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Abstract. The time integration of differential equations obtained by the space discretization
via finite differences of evolution parabolic PDEs with mixed derivatives in the elliptic operator is
considered (the method of lines approach). W-methods (Rosenbrock-type methods) are combined
with the approximate matrix factorization (AMF) technique, which is applied in the alternating
direction implicit sense. A new AMF approach, based on an iterative refinement of the linear
system, allows one to improve stability properties of the integrator. The focus of the paper is a
stability analysis, which is based on a scalar test equation that is relevant for the class of problems
when periodic or homogeneous Dirichlet boundary conditions are considered. Unconditional stability,
independent of the number of space dimensions m, is proved for a variety of AMF-type W-methods.
Numerical experiments with linear parabolic problems in dimension m = 3 and m = 4, as well as
with the Heston problem from financial option pricing, are presented.
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1. Introduction. The time integration of parabolic partial differential equations
with mixed derivatives discretized in space by means of the method of lines (MOL) is
considered. Well-known time integrators of order less than or equal to two of alternat-
ing direction implicit (ADI) type for parabolic problems with mixed derivatives are
the Craig–Sneyd (CS) [3], Hundsdorfer–Verwer (HV) [19, 20, 22], and the modified
Craig–Sneyd (MCS) [22, 23] schemes. The analysis of unconditional stability on linear
diffusion problems with constant coefficients for these schemes in the case of periodic
boundary conditions and some general finite difference discretizations for the mixed
derivatives was carried out in [22]. The HV scheme has been recently considered to-
gether with space discretizations of order 4 in [5] and applied to stochastic volatility
models in financial option pricing in [6]. Compact schemes of order 4 in space together
with both the MCS and the HV schemes have also been treated recently in [16, 17].

In the present paper, our focus is on W-methods ([33]; see also [15, section IV.7]),
which avoid the solution of nonlinear equations and only require an approximate
solution of linear systems with matrix I − θτW , where I is the identity, θ is a real
parameter, τ is the time step size, and W is an approximation to the Jacobian matrix
of the ordinary differential equation (ODE). This paper is a continuation of [8], where
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the authors introduced the class of PDE-W-methods aimed at increasing the temporal
order of convergence in time by considering W-methods of classical order at least
three. However, it turns out that these latter methods are only unconditionally stable
whenever the spatial dimension is at most three. Here we propose a new class of
methods, combining the approximate matrix factorization (AMF) [34, 20] for the
matrix I − θτW with a refinement to the solution of the linear systems [9, section 3],
which can be unconditionally stable regardless of the spatial dimension.

1.1. Class of evolution equations. On a rectangular domain Ω = (0, 1)m ⊂
Rm and for t > 0 we consider parabolic partial differential equations with mixed
derivatives,

(1.1)

∂tu = g(t, ~x, u) +

m∑
j=1

ηj(t, ~x)∂xj
u+

m∑
i,j=1

αi,j(t, ~x) ∂2
xixj

u,

~x = (x1, . . . , xm)> ∈ Ω, t ∈ [0, T ],

u(t, ~x) = β(t, ~x), (t, ~x) ∈ [0, T ]× ∂Ω,

u(0, ~x) = a(~x), ~x ∈ Ω,

where ∂Ω denotes the boundary of Ω (Ω̄ = Ω ∪ ∂Ω), g(t, ~x, u) stands for the reaction
terms, ηj(t, ~x) corresponds to advection terms on each space variable, and the diffusion
terms are those corresponding to the coefficient matrix (αi,j(t, ~x))mi,j=1, which will be

assumed to be symmetric and positive definite for every (t, ~x) ∈ [0, T ] × Ω̄. In the
present work we confine the space variables to the m-dimensional unit square but it
straightforwardly extends to any m-dimensional box. The PDE problem is provided
with initial conditions and with Dirichlet boundary conditions. PDE problems of the
form (1.1) in several spatial variables arise, e.g., when pricing several interest rate
derivatives with SABR/LIBOR market models (see, e.g., [27, p. 1620]).

1.2. Space discretization and dimensional splitting of the ODEs. With
a space discretization (e.g., by means of finite differences or finite volumes) we get a
large system of ODEs

(1.2) U̇ = F (t, U), U(0) = U0, t ∈ [0, T ],

where U(t) is a real vector approximating the solution values at grid points, and
F (t, U) collects the terms of the spatial discretization, the reaction terms, and the
contribution of inhomogeneous boundary conditions. The function F (t, U) can be
naturally split as (inspired by the ADI approach [30, 4])

(1.3) F (t, U) =

m∑
j=0

Fj(t, U),

where Fj(t, U) contains, for j = 1, . . . ,m, the terms corresponding to space deriva-
tives with respect to xj (including boundary conditions), and F0(t, U) collects the
terms corresponding to mixed derivatives, their respective boundary conditions, and
eventually also nonstiff reaction terms.

The present work considers time integrators that can be applied to general prob-
lems of the form (1.1), but our emphasis is on a stability analysis that gives insight
into the linear diffusion problem

(1.4) ∂tu =

m∑
i,j=1

αi,j ∂
2
xixj

u
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with constant coefficients αi,j and homogeneous Dirichlet boundary conditions. We
assume that the matrix A = (αi,j)

m
i,j=1 is symmetric and positive definite,1 so that

the right-hand side represents an elliptic operator.
Assuming two space dimensions (i.e., m = 2), Ω = (0, 1)× (0, 1) and equidistant

grids 0 < x1
1 < x2

1 < · · ·xn1
1 < 1 and 0 < x1

2 < x2
2 < · · ·xn2

2 < 1 with spacings
∆x1 = 1/(n1 + 1) and ∆x2 = 1/(n2 + 1), respectively, the standard second order
central discretization of (1.4) yields

U̇k,l = α1,1
1

∆x1
2

(
Uk+1,l − 2Uk,l + Uk−1,l

)
+ α2,2

1

∆x2
2

(
Uk,l+1 − 2Uk,l + Uk,l−1

)
+ 2α1,2

1

4 ∆x1∆x2

(
Uk+1,l+1 − Uk−1,l+1 − Uk+1,l−1 + Uk−1,l−1

)
,

where Uk,l ≈ u(xk1 , x
l
2) for 1 ≤ k ≤ n1 and 1 ≤ l ≤ n2. Collecting these values in

a vector U =
(
U1,1, U2,1, . . . , Un1,1, U1,2, . . . , Un1,2, . . . , U1,n2

, . . . , Un1,n2

)>
, and using

tensor product notation, the ODE becomes

U̇ = α1,1

(
In2
⊗Dx1x1

)
U + α2,2

(
Dx2x2

⊗ In1

)
U + 2α1,2

(
Dx2
⊗Dx1

)
U.

Here, Ip denotes the identity matrix of dimension p and Dxixi
and Dxi

are tridiago-
nal differentiation matrices with entries (1,−2, 1)/∆x2

i and (−1, 0, 1)/(2∆xi), respec-
tively.

For general space dimension m the central discretization yields U̇ =MU , where

(1.5)

M =

m∑
i=1

αi,i
(
Inm ⊗ · · · ⊗Dxixi ⊗ · · · ⊗ In1

)
+ 2

∑
1≤i<j≤m

αi,j
(
Inm ⊗ · · · ⊗Dxj ⊗ · · · ⊗Dxi ⊗ · · · ⊗ In1

)
.

The differentiation matrices Dxixi
and Dxi

are placed in the (m − i + 1)th position
of the tensor product.

1.3. Outline of the paper. The main goal of this paper is the introduction
of a new class of AMF-type W-methods for the time integration of (1.2)–(1.3) and a
stability analysis for linear parabolic problems with mixed derivatives and constant
coefficients. We consider three different approaches for dealing with the time inte-
gration, and we pay special attention to the unconditional stability of the proposed
schemes. All methods are based on the AMF, (see, e.g., [34, 20]) or some variants of it
applied to a given W-method. The choice of any of the AMF-variants applied on the
same underlying W-method supplies different methods, which are determined by the
choice of the preconditioner (I−θτW ) in the formulation (2.3). The methods slightly
differ in computational costs, stability properties, and consistency order (in the ODE
sense) among other features. In any case, the computational costs are quite reason-
able, since very few evaluations of the function F (t, U) are used and the solution of a
few linear systems with small bandwidth per integration step are required.

The rest of the paper is organized as follows. In section 2, three different ap-
proaches for combining W-methods with a splitting of AMF-type are presented. The

1In what follows we shall write A > 0 whenever A is a positive definite matrix.
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corresponding unconditional stability analysis relevant in the context of linear diffu-
sion problems with constant coefficients (1.4) is performed in section 3. For a practical
implementation, the application of AMF-type W-methods to nonautonomous prob-
lems is discussed in section 4. The numerical experiments of section 5 give a com-
parison with low order methods of the literature and illustrate the theoretical results
of section 3 on a linear model in three and four spatial dimensions. A comparison
of the proposed AMF-type W-methods with the classical Hundsdorfer–Verwer ADI
scheme on the two-dimensional (2D) Heston model from financial option pricing is
also presented. Some conclusions are drawn in section 6. Finally, section 7 contains
an appendix with some technical results that are needed in the analysis of section 3
and in subsection 5.4.

2. Time integration—W-methods. Our stability analysis is related to (1.4),
which leads to an autonomous differential equation. Therefore, we present the time
integrators for the autonomous system

(2.1) ẏ = f(y), y(0) = y0, t ∈ [0, T ],

where the vector field has a splitting

(2.2) f(y) =

m∑
j=0

fj(y).

By considering time t as an independent variable, the system (1.2) with the split-
ting (1.3) can be written in the form (2.1) with (2.2), where y = (t, U)>, f0(y) =(
1, F0(t, U)

)>
, and fj(y) =

(
0, Fj(t, U)

)>
, 1 ≤ j ≤ m. This will be discussed in more

detail in section 4.

2.1. W-methods for autonomous differential equations. Concerning the
time integration we focus our interest on W-methods, originally proposed in [33]; see
also [15, section IV.7]. They do not require the solution of nonlinear systems and
they permit the use of nonexact approximations (i.e., approximations W violating
(2.4)) for the Jacobian of the vector field. Consider the problem (2.1), and let yn be
a numerical approximation to y(t) at tn. Then, with a step size τ > 0, the numerical
approximation yn+1 at tn+1 = tn + τ is defined by

(2.3)

(I − θτW )K̃i = τf

(
yn +

i−1∑
j=1

ai,jK̃j

)
+

i−1∑
j=1

`i,jK̃j , i = 1, 2, . . . , s,

yn+1 = yn +

s∑
i=1

biK̃i.

The matrix W is arbitrary, but it is expected to be a rough approximation to f ′(yn).
For W = f ′(yn) we obtain the underlying Rosenbrock method. It is characterized by
(A, L, b, θ), where A = (ai,j)j<i, L = (`i,j)j<i and b = (bi).

Many W-methods of low order can be found in the literature. To get methods of
order 3 and higher it is convenient to assume

(2.4) W − f ′(yn) = O(τ), τ → 0;

see [7, 32, 26, 10]. Under the slightly less restrictive condition

(2.5) [W, f ′(yn)] = Wf ′(yn)− f ′(yn)W = O(τ), τ → 0,
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some families of third order methods are presented in [11]. The construction of efficient
W-methods of order ≥ 3 in the general setting W − f ′(yn) = O(1) is a challenging
issue due to the high number of order conditions to be satisfied; see, e.g., [15, 24].
Some W-methods of order four and six stages have been constructed in [31].

2.2. AMF-type W-methods. In the splitting (2.2), we assume that fj(y) (for
j = 1, . . . ,m) contains the terms corresponding to the spatial derivative with respect
to xj , and f0(y) collects discretizations of mixed derivatives (and eventually also
nonstiff reaction terms). In the following we denote

(2.6) A = f ′(yn), Aj = f ′j(yn), j = 0, 1, . . . ,m,

so that A = A0 +A1 + · · ·+Am. The idea of AMF is to write the matrix of the linear
system in (2.3) as a product of matrices, for which the linear systems can be solved
efficiently. In our situation Aj are tridiagonal for j = 1, . . . ,m, but this is not the
case for A0. For an approximation of the inverse of

(
I − θτf ′(yn)

)
we consider the

following cases:
(A) The direct AMF approach uses

(
I − θτW

)−1

=

1∏
j=m

(
I − θτAj

)−1

.

This approach has been studied in [20, section IV.5] for problems without
mixed derivatives. Note that in the presence of mixed derivatives condition
(2.4) is violated.

(B) With the aim of verifying (2.4) the following modification of approach (A),
leading to the so-called PDE-W-methods, is proposed in [8]:

(
I − θτW

)−1

=

1∏
j=m

(
I − θτAj

)−1(
I + θτA0

1∏
j=m

(
I − θτAj

)−1)
.

Instead of completely neglecting mixed derivatives, they are treated explicitly
combined with a damping of large eigenvalues.

(C) For solving the arising linear system in Rosenbrock methods the authors of
[9] suggest the use of a fixed number of preconditioned iterations with the
approach (A) as preconditioner, where θ is replaced by a new parameter ν.
In our situation this leads to the approximation

(
I − θτW

)−1

=

1∏
j=m

(
I − ντAj

)−1(
2I −

(
I − θτA

) 1∏
j=m

(
I − ντAj

)−1)
.

Similar as in the approach (B) mixed derivatives (which are present in A) are
treated explicitly, but a suitable choice of the new parameter ν allows us to
improve the stability properties of the method. Note that this approximation
also verifies the condition (2.4). We call the resulting method AMFR-W-
method, where “R” stands for refinement.

Remark 2.1. Since the approach (C) is new in the context of W-methods ap-
plied to parabolic problems with mixed derivatives, let us explain it in some more
detail. The idea is to solve the linear system (I − θτA)x = d̃ iteratively by using the



A2910 GONZÁLEZ-PINTO ET AL.

preconditioner
∏1
j=m(I − ντAj). This gives the iteration

1∏
j=m

(I − ντAj)(x(p) − x(p−1)) = d̃− (I − θτA)x(p−1),

whose convergence is analyzed in [9]. In the context of low order Rosenbrock methods
it was observed that two iterations are sufficient to give an efficient algorithm. Starting
the iteration with x(0) = 0 yields x(2) = (I − θτW )−1d̃ with the matrix (I − θτW )−1

given by approach (C).

3. Stability. The space discretization of (1.4) leads to the linear ODE with
natural splitting

U̇ =MU, U(0) = U0, M =

m∑
j=0

Mj ,

whereM is given by (1.5). The difficulty of studying the stability of time integrators
lies in the fact that the differentiation matrices Dx and Dxx do not commute. Here,
we consider a scalar test equation that is relevant for problems with periodic boundary
conditions [22] and also for homogeneous Dirichlet boundary conditions [8].

3.1. Test problem. Replacing Dxixi
by D2

xi
inM yields a system of differential

equations U̇ = M̃U which can be diagonalized. In [8] it is proved that the asymptotic

stability of U̇ = M̃U implies that of U̇ =MU . Our numerical experiments indicate
(although we do not have a rigorous proof) that such a property is likely to hold also
for the numerical solution.

The system U̇ = M̃U can be decoupled into scalar linear differential equations

(3.1) v̇ = −
( m∑

i,j=1

αi,jλiλj

)
v, λi ∈ R (i = 1, . . . ,m),

where iλi (with i the imaginary unit) represents an eigenvalue of Dxi . As in section 1.2
we assume that A = (αi,j)

m
i,j=1 is a symmetric positive definite matrix. The change

(3.2) ci,j = αi,j/
√
αi,i · αj,j , C = (ci,j)

m
i,j=1 > 0,

simplifies the scalar test problem (3.1) to

(3.3) u̇ = −
( m∑

i=1

λ2
i + 2

∑
1≤i<j≤m

ci,jλiλj

)
u, λi ∈ R (i = 1, . . . ,m).

The diagonal elements of the matrix C > 0 satisfy ci,i = 1, and the off-diagonal
elements are bounded as |ci,j | <

√
ci,i · cj,j = 1 for 1 ≤ i, j ≤ m, i 6= j.

3.2. Stability function. Applying an AMF-type W-method to (3.3) with

(3.4) fj(u) = −λ2
ju (j = 1, . . . ,m), f0(u) =

(
− 2

∑
i<j

ci,jλiλj

)
u

yields a recursion un+1 = R(z, z1, . . . , zm)un, where R(z, z1, . . . , zm) is a rational
function of the real variables

(3.5) z = z0 +

m∑
j=1

zj , zj = −τλ2
j , z0 = −2τ

∑
1≤i<j≤m

ci,jλiλj , τ > 0.
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It is called the linear stability function of the method. For the AMF-type W-method,
based on coefficients (A, L, b, θ), this function is given by

(3.6) R(z, z1, . . . , zm) = 1 + zb>
(
Πm(θ) Is − L− zA

)−1
1,

where 1 := (1, . . . , 1)> ∈ Rs. The expression Πm(θ) depends on the choice of the
AMF approximation (section 2.2) and is given by

(3.7)

(A)
1

Πm(θ)
=

1

Π∗m(θ)
AMF-W-method,

(B)
1

Πm(θ)
=

1

Π∗m(θ)

(
1 +

θz0

Π∗m(θ)

)
PDE-W-method,

(C)
1

Πm(θ)
=

1

Π∗m(ν)

(
2− 1− θz

Π∗m(ν)

)
AMFR-W-method,

where Π∗m(θ) :=
∏m
j=1 (1− θzj). Note that, for the case (C), the expression Πm(θ)

depends on the additional parameter ν > 0. We also remark that the positive def-
initeness of the matrix C implies that the real variable z, defined in (3.5), satisfies
z ≤ 0.

Definition 3.1. A numerical time integrator which, when applied to the test
equation (3.3), yields the recursion un+1 = R(z, z1, . . . , zm)un with stability function
(3.6), is called unconditionally stable for a given m ≥ 2 if

|R(z, z1, . . . , zm)| ≤ 1

for all z, z1, . . . , zm of (3.5) and each matrix C > 0.

3.3. Main result. To state our main result on unconditional stability, we will
need some stability properties of the underlying Rosenbrock method (A, L, b, θ). We
denote by

(3.8) Rθ(z) = 1 + zbT
(
(1− θz)I − L− zA

)−1
1, z ∈ C,

the function (3.6), where (1− θz) is substituted for Πm(θ). It is the stability function
based on Dahlquist’s test equation u̇ = λu, z = τλ. We recall that the Rosenbrock
method (A, L, b, θ) is A0-stable if its stability function (3.8) fulfills |Rθ(x)| ≤ 1 for all
x ≤ 0. This is one of the ingredients of our main result, which serves as a key lemma
for the stability statements.

Lemma 3.2. Consider an AMF-type W-method with stability function (3.6). As-
sume there exist θ0 > 0 and µm(θ) > 0 such that

(S1) |Rθ(z)| ≤ 1 for all real z ≤ 0 and for all θ ≥ θ0,

(S2) 0 <
1

Πm(θ)
≤ 1

1− µm(θ)z
for z, zj given by (3.5) with C > 0.

Then, the method is unconditionally stable for all θ satisfying µm(θ) ≥ θ0.

Proof. Taking into account that z ≤ 0, it follows from (S2) that

(3.9)
1

Πm(θ)
=

1

1− µz
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Table 1
Parameter θ0 of assumption (S1) for some Rosenbrock methods.

Method s = p = 1 s = p = 2 s = p = 3 [11, Theorem 1] s = p = 4 [10, section 6]

θ0 1/2 1/4 1/3 (3 +
√

3)/12

for some µ ≥ µm(θ) that may depend on θ, z, and zj , j = 1, . . . ,m. Consequently,
we have

R(z, z1, . . . , zm) = Rµ(z),

and assumption (S1) together with µ ≥ µm(θ) ≥ θ0 yields the statement of the
theorem.

The range of values for θ ≥ θ0 providing A0-stable methods (i.e., assumption
(S1)) is known for many Rosenbrock methods. Some results are collected in Table 1,
where s denotes the number of stages and p the classical order, and for p ≥ 3 also the
reference to the coefficients of the methods is given.

3.4. Verification of assumption (S2). The value of µm(θ), appearing in as-
sumption (S2), is the subject of the following three theorems.

Theorem 3.3 (AMF-W-methods). For the case (A) of (3.7) the assumption
(S2) is satisfied with

µm(θ) =
θ

m
.

Proof. The left inequality of assumption (S2) is obvious, because zj < 0 for
j = 1, . . . ,m. To prove the right inequality, we note that the positive definiteness of
C implies |ci,j | ≤ 1 for i 6= j, so that by the Cauchy–Schwarz inequality

z0 + z1 + · · ·+ zm = −τ
m∑

i,j=1

ci,jλiλj ≥ −τ
( m∑

j=1

|λj |
)2

≥ −τm
m∑
j=1

λ2
j = m

(
z1 + · · ·+ zm

)
.

This implies

Π∗m(θ)−
(
1− µz

)
≥
(
1− θ(z1 + · · ·+ zm)

)
−
(
1− µ(z0 + z1 + · · ·+ zm)

)
≥ (mµ− θ)(z1 + · · ·+ zm),

which is nonnegative for µ ≤ θ/m. Hence, the right inequality of assumption (S2) is
satisfied with µm(θ) = θ/m.

Note that the value µm(θ) of Theorem 3.3 is optimal in the sense that the right
inequality of assumption (S2) is no longer satisfied with µm(θ) that is larger than
θ/m.

Theorem 3.4 (PDE-W-methods). For the case (B) of (3.7) the assumption
(S2) is satisfied with

µm(θ) = θ for 2 ≤ m ≤ 3.

Proof. By [8, Theorem 5.2] the right inequality of assumption (S2) is satisfied for
all µm(θ) ≤ θ. The positivity of Πm(θ), i.e., the left inequality of assumption (S2),
follows from [8, Formula (3.11)] for m = 2, and from [8, Theorem 5.3] for m = 3.
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Table 2
Values for κm, 2 ≤ m ≤ 9, rounded up to 4 significant digits.

m 2 3 4 5 6 7 8 9

κm 0.2929 0.2680 0.2576 0.2519 0.2482 0.2457 0.2439 0.2425

To get results on unconditional stability also for m ≥ 4, one has to restrict the
class of problems, i.e., one has to pose additional conditions on C. Sufficient as well
as necessary conditions are discussed in [8, Remark 5.1].

For the verification of assumption (S2) for AMFR-W-methods we consider the
polynomial

(3.10) gm(x) = 2x
(m− x
m− 1

)m−1

− 1,

and denote by κm the smallest positive zero of gm(x). These numbers are given in
Table 2 for 2 ≤ m ≤ 9. One can prove (see Lemma 7.1 of section 7 below) that they
satisfy

(3.11) 0.2320 ≤ κm+1 < κm, (m+ 1)κm+1 > mκm.

Theorem 3.5 (AMFR-W-methods). For the case (C) of (3.7) the assumption
(S2) is satisfied with

µm(θ) = θ if ν ≥ mκmθ.

Proof. The identity

1

1− µz
− 1

Πm(θ)
=

1

1− µz

(
1− 1− µz

Π∗m(ν)

)2

+
(µ− θ)z
Π∗m(ν)2

implies that the right inequality of assumption (S2) is satisfied for all µm(θ) satisfying
µm(θ) ≤ θ (independent of the choice of ν).

The positivity of Πm(θ) (the left inequality of assumption (S2)) is equivalent to
2Π∗m(ν)− (1− θz) > 0, and, using the notation yj =

√
ντλj , can be written as

D := 2

m∏
j=1

(
1 + y2

j

)
− 1− θ

ν

m∑
i,j=1

ci,j yiyj > 0.

Using |ci,j | ≤ 1, we obtain the lower bound

(3.12) D ≥ 2

m∏
j=1

(
1 + y2

j

)
− 1− θ

ν

( m∑
j=1

|yj |
)2

.

It follows from Lemma 7.2 below that this lower bound is nonnegative if ν ≥ mκmθ,
and that it can be equal to 0 only if y1 = · · · = ym = y for some y 6= 0. However, in
this case the inequality in (3.12) is strict. This completes the proof of the theorem.

For the natural choice ν = θ of the additional parameter we have unconditional
stability for all C > 0 in dimensions m = 2 and m = 3, because mκm < 1 for m ≤ 3.
For m ≥ 4, one has the option of either choosing ν ≥ mκmθ > θ or restricting the
class of problems (as is necessary for the case (B)).
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3.5. Unconditional stability of AMF-type W-methods. Inserting the val-
ues of µm(θ) from section 3.4 into the main theorem we get the following result on
the unconditional stability of AMF-type W-methods.

Theorem 3.6. Consider a W-method (A, L, b, θ) and assume that the underlying
Rosenbrock method is A0-stable for all θ ≥ θ0. Then we have unconditional stability
in dimension m for the

• AMF-W-method if θ ≥ mθ0;
• PDE-W-method if θ ≥ θ0 and 2 ≤ m ≤ 3;
• AMFR-W-method if θ ≥ θ0 and ν ≥ mκmθ (with κm from Table 2).

Remark 3.7. The analysis of unconditional stability of some standard schemes for
parabolic problems with mixed derivatives and with order of consistency one or two
(the Craig–Sneyd scheme [3], modified Craig–Sneyd scheme [22], and Hundsdorfer and
Verwer schemes [20, 22]) in the case of periodic boundary conditions and some general
finite difference discretizations for the mixed derivatives was carried out in [22]. The
results there obtained for the case of the so-called Hundsdorfer–Verwer scheme [22,
Theorem 2.8] are the same as the ones here given in Theorem 3.6 for the one-stage
AMFR-W-method with θ = 1/2. In fact the bounds in [22, Table 1, (2.18)] coincide
with our values for νm = mκmθ in Table 2 when θ = 1/2 and m ≥ 2.

4. AMF-type W-methods for nonautonomous differential equations.
Considering time t as an independent variable, and augmenting (1.2) with ṫ = 1, the
autonomous equation (2.1)–(2.2) yields for y = (t, U)> the system

(4.1) ẏ(t) =

(
ṫ

U̇

)
=

m∑
j=0

fj(y) =

(
1

F0(t, U)

)
+

m∑
j=1

(
0

Fj(t, U)

)
.

Here, all mixed derivatives and possibly a nonstiff reaction term G(t, U) are assumed
to be collected in F0(t, U). The corresponding splitting for the full Jacobian is then
given by

(4.2) f ′(yn) =

m∑
j=0

(
0 0

∂tFj(tn, Un) ∂UFj(tn, Un)

)
.

In (2.3) we set

(4.3) K̃i =

(
τρi
Ki

)
, ρi ∈ R, i = 1, . . . , s,

so that for each stage (i = 1, . . . , s) we have

(I − θτW )

(
τρi
Ki

)
= τ

(
1

F (tn + ciτ, Un +
∑i−1
j=1 aijKj)

)
+

i−1∑
j=1

`ij

(
τρj
Kj

)
,

(
tn+1

Un+1

)
=

(
tn
Un

)
+

s∑
i=1

bi

(
τρi
Ki

)
(4.4)

with

(4.5) ρ = (ρi)
s
i=1 = (I − L)−1

1, c = (ci)
s
i=1 = Aρ.
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Observe that order of consistency one for W-methods implies bT ρ = 1, so that tn+1 =
tn + τ as expected. We use the notation

(4.6) An,j := ∂UFj(tn, Un), an,j = ∂tFj(tn, Un), j = 0, 1, . . . ,m,

to describe the approximation of W for the three cases of subsection 2.2:
(A) For the AMF-W-methods (case (A)), the choice for (I − τθW ) in (4.4) is ob-

tained by neglecting the Jacobian terms corresponding to the mixed deriva-
tives, i.e.,

(I − θτW )−1 =

1∏
j=m

(
1 0

−θτan,j (I − τθAn,j)

)−1

.

By performing the calculations in (4.4) we see that the stages are computed
one after the other (for i = 1, . . . , s) by the formula

(4.7)

K
(0)
i = τF

(
tn + ciτ, Un +

i−1∑
j=1

aijKj

)
+

i−1∑
j=1

`ijKj ,

(I − θτAn,j)K(j)
i = K

(j−1)
i + θρiτ

2an,j , (j = 1, . . . ,m),

Ki = K
(m)
i .

The numerical solution after one step is then given by

(4.8) Un+1 = Un +

s∑
i=1

biKi.

Remark 4.1. An alternative that can be more efficient in some cases, in par-
ticular in the absence of mixed derivatives in the elliptic operator, is to include
the nonstiff reaction terms in one or in several terms of the directional split-
ting.

(B) For the PDE-W-methods (case (B)), the choice for (I − τθW ) in (4.4) is

(4.9)

(I − θτW )−1 = Pm(θ)−1

(
I + θτ

(
0 0
an,0 An,0

)
Pm(θ)−1

)
,

Pm(θ) :=
∏1
j=m

(
1 0

−θτan,j (I − θτAn,j)

)
.

The stages of the PDE-W method (A, L, b, θ) are computed as follows:

(4.10)

K
(0)
i = τF

(
tn + ciτ, Un +

i−1∑
j=1

aijKj

)
+

i−1∑
j=1

`ijKj ,

(I − θτAn,j)K(j)
i = K

(j−1)
i + θρiτ

2an,j , (j = 1, . . . ,m),

K̂
(0)
i = K

(0)
i + θτAn,0K

(m)
i + θρiτ

2an,0,

(I − θτAn,j)K̂(j)
i = K̂

(j−1)
i + θρiτ

2an,j , (j = 1, . . . ,m),

Ki = K̂
(m)
i

with advancing solution after one step given by (4.8).
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(C) For the AMFR-W-methods of subsection 2.2 (case (C)), the choice for
(I − τθW ) in (4.4) is, with Pm(ν) as in (4.9),

(I − θτW )−1 = Pm(ν)−1

(
2I −

(
I − θτ

(
0 0
∂tF ∂UF

))
Pm(ν)−1

)
,

∂tF := ∂tF (tn, Un), ∂UF := ∂UF (tn, Un).

Hence, for i = 1, 2, . . . , s, we compute Ki from
(4.11)

K
(0)
i = τF

(
tn + ciτ, Un +

i−1∑
j=1

aijKj

)
+

i−1∑
j=1

`ijKj ,

(I − ντAn,j)K(j)
i = K

(j−1)
i + νρiτ

2an,j , (j = 1, . . . ,m),

K̂
(0)
i = 2K

(0)
i + θρiτ

2∂tF (tn, Un)− (I − θτ∂UF (tn, Un))K
(m)
i ,

(I − ντAn,j)K̂(j)
i = K̂

(j−1)
i + νρiτ

2an,j , (j = 1, . . . ,m),

Ki = K̂
(m)
i .

The numerical solution after one step is then computed from (4.8).

5. Numerical experiments. This section is intended to illustrate the perfor-
mance of some AMF-type methods presented in section 2.2 in relation with classical
ADI schemes like the Hundsdorfer–Verwer scheme [19, 20, 22], when constant time
step sizes are used. To this aim, the time integration of a linear diffusion model
with constant coefficients in three and four spatial dimensions (m = 3, 4) and the 2D
Heston model (m = 2) from financial option pricing will be considered. Particular at-
tention will be paid to the unconditional stability, the temporal order of convergence
observed, and the efficiency in terms of CPU time versus global errors at the end-point
in the `2-norm. All calculations below were performed with a desktop computer (3.3
GHz Intel Core i5 processor) employing a Fortran code. Some of the corresponding
codes can be found at http://www.unige.ch/∼hairer/preprints.html.

5.1. Time integrators.
HV is an extension of the Douglas scheme [4] and termed Hundsdorfer–Verwer scheme

in [22, Formula (1.4)]. Parameters are µ = 1/2 to have classical order 2, and
θ > 0 to be selected for stability requirements.

(5.1)

Y0 = Un + τF (tn, Un),

Yj = Yj−1 + θτ
(
Fj(tn+1, Yj)− Fj(tn, Un)

)
, j = 1, . . . ,m,

Ỹ0 = Y0 + µτ
(
F (tn+1, Ym)− F (tn, Un)

)
,

Ỹj = Ỹj−1 + θτ
(
Fj(tn+1, Ỹj)− Fj(tn+1, Ym)

)
, j = 1, . . . ,m,

Un+1 = Ỹm.

This scheme is unconditionally stable whenever θ ≥ 0.2929, θ ≥ 0.4020, and
θ ≥ 0.5152 for m = 2, m = 3, and m = 4, respectively (see [22, Table 1]).
For 2 ≤ m ≤ 4 we shall consider θ = (3 +

√
3)/6, θ = 0.4020, and θ = 0.5152,

respectively. For the case m = 2, the chosen value for θ = (3+
√

3)/6 is larger
than the corresponding lower bound for unconditionally stability. This choice
has been motivated by the fact that it ensures unconditional stability for 2D
convection-diffusion problems without mixed derivatives [25] and has been
recently considered in applications to 2D and 3D models in finance [12, 13].

http://www.unige.ch/~hairer/preprints.html
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PDE-W1 is the 1-stage PDE-W-method (A, L, b, θ) with coefficients

(5.2) A = L = 0, b = 1.

The stability parameter is θ = 1/2. This method has only 1 stage, but it is
of order 2 since (2.4) is fulfilled.

AMFR-W1 is the 1-stage AMFR-W-method (A, L, b, θ, ν) with coefficients (5.2), where
we have chosen ν = θ = 1/2 for m ≤ 3 and ν = 4κ4θ, θ = 1/2 for m = 4
(with κ4 = 0.2576) to have order 2 and to meet the stability bounds given in
Theorem 3.6.

AMF-W2 is the 2-stage AMF-W-method (A, L, b, θ) with coefficients taken from the
book by Hundsdorfer and Verwer [20, p. 400]

(5.3) A =

(
0 0

2/3 0

)
, L =

(
0 0
−4/3 0

)
, b =

(
5/4
3/4

)
.

The method is of order 3 if (2.4) is fulfilled and θ = (3 +
√

3)/6; otherwise it
is order two. We have chosen θ = (3 +

√
3)/6 for m ≤ 3 and θ = 1 for m = 4

to ensure stability according the stability bounds given in Theorem 3.6. For
the kind of problems under consideration the assumption (2.4) is violated due
to the presence of mixed derivatives.

PDE-W2 is the 2-stage PDE-W-method (A, L, b, θ) in [8] based on the coefficients
(5.3). The stability parameter is θ = (3 +

√
3)/6. This method has only 2

stages, but it is of order 3 since (2.4) is fulfilled.
AMFR-W2 is the 2-stage AMFR-W-method (A, L, b, θ, ν) with coefficients (5.3), where

we have chosen ν = θ = (3 +
√

3)/6 for m ≤ 3 and ν = 4κ4θ, θ = (3 +
√

3)/6
for m = 4 (with κ4 = 0.2576) to meet the stability bounds given in Theorem
3.6. It is of order 3 since (2.4) is fulfilled.

5.2. Linear diffusion equation with constant coefficients. We consider
linear diffusion partial differential equations in three and four spatial dimensions in
such a way that mixed derivatives of the exact solution are present. Our aim is
to illustrate numerically the stability results provided for AMF-type W-methods in
section 3.

For our numerical experiments we consider the diffusion partial differential equa-
tion with linear constant coefficients and mixed derivative terms

(5.4) ∂tu =

m∑
i,j=1

αi,j ∂
2
xixj

u+ g(t, ~x)

for ~x ∈ (0, 1)m, t ∈ [0, 1], where g(t, ~x) is selected in such way that

(5.5) u(t, ~x) = ue(t, ~x) := et

(
4m

m∏
j=1

xj(1− xj) + κ

m∑
j=1

(
xj +

1

j + 2

)2
)

is the exact solution of (5.4). We impose the initial condition u(0, ~x) = ue(0, ~x) and
Dirichlet boundary conditions. Here, we consider the cases m = 3, 4. If κ = 0, we have
homogeneous boundary conditions, but when κ = 1 we get nonhomogeneous time-
dependent Dirichlet conditions. Furthermore, we take αi,i = 1, 1 ≤ i ≤ m, and αi,j =
α for i 6= j, where α > 0 is a parameter which will be selected in order to illustrate
the stability of the AMF-type methods introduced in section 2.2 (see also section 4).
In all cases, α will be chosen so that the second order differential operator is elliptic.
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We apply the MOL approach on a uniform grid with meshwidth ∆xi = 1/(N+1),
1 ≤ i ≤ m, with N = 128 for m = 3 and N = 40 if m = 4. Hence, the following
semidiscretized system with corresponding dimension Nm

(5.6) U̇ =MU +G(t) + b(t)

is obtained, whereM is given in (1.5), Dxi
and Dxixi

are the differentiation matrices
corresponding to the first and second order central differences in each spatial direction,
G(t) denotes the discretization of the term g(t, ~x), and b(t) stores the terms due to
nonhomogeneous boundary conditions. Note that the differential equation (5.6) is
of the form (1.2)–(1.3). Observe that the exact solution (5.5) is a polynomial of
degree 2 in each spatial variable so that the global errors come only from the time
discretization. AMF-type W-methods will be applied to (5.6) with fixed step size
τ = 2−j , 2 ≤ j ≤ 11, as detailed in section 4.

5.3. Numerical illustration. The time integration of (5.6) for m = 3 and
m = 4 spatial dimensions with the methods of section 5.1 is summarized in this
section. Figures 1 and 2 deal with the 3D case, whereas Figures 3 and 4 correspond
to the case m = 4. The global errors are plotted in relation to both the number of
linear system calls which is proportional to the number of time steps (to check the
temporal order of the current method) and the CPU time in seconds (to measure the
efficiency of each integrator). Each figure contains dashed straight lines with slopes
two and three, respectively, to compare the temporal orders of convergence for the
methods under consideration.

For the elliptic operator in (5.4), we take diffusion parameters αi,j = α for i 6= j
with α = 0.9. Note that for the case of 4 spatial dimensions the necessary condition
for stability of PDE-W-methods [8, Remark 5.1] is violated. In order to meet this
condition we also take α = 0.7 when m = 4. Under this stability assumption, the
numerical results for m = 3 with α = 0.9 (see Figures 1 and 2) are similar to those
obtained for m = 4 with α = 0.7 (Figure 4).

For the case m = 3 in Figures 1 and 2, HV, PDE-W1, AMFR-W1, and AMF-
W2 are seen to be second order methods, whereas PDE-W2 and AMFR-W2 attain
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Fig. 1. 3D Linear model (5.4)–(5.5) with α = 0.9, homogeneous boundary conditions (κ = 0)
and ∆xi = 1/129, 1 ≤ i ≤ 3. Error vs. linear systems (left). Error vs. CPU time (right). Dashed
straight lines with slopes two and three, respectively, are included to compare the temporal orders of
convergence.
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Fig. 2. 3D Linear model (5.4)–(5.5) with α = 0.9, time dependent boundary conditions (κ = 1)
and ∆xi = 1/129, 1 ≤ i ≤ 3. Error vs. linear systems (left). Error vs. CPU time (right).
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Fig. 3. 4D Linear model (5.4)–(5.5) with α = 0.9, homogeneous boundary conditions (κ = 0)
and ∆xi = 1/41, 1 ≤ i ≤ 4. Error vs. linear systems (left). Error vs. CPU time (right).
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Fig. 4. 4D Linear model (5.4)–(5.5) with α = 0.7, homogeneous boundary conditions (κ = 0)
and ∆xi = 1/41, 1 ≤ i ≤ 4. Error vs. linear systems (left). Error vs. CPU time (right).
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order three when κ = 0 (homogeneous boundary controls). For κ = 1 the order
of convergence of these two latter methods lies around 2.5. It is observed that HV
is among the most efficient methods, although both PDE-W2 and AMFR-W2 are
competitive candidates when high accuracy is required.

The order reduction phenomenon due to time dependent Dirichlet boundary con-
trols in the time integration of parabolic PDEs by means of Rosenbrock or Runge-
Kutta methods has been extensively reported and studied by several authors, e.g.,
[28, 29]. For AMF-type W-methods the order reduction is not completely understood
and requires the study of the local truncation error and of the error propagation
with estimates that are uniform in the space discretization. This is an interesting,
challenging problem for future research.

For the 4D case, similar considerations as above correspond to the plots presented
with α = 0.7 (Figure 4). For α = 0.9 the necessary condition for stability of PDE-W-
methods [8, Remark 5.1] is not fulfilled and, as a matter of fact, both PDE-W1 and
PDE-W2 perform in an unstable way in this case (see Figure 3). For the remaining
methods, the selected values for the parameters θ and ν ensure stability according
to Theorem 3.6 and the observed temporal orders of convergence are similar to those
obtained for m = 3. Furthermore, in Figure 3 it is seen that again AMFR-W2
overtakes HV when medium-high accuracy is needed.

We note that the PDE-W2 and AMFR-W2 methods are less efficient for time-
dependent, nonhomogeneous Dirichlet boundary conditions. Such boundary condi-
tions can be avoided by a transformation to homogeneous boundary conditions as
explained in [8, section 4.4] for 2D problems (m = 2). Here, we develop the idea for
an arbitrary number of variables.

5.4. Transformation to homogeneous boundary conditions. The idea is
to construct a function û(t, x1, . . . , xm) which interpolates for fixed t the values at the
boundary of the domain, and then to solve numerically the differential equation for
the difference w(t, x1, . . . , xm) = u(t, x1, . . . , xd)− û(t, x1, . . . , xm). For a rectangular
domain it is proved in Lemma 7.4 below that this interpolant function û can be
recursively constructed by taking u[0] := u (the values of u are only needed on the
boundary of the spatial domain) and

qj :=
(xj − 1

0− 1

)
u

[j−1]
|xj=0 +

(xj − 0

1− 0

)
u

[j−1]
|xj=1,

u[j] := u[j−1] − qj ,
1 ≤ j ≤ m,

û :=

m∑
j=1

qj ,

where u
[j]
|xk=x∗ stands for the evaluation of u[j] at a point (x1, . . . , xm)T ∈ Ω with

xk = x∗, 1 ≤ k ≤ m. In the particular case of the PDE problem (5.4)–(5.5), it is not
difficult to check that this interpolation process gives

û(t, ~x) = κet
m∑
j=1

(
xj +

1

j + 2

)2

in such a way that the PDE for w = u − û reduces to (5.4)–(5.5) with κ = 0, i.e.,
exactly to the case of homogeneous boundary conditions. In order to avoid the analytic
calculation of the elliptic operator acting on the interpolant, the homogenization of the
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problem can be achieved by applying the spatial discretization of the elliptic operator
to the interpolant function. In this situation some additional spatial errors could be
introduced, but they are of similar size to those ones involved in the discretization of
the original problem.

5.5. The Heston problem. The Heston problem [18] is a 2D extension of the
well-known Black–Scholes equation from financial option pricing theory. The problem
admits a semiclosed analytical expression for its solution [18, pp. 330–331], which
has not been used in our numerical experiments below. The results obtained in the
experiments on this problem show that the proposed AMF-type schemes also perform
satisfactorily on PDEs with variable coefficients, and they can be easily applied on
practical models that involve mixed derivative terms.

This model predicts the fair price of a call option u(s, v, t) at time t > 0, when
the asset price is s > 0 and v > 0 represents its variance, by the following partial
differential equation

(5.7)
∂tu =

1

2
s2v ∂2

ssu+ ρσsv ∂2
svu+

1

2
σ2v ∂2

vvu

+ (rd − rf )s ∂su+ κ(η − v) ∂vu− rdu.

Here t represents the days left until what it is called maturity time T > 0, so t ∈
[0, T ], s > 0, v > 0. The parameter κ > 0 is the mean-reversion rate and η > 0
is the long-term mean, rd and rf represent the domestic and foreign interest rates,
respectively, σ > 0 is the volatility of the variance, and ρ ∈ [−1, 1] measures the
correlation between the two variables s and v. The details of the derivation of the
PDE (5.7) from the corresponding stochastic model can be seen in [18]. Naturally,
maximum values for the spatial variables (s, v) ∈ [0, S]× [0, V ] are prefixed and in the
case of a European call option, the following boundary conditions are imposed:

(5.8)

s = 0 : u(0, v, t) = 0, t ∈ [0, T ],

s = S : ∂su(S, v, t) = e−rf t, t ∈ [0, T ],

v = V : u(s, V, t) = se−rf t, t ∈ [0, T ].

Moreover, the initial condition

(5.9) u(s, v, 0) = max(0, s−K)

is considered, where K > 0 is the strike price of the option, i.e., the price that the
holder can buy the asset for when the option expires.

The values for the PDE parameters have been experimentally adjusted in many
different practical situations. Here we will consider three different cases. The first
one is the set of values proposed by [1],

(5.10) κ = 1.5, η = 0.04, σ = 0.3, ρ = −0.9, rd = 0.025, rf = 0, K = 100,

so that the boundary conditions are time-independent. In the second case, given in
[2],

(5.11) κ = 3, η = 0.12, σ = 0.04, ρ = 0.6, rd = 0.01, rf = 0.04, K = 100,

the boundary conditions are time-dependent with a small volatility σ and the problem
becomes more advection-dominated near the border v = 0. Finally we also consider
a time-dependent case with a larger volatility

(5.12) κ = 1.5, η = 0.02, σ = 0.62, ρ = −0.67, rd = 0.01, rf = 0.02, K = 100.
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In all the cases (5.10)–(5.12) above S = 3000 and V = 15 are taken, whereas the code
performs the time integration until T = 1.

We apply the MOL approach on this model on a nonuniform spatial mesh follow-
ing the ideas given in [21], since it is known that uniform spatial grids are not efficient
on it. The reason is that the initial condition (5.9) is not smooth at s = K and that
for v close to 0 the PDE becomes advection-dominated. So we build a rectangular
nonuniform grid

s0 = 0 < s1 < · · · < sn1
= S, v0 = 0 < v1 < · · · < vn2

= V,

where many more points are close to s = K and v = 0 than in the rest of the
domain. We must take into account that, due to the boundary conditions (5.8), finite
difference approximations are only applied at the nodes (si, vj) with 1 ≤ i ≤ n1 and
0 ≤ j ≤ n2 − 1. At each node of this grid, the partial derivatives of the PDE (5.7)
are approximated by the corresponding finite difference formulation given in detail
in [21]. Roughly speaking, in the case of the derivatives ∂2

ssu, ∂2
vvu, and ∂su, second

order central differences are applied. However, due to a change in the direction of the
advection for v, different formulations are used to approximate ∂vu when 0 ≤ vj ≤ 1
and vj > 1. Finally, the mixed derivative ∂2

svu is approximated by second order
central differences for the first partial derivative in each spatial direction.

Adding the initial and boundary conditions (5.8)–(5.9) and putting all the finite
differences together at each spatial point, we arrive at the following linear semidiscrete
initial value problem of dimension n1 · n2 of type (1.2)–(1.3)

(5.13) U̇ = F (t, U) =

2∑
j=0

Fj(t, U), U(0) = U0, t ∈ [0, T ],

where

(5.14) F0(t, U) = A0U + g0e
−rf t − rdU, Fj(t, U) = AjU + gje

−rf t, j = 1, 2.

F0(t, U) represents the splitting term corresponding to the mixed derivatives plus the
(nonstiff) reaction, {gj}2j=0 are constant vectors that come from the time-dependent
boundary conditions (5.8), and the constant matrices A1 and A2 have simple struc-
tures

A1 = diag(A
(0)
1 , A

(1)
1 , . . . , A

(n2−1)
1 ), A2 = Ã⊗ In1 ,

where each submatrix A
(k)
1 is a tridiagonal matrix of dimension n1 and Ã has di-

mension n2 with only five nonzero diagonals. The constant matrix A0 of dimen-
sion n1 · n2 has nine nonzero bands (parallel to the main diagonal) that are non-
consecutive but it is never used in the AMF (or ADI) factorizations. We mention
that in [21] the splitting (5.13)–(5.14) is not applied in this way, since the reac-
tion term G(U) = −rdU is included in the directional terms in the following way
Fj(t, U) = AjU + gje

−rf t − (rd/2)U, j = 1, 2. This does not imply any significant
change in the numerical results below.

Figures 5–7 show the results for the three cases (5.10)–(5.12), respectively, of the
Heston problem with n1 = 200 and n2 = 100. Corresponding results for dimension
n1 = 400 and n2 = 200 are presented in Figures 8–10. The time integrations have
been carried out for τ = 2−j , 2 ≤ j ≤ 11, and the global errors have been measured in
the `2-norm with respect to a reference solution at T = 1, obtained with the DOP853
code [14] at a very stringent tolerance. For the dimension n1 = 200 and n2 = 100, it
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Fig. 5. Heston problem, case (5.10) with n1 = 200 and n2 = 100. Error vs. linear systems
(left). Error vs. CPU time (right).
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Fig. 6. Heston problem, case (5.11) with n1 = 200 and n2 = 100. Error vs. linear systems
(left). Error vs. CPU time (right).
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Fig. 7. Heston problem, case (5.12) with n1 = 200 and n2 = 100. Error vs. linear systems
(left). Error vs. CPU time (right).
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Fig. 8. Heston problem, case (5.10) with n1 = 400 and n2 = 200. Error vs. linear systems
(left). Error vs. CPU time (right).
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Fig. 9. Heston problem, case (5.11) with n1 = 400 and n2 = 200. Error vs. linear systems
(left). Error vs. CPU time (right).
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Fig. 10. Heston problem, case (5.12) with n1 = 400 and n2 = 200. Error vs. linear systems
(left). Error vs. CPU time (right).
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can be nicely observed in Figures 5–7 that all methods confirm the achieved orders
on the previous constant coefficient PDE (5.4), i.e, order around two for HV, AMF-
W2, PDE-W1, AMFR-W1 and order close to three for AMFR-W2 and PDE-W2, but
with the important difference that for these two latter methods the order three is
maintained even in the case of time-dependent boundary conditions. Regarding the
efficiency, it can be appreciated that the higher order methods, PDE-W2 and AMFR-
W2, are the most efficient in all cases (5.10)–(5.12). Nevertheless, in the case (5.11)
HV and AMF-W2 are also very competitive. Analogous considerations are applied to
the dimension n1 = 400 and n2 = 200 in Figures 8–10, where it is also observed that
the order for PDE-W1 and AMFR-W1 lies around 1.5 for large stepsizes.

6. Conclusions. Based on W-methods for the numerical solution of initial value
problems in ODEs, three different families of AMF-type methods have been proposed
for the time integration of parabolic partial differential equations with mixed deriva-
tives discretized in space via finite differences. These families mainly differ in the
choice of the W-matrix. For the first family, denoted as AMF-W-methods, the cor-
responding W -choice is directional (ADI-type) and is an order-zero approximation
to the true ODE-Jacobian. The second one, denoted as PDE-W-methods, was pre-
viously introduced in [8] and represents an alternative to produce W -matrices with
first order of approximation to the ODE-Jacobian. The third family, denoted as
AMFR-W-methods also provides W -matrices with first order of approximation to the
ODE-Jacobian, but allows the introduction of free parameter ν to improve the sta-
bility properties of the methods and it is based on applying some kind of refinement
to the stages of the first family of methods.

An analysis of unconditional stability for these families on linear problems with
constant coefficients has been provided. Both AMF-W- and AMFR-W-methods are
unconditionally stable regardless of the spatial dimension m at the expense of possibly
increasing the stability parameters (θ, ν) of the particular method. This aspect is
shared with other classical ADI methods, like the Craig–Sneyd, Hundsdorfer–Verwer,
and modified Craig–Sneyd schemes [22], whose temporal order of convergence is at
most two. For PDE-W-methods, unconditional stability is only possible whenever
m ≤ 3, as happens for the second order Craig–Sneyd scheme.

On the other hand, for the same number of implicit stages, the implementation
of PDE-W- and AMFR-W-methods requires a similar computational cost, and this
is about twice the cost associated with AMF-W-methods. Despite the lack of uncon-
ditional stability for PDE-W-methods in dimension m ≥ 4, in the case of stability,
the numerical experiments provided show similar performances for both PDE-W- and
AMFR-W-methods.

The practical relevance of the methods has also been demonstrated by means
of the 2D Heston model from financial option pricing, showing that both PDE-W-
and AMFR-W-methods are good candidates to obtain temporal orders of conver-
gence three. In some cases they outperform other classical ADI schemes like the
Hundsdorfer–Verwer scheme [19, 20, 22], which has only order two.

7. Appendix.

Lemma 7.1. Let κm be the smallest positive zero of the polynomial

(7.1) gm(x) = 2x
(m− x
m− 1

)m−1

− 1.
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These numbers satisfy (for m ≥ 2)

(7.2) κ∞ ≤ κm+1 < κm, (m+ 1)κm+1 > mκm,

where κ∞ ≈ 0.23196 is the smallest positive zero of g∞(x) = 2x exp(1− x)− 1.

Proof. Since gm(0) = −1, gm(1) = 1, and g′m(x) > 0 for x ∈ (0, 1), there exists a
unique κm ∈ (0, 1) satisfying gm(κm) = 0.

Applying the well-known inequality (a consequence of Bernoulli’s inequality)

(
1 +

a

m− 1

)m−1

<
(

1 +
a

m

)m
with a = 1 − x yields gm(x) < gm+1(x) for x ∈ (0, 1). Consequently, we have
gm+1(κm) > 0, which implies κm+1 < κm. Moreover, the sequence {κm} converges
for m → ∞ to a zero of g∞(x) = 2x exp(1− x)− 1, which gives the lower bound for
all κm.

To prove the right inequality of (7.2), we check that gm
(
m+1
m x

)
> gm+1(x) for

all m ≥ 2 and all 0 < x < κ2 < 1/2. This implies gm
(
m+1
m κm+1

)
> 0 and thus also

mκm < (m+ 1)κm+1. Its proof follows from

gm+1(x) + 1

gm
(
m+1
m x

)
+ 1

=
(

1− 1− 2x

m2 − (m+ 1)x

)m−1(m+ 1− x
m+ 1

)
< 1

because the modulus of each of the factors is smaller than 1 for 0 < x < 1/2.

Lemma 7.2. Let m ≥ 2. If δ ≤ 1/(mκm), then we have

(7.3) f(y1, . . . , ym) := 2

m∏
j=1

(1 + y2
j )− 1− δ

( m∑
j=1

yj

)2

≥ 0

for all yj ≥ 0, j = 1, . . . ,m. Moreover, equality holds in (7.3) if and only if y1 =
· · · = ym = y for some y 6= 0.

Proof. From Lemma 7.1 and Table 2 we know that mκm > 1/2 for all m ≥ 2, so
that δ < 2. To find the minimum of f(y1, . . . , ym) we compute

(7.4)
∂f

∂yi
(y1, . . . , ym) =

4yi
1 + y2

i

m∏
j=1

(1 + y2
j )− 2δ

m∑
j=1

yj = 0.

For a critical point of f(y1, . . . , ym) the expression 4yi/(1 +y2
i ) has to be independent

of i. Observe that a/(1 + a2) = b/(1 + b2) implies a = b or ab = 1. Denoting y1 = y,
all other components of an extremum have to be either equal to y or equal to 1/y.

We shall prove that all components of an extremum are equal to y. Assume,
by contradiction, that there is at least one component equal to 1/y. Denoting by
1 ≤ p < m the number of components that are equal to y, we then have, because of
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δ < 2,

∂f

∂y1
(y1, . . . , ym)

= 4
(
y +

1

y

)
(1 + y2)p−1

(
1 +

1

y2

)m−p−1

− 2δ
(
py + (m− p)1

y

)
> 4
(
y +

1

y

)
(1 + (p− 1)y2 + (m− p− 1)

1

y2

)
− 4
(
py + (m− p)1

y

)
≥ 4
(

(p− 1)y3 + (m− p− 1)
1

y3

)
≥ 0.

This contradicts (7.4) and implies that all components of an extremum have to be
equal.

For all yj equal to y, we write the function (7.3) as

(7.5) f(y) = 2(1 + y2)m − 1− δm2y2.

For a critical point its derivative has to vanish,

(7.6) f ′(y) = 4my(1 + y2)m−1 − 2δm2y = 0.

For δm ≤ 2 the only critical point is y = 0, for which f(0) = 1 ≥ 0. For δm >
2 we have a further critical point, denoted by y∗, which is implicitly defined by
2(1 + y2)m−1 − δm = 0. The value of f(y∗) is

f(y∗) = (1 + y2)δm− 1− δm2y2 = δm2 − 1 + δm(1−m)
(δm

2

)1/(m−1)

.

In (7.5) we have first substituted 2(1 + y2)m−1 by δm, and then we have substituted
y2 by (δm/2)1/(m−1) − 1. The condition f(y∗) ≥ 0 becomes( 1− δm2

δm(1−m)

)m−1

≥ δm

2
or 2x

(m− x
m− 1

)m−1

≥ 1

with the new variable x = 1/(δm) < 1/2. It follows from the definition of κm and from
the proof of Lemma 7.1 that this inequality holds if κm ≤ x ≤ 1/2, which translates
into 2/m ≤ δ ≤ 1/(mκm). This proves the estimate if the minimum of f(y1, . . . , ym)
is attained in the interior of the domain.

On the border of {yj ≥ 0; j = 1, . . . ,m}, where yj = 0 for some j, the same
argument can be applied with reduced m. The statement follows in this case from

δ ≤ 1

mκm
<

1

(m− 1)κm−1
< · · · < 1

2κ2
,

which is a consequence of Lemma 7.1.

Remark 7.3. A proof of the statement of Lemma 7.2 can be found in [22, Theorem
2.8, Appendix A]. The present proof, however, is more direct.

Lemma 7.4. Let u = u(t, ~x) be a function defined for t ≥ 0 and ~x = (x1, . . . , xm)T

∈ Ω with Ω := (0, 1)m. For all t ≥ 0 and ~x ∈ Ω let u[0] := u, and define recursively
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for j = 1, 2, . . . ,m (using the notation of section 5.4)

(7.7)


qj :=

(xj − 1

0− 1

)
u

[j−1]
|xj=0 +

(xj − 0

1− 0

)
u

[j−1]
|xj=1,

u[j] := u[j−1] − qj ,
1 ≤ j ≤ m,

and û :=

m∑
j=1

qj .

Then it holds that û|∂Ω = u|∂Ω.

Proof. From (7.7) we have for all 1 ≤ j ≤ m that qj |xj=0,1 = u
[j−1]
|xj=0,1, and hence

(7.8) u
[j]
|xj=0,1 = 0, (j = 1, . . . ,m).

Assume, by induction on j, that u
[j]
|xk=0,1 = 0 for 1 ≤ k ≤ j ≤ m− 1. It follows from

(7.8) that u
[j+1]
|xj+1=0,1 = 0, and from the definition of qj+1 that qj+1|xk=0,1 = u

[j]
|xk=0,1

for 1 ≤ k ≤ j. This implies that

u
[j+1]
|xk=0,1 = u

[j]
|xk=0,1 − qj+1|xk=0,1 = 0, (k = 1, . . . , j).

Therefore we have that u
[m]
|∂Ω = 0 and this concludes the proof since u[m] = u− û.
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