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A numerical one-step methag . ; = ®;,(y,) is calledsymplectidf, when applied
to a Hamiltonian system, the discrete flgw— &, (y) is a symplectic transforma-
tion for all sufficiently small step sizes. Pioneering worksymplectic integrators
is due to de Vogelaere (1956Ruth (1983), and Feng Kang (198%)

1 Basic symplectic integration schemes

The most simple symplectic integrators are motivated bytieery of generating
functions for symplectic transformations (see Lecturé/t®.consider the Hamil-
tonian system in the variables= (p, q),

R. de VogelaereMethods of integration which preserve the contact transtion property
of the Hamiltonian equation&®Report No. 4, Dept. Math., Univ. of Notre Dame, Notre Danmel, |
(1956)

2R.D. Ruth,A canonical integration techniquéEEE Trans. Nuclear Science NS-30 (1983)
2669-2671.

3K. Feng, On difference schemes and symplectic geom&rgceedings of the 5-th Intern.
Symposium on differential geometry & differential equatip Aug. 1984, Beijing (1985) 42—-58.

orequivalently y=J 'VH(y).




Theorem 1 (symplectic Euler) The so-called symplectic Euler methods
Pn+1 = Pn — thH(anrla Qn) or Pn4+1 = Pn — thH(pm QnJrl)

Gn+1 = Qqn + thH(anrla Qn) Gn+1 = Q4n + thH(pna QnJrl)
are symplectic methods of ordéer

(1)

Proof. Symplecticity is an immediate consequence of the first twaratteriza-
tions of Theorem 5 (Lecture 1). Consistency of the schembvgas. O

The methods (1) are implicit for general Hamiltonian systeffor separable
H(p,q) = T(p)+U(q), however, both variants turn out to be explicit. This is also
the case for the methods of the next theorem.

Theorem 2 (Sbrmer—Verlet) The Sbrmer—Verlet schemes
h
Pn+1/2 = Pn — 5 VqH<pn+1/27 qn)
h
dn+1 = Qn + 5 (VpH(pn-H/Qa Qn) + VPH(pn-H/Qa QnJrl)) (2)

h
Pn+1 = Pnt1/2 — 5 VqH(an/Q, Gnt1)
and N
Qn+1/2 = dn + 5 va(pna Qn+1/2)

h
Pn+1 = Pn — 5 (qu(pna Qn+1/2) + VqH(pn—i—la Qn+1/2)) (3)

h
Int1 = Gnt1/2+ 5 Vo H (Prt1; Gni1/2)
are symplectic methods of order

Proof. The statement follows from the fact that the Stormer—VYestdeme is the
composition of the two symplectic Euler methods (1) withpstezeh /2. Even
order2 follows from its symmetry. ]

For a second order differential equatigr- —VU(q), for which the Hamilto-
nianis H(p,q) = £ p'p+ U(q) , method (2) becomes
qn — 4n—
ni1 —2Gn + qu1 = —h? VU(Qn)a Pn = % (4)

Theorem 3 (implicit midpoint) The implicit midpoint rule

Yo = g+ IV (BT (5)

is a symplectic method of order
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Figure 1: Area preservation of numerical methods for thedpm; same initial
sets as in Figure 3 of Lecture 1; first order methods (leftmoly » = 7/4;
second order methods (right colummn)= 7 /3; dashed: exact flow.

Proof. Symplecticity is a consequence of the third charactenrnadi Theorem 5
(Lecture 1), and ordeX follows from the symmetry of the method. m|

We consider the pendulum problem with Hamiltonidxy, ¢) = %pQ — €08 q.
We apply six different numerical methods to this probleme #xplicit Euler
method, the symplectic Euler method (1), and the implicieEmethod, as well
as a second order method of Runge, the Stormer—Verlet scf@mand the im-
plicit midpoint rule (5). For two sets of initial valuég,, o) we compute several
steps with step size = «/4 for the first order methods, artd= /3 for the sec-
ond order methods. One clearly observes in Figdrthat the explicit Euler, the
implicit Euler and the second order explicit method of Ruage not symplectic
(not area preserving).

4This figure and most of the text are taken from the monog@gbmetric Numerical Integra-
tion by Hairer, Lubich & Wanner.



2 Symplectic Runge—Kutta methods

An s-stage Runge—Kutta method, applied to an initial value leroly = f(¢,y),
y(to) = yo is given by the formulas

ki = f(to+cih,yo+h2aijkj), izl,...,S
: = ©)

vy = y(]“‘thzkz,
=1

wherec; = ijl a;;. We allow a full matrix(a;;) of non-zero coefficients, so that
the slopeg; are defined implicitly. For the study of their symplectiorig follow
the approach of Bochev & Scovellt relates symplecticity to the conservation
of quadratic first integrals. Recall that a functiéfy) is afirst integral of the
differential equationy = f(y), if I'(y) f(y) = 0 for all y.

Theorem 4 If a Runge—Kutta method (6) conserves quadratic first iratksgfi.e.,
I(y1) = I(yo) whenevet (y) = y'Cy, with symmetric matrig’, is a first integral
ofy = f(y)), then it is symplectic.

Proof. Symplecticity of the discrete flow — &, (y) means that for a Hamiltonian
problem the quadratic expressign J ¥ (with ¥ = &/ (y)) is a first integral of
the variational equation. The statement of the theoreneietbre a consequence
of the fact that for Runge—Kutta methods the following daagrcommutes:

y=f(y), y0)=1yo

y=f(y), y(0)=yo U — PV, W(0)=1

lmethod lmethod

{Un} — {Yn, Vo }

(horizontal arrows mean a differentiation with respectydp Therefore, the nu-
merical resulty,,, ¥,,, obtained from applying the method to the problem aug-
mented by its variational equation, is equal to the numesiaiaition fory = f(y)
augmented by its derivativé,, = 0y,,/0yo.

SP.B. Bochev & C. Scoveldn quadratic invariants and symplectic structuiT 34 (1994)
337-345.



The commutativity of the above diagram is proved by impliifferentiation.
Let us illustrate this for the explicit Euler method

Yn+1 = Yn + hf(yn)

We considewy,, andy,; as functions ofy,, and we differentiate with respect to
Yo the equation defining the numerical method. For the Eulehatethis gives

OYn 11 OYn, ! OYn,
= R f () 5
Yo o £ () Yo
which is exactly the relation that we get from applying thetimoe to the varia-
tional equation. Sinc8y,/dy, = I, we havedy,, /0y, = V,, for all n. O

An elegant proof of symplecticity is possible for Gauss @céition methods.
They are defined as follows: let, ..., c, be the zeros of the shifted Legendre
polynomial ‘fv (xs(l — x)s), and letu(t) be the polynomial of degreesatisfying

u(to) = yo
u(ty + c;h) = f(to + cih,u(ty + cih)), 1=1,...,8,

then the numerical solution of tH@auss collocation method defined byy,; =
Puttingk; = u(to + ¢;h), and expressing(t, + 7h) and by integration also

u(to+7h) interms of thek;, one see that these methods are special case of implicit

Runge—Kutta methods. The implicit midpoint rule (5) is tpecal case = 1 of

the Gauss methods.

(7)

Theorem 5 The Gauss collocation methods conserve quadratic firggiateand
are thus symplectic by Theorem 4.

Proof. Let u(t) be the collocation polynomial of the Gauss methods, andhassu
that I(y) = y'Cy, with symmetricC, is a first integral ofy = f(y). Since
LT (u(t)) = 2u(t)TCu(t), it follows from u(to) = yo andu(ty + k) = y; that

to+h
y Cyr —yg Cyo = 2/ u(t)TCut) dt. (8)

to

The integrand.(¢)TCu(t) is a polynomial of degre2s — 1, which is integrated
without error by thes-stage Gaussian quadrature formula. It therefore follows
from the collocation condition

U(to + Cih)TC u(to + Czh) = U(to + Cih)TC f(u(to + Czh)) =0

that the integral in (8) vanishes. O



The following criterion on the conservation of quadratistfintegrals is due
to Coopef, that on the symplecticity has been found independently dsagn,
Sanz-Serrfq and Surig.

Theorem 6 If the coefficients of a Runge—Kutta method satisfy
biaij + bjaji = bzbj for all 1,7=1,...,s, (9)
then it conserves quadratic first integrals and it is symiped®y Theorem 4).

Proof. The Runge—Kutta relation; = yo + h Y _;_, b;k; yields

Y Cyr =y Cyo+h Y bk Cyo+h > bjyg Chy+h* > bibj ki Ck;. (10)

i=1 j=1 ij=1

We then writek; = f(Y;) with Y; = yo + h2§:1 a;jk;. The main idea is to
computey, from this relation and to insert it into the central expreasiof (10).
This yields (using the symmetry 6f)

i Cyr = yg Cyo + 20 Y b, YTCF(Y:) + B2 (biby — biay; — bjaz:) kI Ck;.

i=1 i,j=1

The condition (9) together with the assumptighC' f(y) = 0, which states that
yTCy is afirst integral ofy = f(y), imply y{ Cy; = y& Cyp. O

All results of this section can be extendedp@rtitioned Runge—Kutta meth-
ods where the components pfandq in a Hamiltonian system are treated by
different Runge-Kutta methods. The most prominent exaswgnle the symplectic
Euler method (combination of explicit and implicit Eulerycaithe Stormer—Verlet
method (combination of the trapezoidal rule and the impiradpoint rule).

6G.J. Cooper Stability of Runge—Kutta methods for trajectory probleriidA J. Numer.
Anal. 7 (1987) 1-13.

’F.M. LasagniCanonical Runge—Kutta methgdAMP 39 (1988) 952-953.

8J.M. Sanz-Sern&unge—Kutta schemes for Hamiltonian systeBi$ 28 (1988) 877-883.

9Y.B. Suris,On the conservation of the symplectic structure in the nicaksolution of Hamil-
tonian systemén Russian), In: Numerical Solution of Ordinary Differ@itEquations, ed. S.S.
Filippov, Keldysh Inst. of Appl. Math., USSR Academy of Suies, Moscow, 1988, 148-160.



3 The Adjoint of a Method

The flowy, of an autonomous differential equatign= f(y) satisfiesp~"} = ;.
This property is in general not shared by the one-step fiyapf a numerical
method. An illustration is presented in the upper picturEigtire 2 (a), where we
see that the one-step map for the explicit Euler method is different from the
inverse ofd_,,, which is the implicit Euler method.

Definition 1 The adjoint method®; of a method®,, is the inverse map of the
original method with reversed time ste, i.e.,

o=} (11)

(see Figure 2 (b)). In other wordg, = ®; (o) is implicitly defined by the relation
®_1(y1) = yo. A method for whichd; = &, is calledsymmetric

Figure 2: Definition and properties of the adjoint method

The adjoint method satisfies the usual properties sucfbps = ¢, and
(&, 0 Up)" = W} o & for any two one-step methods, and¥,,. The implicit
Euler method is the adjoint of the explicit Euler method. Tinglicit midpoint
rule is symmetric (see the lower picture of Figure 2 (a)), tredtrapezoidal rule
and the Stormer—\Verlet method are also symmetric.

Theorem 7 Let, be the exact flow of = f(y) and let®, be a one-step method
of orderr satisfying

Dn(yo) = @nlyo) + Clyo) " + O(h"?). 12)
The adjoint metho@; then has the same orderand we have
;. (y0) = n(yo) + (=1)"Clyo) A" + O(RP*T). (13)

If the method is symmetric, its (maximal) order is even.



Proof. The idea of the proof is exhibited in drawing (c) of Figure 2oifd a given
initial value y, we computepy,(yo) andy; = ®;(yo), whose difference* is the
local error of®;. This error is then projected back dy ;, to become:. We see
that—e is the local error ofb_,,, i.e., by hypothesis (12),

e = (=1)"Clen(yo)) "™ + O(W"*). (14)
Sincepy,(yo) = yo + O(h) ande = (I + O(h))e*, it follows that
e = (~1)Clyo)h"™* + O(h"*?)

which proves (13). The statement for symmetric methods isrenediate con-
sequence of this result, becaudg = &; implies C(yy) = (—1)"C(yo), and
thereforeC'(y,) can be different from zero only for even m]

4 Composition methods

Let &, be a basic method and, . . ., v, real numbers. Then we call its composi-
tion with step sizes; h, y2h, ..., vsh, i.€.,
\Ifh:(D%ho...oq)%h, (15)

the corresponding composition method (see Figure 3(a)¢ alim is to increase
the order while preserving desirable properties like syojitity of the basic
method.

Theorem 8 Let®,, be a one-step method of order|f

1+...+7 =1
Y4 =0 (16)

then the composition meth@dlS) is at least of order + 1.

Proof. The proof is presented in Figure 3(b) for= 3. It is very similar to the
proof of Theorem 7. Starting with,, we lety;, = ®.,.;,(vi—1), S0 that¥;,(yo) = ys.
By hypothesis we have ; = ¢-.1(yi) — ®,.(vi) = C(yi) v THh™ L + O(W+2),
and the transported local error satisfiés= (I + O(h))e; for all i. Because of
yi = yo + O(h) it follows from >"7_, ~; = 1 (consistency requirement) that

en(yo) = Un(yo) = E1 4 ...+ Es = Clyo) (Vi + ...+ THR™ + O(W )

which shows that under conditions (16) tt¢h"!)-term vanishes. O

8
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Figure 3: Composition of method, with three step sizes

Example 1 (The Triple Jump) Equations (16) have no real solution for ocld
Therefore, the order increase is only possible for evdn this case, the smallest
s which allows a solution iss = 3. We then have some freedom for solving
the two equations. If we impose symmetyy = ~3, then we obtain (Creutz &
Gocksch?, Forest!, Suzuki?, Yoshidd?®)

1 21/(r+1)

71:73:m, 72:—m- (17)

This procedure can be repeated: we start with a symmetribodeaf order2,
apply (17) withr = 2 to obtain ordeB; due to the symmetry of the's this new
method is in fact of ordet (see Theorem 7). With this new method we repeat
(17) withr = 4 and obtain a symmetrig-stage composition method of ordgr
then withr = 6 a27-stage symmetric composition method of ordeand so on.
One obtains in this waginyorder, however, at the price of a terrible zig-zag of the
step points (see Figure 4).

.—
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Figure 4: The Triple Jump of order 4 and its iterates of oréesiad 8

10M. Creutz & A. GockschHigher-order hybrid Monte Carlo algorithm#®hys. Rev. Lett. 63
(1989) 9-12.

11E. ForestCanonical integrators as tracking codeslP Conference Proceedings 184 (1989)
1106-1136.

12M. Suzuki, Fractal decomposition of exponential operators with agglions to many-body
theories and Monte Carlo simulatiorBhys. Lett. A 146 (1990) 319-323.

13H. Yoshida,Construction of higher order symplectic integratoRhys. Lett. A 150 (1990)
262-268.



Example 2 (Suzuki’'s Fractals) If one desires methods with smaller valuesof
one has to increaseeven more. For example, for= 5 the best solution of (16)

has the sign structure + — + + with v; = ~, (Suzuki 1990). This leads to
1 41/(r+1)
71:72:74:75:4_41/(7‘+1)’ 73:_4_41/(r+1)' (18)

The repetition of this algorithm for = 2,4, 6, ... leads to a fractal structure of
the step points (see Figure 5).

0
Figure 5: Suzuki's ‘fractal’ composition methods

Composition with the Adjoint Method. If we replace the composition (15) by
the more general formula

Uy, =@y, 095 ,0...00%, 0Py, 005, (29)

the condition for order + 1 becomes, by using the result (13) and a similar proof
as above,
Bi+or+ P+ ...+ B +a, =1
(_1)TBI+1 4 anrl + (_1)7“ §+1 o+ (—1)rﬁ§+1 + a73"+1 =0

This allows an order increase for odds well. In particular, we see at once the
solutiona; = (3, = 1/2 for r = s = 1, which turns every consistent one-step
method of ordei into a second-order symmetric method

Uy, = By 0 B} . (21)

For example, ifb,, is the explicit (resp. implicit) Euler method, th&n, in (21) be-
comes the implicit midpoint (resp. trapezoidal) ruled}f is the symplectic Euler
method, then the composed methbglin (21) is the Stormer—Verlet method.

(20)

A Numerical Example. To demonstrate the numerical performance of the above
methods, we choose the Kepler problem on the intdfval5] with initial values
corresponding to an eccentricity= 0.6 (see Lecture 1). As the basic method we
use the Stormer—\Verlet scheme and compare in Figure 6 tple Tump (17) and
Suzuki (18) compositions for a large number of differentidptiant basic step
sizes and for orders = 4, 6, 8, 10, 12. The maximal final error is compared with

10
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Figure 6: Numerical results of the Triple Jump and Suzukp seequences (grey
symbols) compared to optimal methods (black symbols)

the total number of function evaluations in double logamitiscales. We observe
that the wild zig-zag of the Triple Jump (17) is a more seribasdicap than the
large number of small steps of the Suzuki sequence (18).

Optimized composition methods. The construction of optimal methods (large
order with minimals) needs an elaborate order theory and cumbersome numerical
search algorithms. We just present the coefficients @tamrder method* 1> 16

v = = 0.74167036435061295344822780
Yo = Y14 = —0.40910082580003159399730010
vy =z = 0.19075471029623837995387626 P8 51D
Y = V1o = —0.57386247111608226665638773 g 22)
vs = = 0.20906418130365592384446354 |
Y6 = Y0 = 0.33462491824529818378495798
vr =9 = 0.31529309239676659663205666
vs = —0.79688793935291635401978884

The results of thisth order method and of an optimized method of ordleare
included in Figure 6 with black symbols. They outperformdbf the previous
approaches.

14M. Suzuki & K. Umeno Higher-order decomposition theory of exponential operstmnd its
applications to QMC and nonlinear dynamj&pringer Proceedings in Physics 76 (1993) 74-86.

15M. Suzuki,Quantum Monte Carlo methods and general decompositiomyraf@xponential
operators and symplectic integratofhysica A 205 (1994) 65-79.

16R.I. McLachlanOn the numerical integration of ordinary differential edioas by symmetric
composition method$SIAM J. Sci. Comput. 16 (1995) 151-168.

11



5 Splitting methods

We consider an arbitrary systgm= f(y) in R", and suppose that the vector field
is “split” as (Figure 7) .
g =) + P (23)

If the exact flowsp}” and” of the systemg = fl(y) andy = f2/(y) can be
calculated explicitly, we can compose them to get numeapgakoximations.

P
|
!

Lie—Trotter 1 splitting. If, from a given initial valuey,, we first solve the first
system to obtain a valug />, and from this value integrate the second system to

P4t
TR
bt
2

2]

o
o> o> o> o> o> o> o> o>
o> o> o3

o-»o-»e—kh o> o> o>
o> o> o

o3 03 03 03 03 03 0>
03 03 03 03 03 0 0 0>

Figure 7: A splitting of a vector field.

obtainy;, we get numerical integrators 1]
2l . AU Yz P
q)* = e} (I)h s Y
h=%n OPp g4 <p[2] 2
1 9 7 h Qph /@h (24)
Oy = ) 0 o)y Yo 1 Y1/ ’
Ph Yo

where one is the adjoint of the other. By Taylor expansion we fhat(gof] o

o) (y0) = en(yo) + O(h?), so that both methods give approximations of order
to the solution of (23).

Strang!® splitting or Marchuk *° splitting. Another idea is to use a symmetric

version and put (pg/]Q

Y
[2]
S
CI)E%} = @5}2 o gpf] o @5}2 , “h @LS} (25)

Yo
- - 2 _ 0 e L
By breaking up in (25)p," = Phja © Ppja WE SEE that the Strang splitting

"H.F. Trotter,On the product of semi-groups of operatoRroc. Am. Math. Soc.10 (1959)
545-551.

18G. Strang,On the construction and comparison of difference scherB&M J. Numer.
Anal. 5 (1968) 506-517.

19G. Marchuk, Some applications of splitting-up methods to the solutibrmathematical
physics problemsAplikace Matematiky 13 (1968) 103—-132.

12



@LS} = Py2 0 @}, Is the composition of the Lie-Trotter method and its adjoint
with halved step sizes. The Strang splitting formula isefae symmetric and of
order2 (see formula (21)).

Example 3 (The Symplectic Euler and the Sirmer—\Verlet Schemes)Suppose
we have a Hamiltonian system with separable Hamiltorfip, ) = T'(p) +
U(q). We consider this as the sum of two Hamiltonians, the firstaem@ending
only onp, the second one only an The corresponding Hamiltonian systems

S0 S _vU
P and P = VU (26)
¢ = V,pT(p) qg=0

can be solved without problem to yield

t) = t) = -t
p(t) = po ang PO = po—tVU(a) 27
q(t) = qo +tV,T(po) q(t) = qo

Denoting the flows of these two systemsydgyandp?, we see that the symplectic
Euler method (1) is just the compositigr] o ¢, and its adjoint isp! o oI The
Stormer—\Verlet scheme (2) 4#{/2 oplo gpg/z, the Strang splitting (25).

General Splitting Procedure. In a similar way to the general idea of composi-
tion methods (19), we can form with arbitrary coefficientisb,, as, .. ., a,, by,
(where, eventually;, orb,,, or both, are zero)

U, = Qpl[)ih o ngjnh o (pl[il_lh 0...0 gpgjh o Qpl[i]h o gpgjh (28)
and try to increase the order of the scheme by suitably detergithe free coef-
ficients.

A close connection between the theories of splitting me$l{@8) and of com-
position methods (19) was discovered by McLachlan (1998jleéd, if we put

(1 = a; and break uppfl]h = gogh o @Eﬂh (group property of the exact flow)

whereq, is given in (30), furthers!!), = o), o o), and so on (cf. Figure 8), we
see, using (24), thak, of (28) is identical with¥;, of (19), where

By =y op,  sothat @ =gl oy (29)

A necessary and sufficient condition for the existence,;andj3; satisfying (30)
isthat)  a; = > b;, which is the consistency condition anyway for method (28).

13



CL1=51

by =01+

as = aq + [ (30)
by = B2 +

az = az + s

by = [33

Figure 8: Equivalence of splitting and composition methods

Combining Exact and Numerical Flows. If the splitting (23) is such that only
the flow of, sayy = f!!l(y) can be computed exactly, we can consider

B=p 0@, B = o) (31)

as the basis of the composition method (19). I—Lebléis the exact flow ofy =
F(y), and®!” is some first-order integrator applied jo= f2(y). Since®,
of (31) is consistent with (23), the above interpretatiorsplitting methods as
composition methods implies that the resulting method

1 2 2% 1 2 2% 1
U, = gp&ih o q)(!h o (I)[ﬁs]h o SOEB}SjLaS,l)h o @&iilh 0...0 (I)[ﬁl]h o (’O[ﬁl}h (32)

has the desired high order. Notice that repla@ﬁ@;with a low-order approxima-
tion @EQ] in (28) would not retain the high order of the compositiorr;duﬁe@?]
does not satisfy the group property.

Splitting into More than Two Vector Fields. Consider a differential equation
g = My + P + .+ MNy), (33)

where we assume that the flowg' of the individual problemg = fU!(y) can be
computed exactly. There are many possibilities for exteg@28) and for writing
the method as a composition of’, gog}h, @Li]h, ... . Asimple and efficient way
is to consider the first-order method

N
(I)h:gog}ogpgf}o...ogp%}

together with its adjoint as the basis of the compositior).(38ithout any addi-
tional effort this yields splitting methods for (33) of aitairy high order.

14



6 Integrators based on generating functions

To construct symplectic numerical methods of high ordengR€ang® and Chan-
nell & Scovef! proposed computing an approximate solution of the Hamilton
Jacobi equation.

Recall that a mappintp,., ¢,) — (Pn+1, ¢ns1) defined by

Pn+1 = Pn — vqsl(pn-i—la Qn)a qn+1 = Qn + VpSl (pn+17 qn) (34)

is always symplectic (Section 5 of Lecture 1) and that it oepices the exact
solution (after timeh) of the Hamiltonian system (Section 6 of Lecture 1) if

SY(p,q,t) = hGi(p,q) + h* Ga(p, q) + h* Ga(p,q) + . ..

where
Gi(p,q) = H(p,q),
1,0HOH
Ga(p,q) = §(a—pa—q>(p,Q),
1/0*°H j0H\2 0°H OHOH 0O*H /0H\?
Gslp,a) = a(ap2 (3¢) * %ocap ag + o (op) )@v )
If we use the truncated series

S'(p,q) = hGi(p,q) +h* Ga(p,q) + ...+ I G.(p, q) (35)

and insert it into (34), we obtain a symplectic one-step methf orderr. We
remark that forr > 2 the methods obtained require the computation of higher
derivatives ofH (p, q), and for separable Hamiltoniad$(p, q) = T'(p) + U(q)
they are no longer explicit (compared to the symplectic Endethod (1)).

7 Variational integrators

All previous approaches start from extremizing #wtion integral

s)= [ Y Lat).q(0)) .

to
then deriving the Euler—Lagrange equations and the eguivedlamiltonian equa-
tions, and finally discretize the resulting differentiabiatgjons.

20K. Feng,Difference schemes for Hamiltonian formalism and symjgegtometry J. Comp.
Math. 4 (1986) 279—-289.

21p J. Channell & J.C. ScoveSymplectic integration of Hamiltonian systgrionlinearity 3
(1990) 231-259.
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Variational integrators start from discretizing the aotiategral followed by
extremizing it in a finite dimensional space to obtain disecreuler—Lagrange
equations and (symplectic) numerical integrators.

For giveng, anqu, we consider the approximation

tn+1
Sn({an}0) Z Li(qn; qnt1); Ln(@ns Qi) = / L(q(t),q(t))dt
¢

n

of the action mtegral, wheré,;, plays the role of aiscrete Lagrangian The
requiremen®sS;, /dq, = 0 for an extremum yields thdiscrete Euler—Lagrange
equations
oLy, oLy,
. \Un—-1,4n a_ \Un,l4n =0 36
ay(q 1 n) + 5 (G Gn) (36)
forn =1,..., N — 1, where the partial derivatives refer fg, = L;(z,y). This
gives a three-term difference scheme for determiging. ., gv_1. We introduce
thediscrete momentaia a discrete Legendre transformation,
0Ly
n — ny In 37
p 5 (s ), (37)
so that the discrete Euler—Lagrange equations becomeadenuivto (substitute

forn + 11in (36)) 5
L
Prt1 = 6—;(%, Gnt1)- (38)

Under suitable assumptions én, the two equations (37) and (38) define a map-
plng (pn7 Qn) = (pn-i-la Qn-l-l)'

Theorem 9 The numerical methotb,,, ¢,) — (Pni1, dny1), defined by (37) and
(38), is a symplectic integrator.

Proof. The differential ofL, = L;,(¢., ¢.+1) Satisfies
dLy = Pnt1 dqn+1 — Dn de
which proves symplecticity by Theorem 4 of Lecture 1. O

Example 4 (MacKay??) ChooseL;, (¢., ¢.+1) by approximating;(¢) as the linear
interpolant ofg,, andg, .1 and the integral by the trapezoidal rule. This gives

h Gn+1 — ¢ h Gn+1 — ¢
L@ 1) = 5 D(gn ) 4 2L (guin, ) (39)
2 h 2 h
2?2R. MacKay,Some aspects of the dynamics of Hamiltonian system®.S. Broomhead &
A. Iserles, eds.The Dynamics of Numerics and the Numerics of Dynant@idarendon Press,
Oxford, 1992, 137-193.
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and hence the symplectic scheme, with, /> = (¢,4+1 — ¢»)/h for brevity,

10L 10L h oL
Pn = 2 EX (Qnavn+1/2) 2 ER (Qn+1avn+1/2) 2 dq (Qnavn+1/2)
10L 10L h oL

Pnt1 = 2 EX (Qnavn+1/2) 58_q(Qn+1avn+1/2) + Ea_(qn—f—lavn—l—l/Z)-

For a mechanical Lagrangiailq, ) = %q‘TMq‘ — U(q) and with the notation
Prt1/2 = Mu,41/9, this reduces to the Stormer—Verlet method
h
Prnt1/2 = Pn — B} VU(Qn)
n+1 = QGn + hM_lanrl/Q
h
Pnt+1 = Pni1/2 — 5 VU (gn1)-

In this case, the discrete Euler—Lagrange equations (3®)rbe the familiar sec-
ond order difference formuld/ (g, 11 — 2¢, + ¢u_1) = —h*VU(q,)-

Example 5 (Wendlandt & Marsdeff) Approximating the action integral instead
by the midpoint rule gives

B Int1 + qn Gnt1 — Gn
Ln@ns qun) = (e, Ju ), (40)
This yields the symplectic scheme, with the abbreviatigns,, = (¢,1+1+ ¢»)/2
andvn+1/2 = (o1 — @)/,

= % ) 29 )
Pn = EX An+1/2, Un+1/2 2 0q In+1/25 Un+1/2
oL h OL

Pnt+1 = a_q-(QHJrl/%anrlﬂ) +5 2°9q (qn+1/2,vn+1/2)

For L(q,q) = %qTMq' — U(q) andp,,;1/2 = Muv,41/9, this becomes the implicit
midpoint rule

Pnt1/2 = Pn — gVU(Qn—H/Q)
i1 = G +h M iy
Prny1 = DPnt1/2 — ng<Qn+l/2>7
because we havg, 1/2 = (Pnt1 + n)/2.

23J.M. Wendlandt & J.E. MarsdeMechanical integrators derived from a discrete variatibna
principle, Physica D 106 (1997) 223-246.
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8 Exercises

1

Prove that under the condition (9) a Runge—Kutta methesgguves all first
integrals of the form? (y) = y"Cy + d"y + c.

. Prove that the Gauss methods of maximal @deare the only collocation

methods satisfying (9).
Hint. Use the ideas of the proof of Lemma 13.9 in Hairer & Wariher

Show that each of the symplectic Euler methods in (1) istheint of the
other.

Consider the composition method (15) with= 5, 75 = 1, and~y, = ..
Among the solutions of

291+ 27+ 3 =1, 297 + 27 + 73 =0

find the one that minimizel@+? + 25 + 73|
Remark.This property motivates the choice of thgin (18).

. Design a symmetric splitting method for the Euler equettiof a rigid body

with given principal momenta of inertig, I, I3

0 —Ys Y2
y = B(y)VH(y), Bly)= vs 0 —u
Y2 U 0

by splitting the Hamiltonian

1/ y? 2 2
H(yla?/2>y3)25(%+%+%)

into three parts.

24E, Hairer & G. WannerSolving Ordinary Differential Equations II. Stiff and Défential-
Algebraic Problems, 2nd editiorSpringer Series in Computational Mathematles Springer-
Verlag Berlin, 1996.
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