dimensional space to obtain discrete Euler–Lagrange
equations and (symplectic) numerical integrators.

For givenq0 andqN , we consider the approximation

Sh({qn}
N
0 ) =

N−1
∑

n=0

Lh(qn, qn+1), Lh(qn, qn+1) ≈

∫ tn+1

tn

L(q(t), q̇(t)) dt

of the action integral, whereLh plays the role of adiscrete Lagrangian. The
requirement∂Sh/∂qn = 0 for an extremum yields thediscrete Euler–Lagrange
equations

∂Lh

∂y
(qn−1, qn) +

∂Lh

∂x
(qn, qn+1) = 0 (36)

for n = 1, . . . , N − 1, where the partial derivatives refer toLh = Lh(x, y). This
gives a three-term difference scheme for determiningq1, . . . , qN−1. We introduce
thediscrete momentavia a discrete Legendre transformation,

pn = −
∂Lh

∂x
(qn, qn+1), (37)

so that the discrete Euler–Lagrange equations become equivalent to (substituten
for n + 1 in (36))

pn+1 =
∂Lh

∂y
(qn, qn+1). (38)

Under suitable assumptions onLh, the two equations (37) and (38) define a map-
ping (pn, qn) 7→ (pn+1, qn+1).

Theorem 9 The numerical method(pn, qn) 7→ (pn+1, qn+1), defined by (37) and
(38), is a symplectic integrator.

Proof. The differential ofLh = Lh(qn, qn+1) satisfies

dLh = pn+1 dqn+1 − pn dqn,

which proves symplecticity by Theorem 4 of Lecture 1.

Example 4 (MacKay22) ChooseLh(qn, qn+1) by approximatingq(t) as the linear
interpolant ofqn andqn+1 and the integral by the trapezoidal rule. This gives

Lh(qn, qn+1) =
h

2
L
(

qn,
qn+1 − qn

h

)

+
h

2
L
(

qn+1,
qn+1 − qn

h

)

(39)

22R. MacKay,Some aspects of the dynamics of Hamiltonian systems, in: D.S. Broomhead &
A. Iserles, eds.,The Dynamics of Numerics and the Numerics of Dynamics, Clarendon Press,
Oxford, 1992, 137–193.
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and hence the symplectic scheme, withvn+1/2 = (qn+1 − qn)/h for brevity,

pn =
1

2

∂L

∂q̇
(qn, vn+1/2) +

1

2

∂L

∂q̇
(qn+1, vn+1/2) −

h

2

∂L

∂q
(qn, vn+1/2)

pn+1 =
1

2

∂L

∂q̇
(qn, vn+1/2) +

1

2

∂L

∂q̇
(qn+1, vn+1/2) +

h

2

∂L

∂q
(qn+1, vn+1/2) .

For a mechanical LagrangianL(q, q̇) = 1
2
q̇T Mq̇ − U(q) and with the notation

pn+1/2 = Mvn+1/2, this reduces to the Störmer–Verlet method

pn+1/2 = pn −
h

2
∇U(qn)

qn+1 = qn + h M−1pn+1/2

pn+1 = pn+1/2 −
h

2
∇U(qn+1).

In this case, the discrete Euler–Lagrange equations (36) become the familiar sec-
ond order difference formulaM(qn+1 − 2qn + qn−1) = −h2∇U(qn).

Example 5 (Wendlandt & Marsden23) Approximating the action integral instead
by the midpoint rule gives

Lh(qn, qn+1) = hL
(qn+1 + qn

2
,
qn+1 − qn

h

)

. (40)

This yields the symplectic scheme, with the abbreviationsqn+1/2 = (qn+1 + qn)/2
andvn+1/2 = (qn+1 − qn)/h,

pn =
∂L

∂q̇
(qn+1/2, vn+1/2) −

h

2

∂L

∂q
(qn+1/2, vn+1/2)

pn+1 =
∂L

∂q̇
(qn+1/2, vn+1/2) +

h

2

∂L

∂q
(qn+1/2, vn+1/2).

For L(q, q̇) = 1
2
q̇T Mq̇ − U(q) andpn+1/2 = Mvn+1/2, this becomes the implicit

midpoint rule
pn+1/2 = pn −

h

2
∇U(qn+1/2)

qn+1 = qn + h M−1pn+1/2

pn+1 = pn+1/2 −
h

2
∇U(qn+1/2),

because we havepn+1/2 = (pn+1 + pn)/2.

23J.M. Wendlandt & J.E. Marsden,Mechanical integrators derived from a discrete variational
principle, Physica D 106 (1997) 223–246.
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8 Exercises

1. Prove that under the condition (9) a Runge–Kutta method preserves all first
integrals of the formI(y) = yT Cy + dT y + c.

2. Prove that the Gauss methods of maximal oder2s are the only collocation
methods satisfying (9).

Hint. Use the ideas of the proof of Lemma 13.9 in Hairer & Wanner24.

3. Show that each of the symplectic Euler methods in (1) is theadjoint of the
other.

4. Consider the composition method (15) withs = 5, γ5 = γ1, andγ4 = γ2.
Among the solutions of

2γ1 + 2γ2 + γ3 = 1, 2γ3
1 + 2γ3

2 + γ3
3 = 0

find the one that minimizes|2γ5
1 + 2γ5

2 + γ5
3 |.

Remark.This property motivates the choice of theγi in (18).

5. Design a symmetric splitting method for the Euler equations of a rigid body
with given principal momenta of inertiaI1, I2, I3

ẏ = B(y)∇H(y), B(y) =





0 −y3 y2

y3 0 −y1

−y2 y1 0





by splitting the Hamiltonian

H(y1, y2, y3) =
1

2

( y2
1

I1

+
y2

2

I2

+
y2

3

I3

)

into three parts.

24E. Hairer & G. Wanner,Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems, 2nd edition, Springer Series in Computational Mathematics14, Springer-
Verlag Berlin, 1996.
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