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Power boundedness in the maximum norm of stability
matrices for ADI methods

S. González-Pinto · E. Hairer ·
D. Hernández-Abreu

Abstract The study of convergence of time integrators, applied to linear dis-
cretized PDEs, relies on the power boundedness of the stability matrix R. The
present work investigates power boundedness in the maximum norm for ADI-
type integrators in arbitrary space dimension m. Examples are the Douglas
scheme, the Craig-Sneyd scheme, and W-methods with a low stage number. It
is shown that for some important integrators ‖Rn‖∞ is bounded in the max-
imum norm by a constant times min

(
(ln(1 + n))m, (lnN)m

)
, where m is the

space dimension of the PDE, and N ≥ 2 is the space discretization parameter.
For m ≤ 2 sharper bounds are obtained that are independent of n and N .
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1 Introduction

We consider linear diffusion problems

∂tu(t,x) =

m∑
j=1

αj ∂xjxju(t,x) + c(t,x), t ≥ 0, (1.1)

for x = (x1, . . . , xm)> ∈ (0, 1)m, with constants αj > 0, 1 ≤ j ≤ m, and
Dirichlet boundary conditions, where the space dimension m can be arbitrar-
ily large. A second order central finite difference discretization on a uniform
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grid with spacing ∆xj = 1/(Nj + 1) yields an ordinary differential system of
equations

U̇ = DU + g(t), D = D1 + . . .+Dm, (1.2)

where Dj = αj (INm ⊗ . . .⊗Dxjxj ⊗ . . .⊗ IN1). Here, the differentiation ma-
trices Dxjxj are tridiagonal with entries (1,−2, 1)/∆x2j , and ⊗ stands for
the Kronecker product of matrices. The dimension of the system (1.2) is
Nx := N1 · . . . ·Nm and we denote

α := max
1≤j≤m

αj .

Many numerical methods applied to (1.2) typically produce a recursion for
the global errors En := U(tn) − Un, n ≥ 0, of the form En+1 = REn + δn,
where Un stands for the numerical solution at tn, δn, n ≥ 0, are local errors
and R is a certain stability matrix associated to the numerical integrator (see,
e.g., [12, Sec. II.2.3]. For ADI-type integrators the stability matrix depends on
D1, . . . , Dm and not only on their sum D. A typical example is

R(τD1, . . . , τDm) = I +Π(θ)−1τD, (1.3)

where Π(θ) = (I − θτD1) . . . (I − θτDm), which has the associated stability
function of m complex variables

R(z1, z2, . . . , zm) = 1 +
z

P
, z :=

m∑
j=1

zj , P :=

m∏
j=1

(1− θzj). (1.4)

For ease of notation we will henceforth denote by R both the stability function
(1.4) and the stability matrix (1.3) of the method. The difference between them
can be observed from their arguments. For the choice θ = 1/2 it is the stability
matrix of the Peaceman–Rachford integrator [15], the Douglas scheme [5], the
Crank-Nicolson scheme with locally one-dimensional splitting [14], and of the
modified Craig–Sneyd scheme [3,13]. It is also the stability matrix of the one-
stage W-method [7].

There is also much effort in the construction of ADI-type time integrators
of order higher than 2, see e.g., [16,8]. The stability matrix of the so-called
Hundsdorfer–Verwer scheme [12, Section IV.5.2], which is a 2-stage W-method
of order 2 in general, and of order 3 for θ = (3 +

√
3)/6, is given by

R(τD1, . . . , τDm) = I + 2Π(θ)−1τD −Π(θ)−2τD +
1

2

(
Π(θ)−1τD

)2
. (1.5)

In this case the stability function is given by (with z and P defined in (1.4))

R(z1, z2, . . . , zm) = 1 +
2z

P
+
z2 − 2z

2P 2
. (1.6)

Outline of the paper. This article is devoted to bounds in the infinity (op-
erator) norm of the nth power of stability matrices arising in ADI-type time
integrators. The main results are presented in Section 2, where we prove power
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boundedness in space dimension m ≤ 2. For m ≥ 3 we give two type of bounds.
One of them shows a O

(
(ln(1 + n))m

)
behaviour that is independent of the

space discretization parameter

N := max(N1, . . . , Nm) ≥ 2,

whereas the other shows a O
(
(lnN)m

)
bound which is independent on n.

Numerical experiments (Section 3) for m = 3 indicate that an N -dependence is
present in the norm of the nth power of the stability matrix. Section 5 provides
the tools to prove the estimates, while Section 4 provides the preliminary work.
The proof of Theorem 2.1 is then given in Section 6, and that of Theorem 2.2
in Sections 7 and 8. Finally, Section 9 explains the extension to more general
stability matrices like that of (1.5).

2 Main results

We collect the bounds for powers of the stability matrix (1.3) which have
important consequences in the convergence studies of PDEs. Our first result
presents bounds that are independent of the space discretization parameter
N ≥ 2.

Theorem 2.1 For the stability matrix (1.3) with θ ≥ 1/2 we have

∥∥R(τD1, . . . , τDm)n
∥∥
∞ ≤

{
cm for m = 1, 2 and n ≥ 1,

cm(1 + lnn)m for m ≥ 3 and n ≥ 1,

where the constants cm only depend on θ and on m.

In dimension m = 1 and for θ = 1/2 the stability matrix (1.3) equals
R(τD1) = (I − τ

2D1)−1(I + τ
2D1) with D1 = α1Dx1x1

, which we denote by
Tr(τD1), because it is the stability matrix for the trapezoidal rule (or Crank–
Nicolson method). Power boundedness has been considered by several authors.
An early contribution is [17], where the bound c1 = 23 is proved. The improved
bound c1 = 4.325 has been obtained in [6]. For general θ ≥ 1/2 the stability
function (where τD1 is replaced by the complex variable z1) can be written as

R(z1) = 1 +
z1

1− θz1
= 1− 1

2θ
+

1

2θ

(1 + θz1)

(1− θz1)

The nth power of the stability matrix thus satisfies (with τ1 = 2θτα1)

R(τD1)n =

n∑
i=0

(
n

i

)(
1− 1

2θ

)n−i 1

(2θ)i
Tr(τ1Dx1x1

)i.

Applying the triangle inequality and using ‖Tr(τjDxjxj )
i‖∞ ≤ c1 we obtain

for all θ ≥ 1/2 the same bound c1 as for the case θ = 1/2. Note that for
the special case θ = 1 (backward Euler method) we have contractivity in the
maximum norm (see [18]), so that c1 = 1 in that case.



4 S. González-Pinto et al.

In dimension m = 2 similar arguments are possible. The stability function
(where τDj is replaced by the complex variable zj in (1.3)) satisfies the identity

R(z1, z2) = 1 +
z1 + z2

(1− θz1)(1− θz2)
= 1− 1

2θ
+

1

2θ

(1 + θz1)(1 + θz2)

(1− θz1)(1− θz2)
.

As before we have (with τj = 2θταj)

R(τD1, τD2)n =

n∑
i=0

(
n

i

)(
1− 1

2θ

)n−i 1

(2θ)i
Tr(τ2Dx2x2)i ⊗ Tr(τ1Dx1x1)i.

Applying the triangle inequality, using ‖A ⊗ B‖∞ = ‖A‖∞‖B‖∞ and the
bound ‖Tr(τjDxjxj )

i‖∞ ≤ c1, we obtain the statement of the theorem with
c2 = c21.1 Unfortunately, this elegant proof does not extend to m ≥ 3.

Sharper bounds than those of Theorem 2.1 are obtained in Theorem 2.2
for the case in which m ≥ 3, n > N and under the weak step size restriction

τ ≤ c∗∆xj for j = 1, . . . ,m. (2.1)

The last inequality is typically assumed in the study of convergence for time
integrators.

Theorem 2.2 For the stability matrix (1.3) with θ ≥ 1/2 and for arbitrary
n, τ > 0 and N ≥ 2 such that (2.1) is fulfilled, we have that

∥∥R(τD1, . . . , τDm)n
∥∥
∞ ≤

{
c′m(lnN)m for m ≥ 3 and n ≥ 1,

c′ lnN for m = 3 and n ≥ N2,

where the constants c′m, c
′ only depend on m, θ, α and c∗.

The proofs of these bounds for m ≥ 3 are postponed to Section 6 (Theo-
rem 2.1) and to Sections 7 and 8 (Theorem 2.2).

Remark 2.1 The bounds proposed above are relevant for the convergence anal-
ysis in arbitrary spatial dimensions and in the infinity norm to Alternating Di-
rection Implicit methods, such as Peaceman–Rachford [15], Douglas [5], Crank-
Nicolson with locally one-dimensional splitting [14], the modified Craig–Sneyd
scheme [3,13] and the one-stage W-method [7]. In those cases, the logarithmic
bounds for the growth of the powers of the stability matrix do not significantly
deteriorate the second order of convergence in the infinity norm for PDE prob-
lems with time independent boundary conditions. These bounds can also be
helpful for the convergence analysis for other stability matrices such as that
corresponding to the Hundsdorfer-Verwer method [12, Section IV.5.2].

1 For m = 2 and θ = 1/2 power boundedness with c2 = c21 is proved in [2,7]. The proof
for general θ ≥ 1/2 has been communicated to us by an anonymous referee.
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Fig. 3.1 Norm ‖Rn‖∞ for the stability matrix (1.3) as a function of nτ with m = 3, N = 8,
and τ = 2k/(N + 1) for k = −1, 0, 1, 2, 3.
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Fig. 3.2 Norm ‖Rn‖∞ for the stability matrix (1.3) as a function of nτ with m = 3, and
τ = 1/(N + 1) for N = 4, 8, 16, 32, 64.

3 Numerical experiments

Since the modulus of the eigenvalues of R = R(τD1, . . . , τDm) is, for fixed N
and fixed τ , strictly smaller than 1, it holds ‖Rn‖∞ → 0 for n→∞. Although
the bounds of Section 2 are valid over a wide range of N and n, our main
interest is in power boundedness for values of n such that τ is proportional
to 1/(N + 1). We restrict our experiments to dimension m = 3, because it
is the first one, where a dependence on n or N should be observed. We also
consider only the important case with θ = 1/2.

In our first experiment (Figure 3.1) we consider a fixed space discretization
N = 8 and we study ‖Rn‖∞ as a function of nτ for various values of τ . We
observe that the smaller the step size, the faster convergence towards zero
occurs. For step sizes τ ≤ 1/(N + 1) the maximum value is for n = 1, and for
increasing step sizes τ > 1/(N + 1) the maximum is for increasing n.

The dependence on the space discretization parameter N is studied in
Figure 3.2. We consider N = 4, 8, 16, 32, 64 and we fix the time step size to
τ = 1/(N + 1). A clear dependence on N can be observed although it seems
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to be closer to lnN rather than to (lnN)3. From the figure we see that the
maximum value is for n = 1, but since the dependence on n is not monotonic, it
could take larger values for an increasing n. For convenience we have included
the numbers for ‖Rn‖∞, (n = 1, 2, 3) up to N = 128 in Table 3.1.

dimension N = 4 N = 8 N = 16 N = 32 N = 64 N = 128

‖R‖∞ 1.547 3.175 5.741 8.224 9.877 10.839

‖R2‖∞ 1.488 2.586 3.806 5.846 8.246 9.645

‖R3‖∞ 1.481 2.361 3.765 4.902 7.330 9.959

Table 3.1 Values of ‖Rk‖∞ (m = 3, θ = 1/2, τ = 1/(N + 1)) for various N .

4 Resolvent bounds in the maximum norm

The proof for the resolvent bound in the maximum norm is based on the
approach by Grigorieff [9], which relies on a result by Thomée [19]. It is closely
related to the computations of Crouzeix [4]. The bound of Lemma 4.1 below is
presented and used in [6] referring for its proof to an unpublished manuscript.

We denote the tridiagonal matrix appearing in (1.2) by T = tridiag (1,−2, 1)
(dimension N). Its resolvent is

(zI − T )−1 = G(z) =
(
gj,k(z)

)N
j,k=1

. (4.1)

We are interested in sharp bounds for the resolvent in the maximum norm,

∥∥(zI − T )−1
∥∥
∞ = max

j=1,...,N

N∑
k=1

|gj,k(z)|. (4.2)

4.1 Explicit formulas for the coefficients of the resolvent

The relation (zI − T )G(z) = I reads

−gj,k−1(z) + (2 + z)gj,k(z)− gj,k+1 = δj,k, (4.3)

where δj,k is Kronecker’s symbol. We use the convention that gj,0 = gj,N+1 = 0
for all j. For fixed j, (4.3) represents a 3-term recurrence relation with char-
acteristic equation

λ2 − (2 + z)λ+ 1 = 0. (4.4)

Denoting the zeros of this polynomial by λ1(z), λ2(z), the solution of the
homogeneous 3-term recursion (corresponding to (4.3)) is a linear combination
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of λ1(z)k and λ2(z)k. Since the right-hand side of (4.3) is zero for all k < j,
the solution of (4.3) satisfying gj,0 = 0 is given by the upper relation of

gj,k(z) =

{
cj(z)

(
λk1(z)− λk2(z)

)
, for k ≤ j

dj(z)
(
λN+1−k
1 (z)− λN+1−k

2 (z)
)
, for k ≥ j.

The lower relation follows from the fact that the right-hand side of (4.3) van-
ishes for k > j, that gj,N+1 = 0 and that λ1(z)λ2(z) = 1. In the following we
suppress the dependence on z in the notation of cj , dj , and λ1, λ2. Equating
the two formulas for gj,j(z) and using (4.3) with k = j gives the equations

cj (λj1 − λ
j
2) = dj (λN+1−j

1 − λN+1−j
2 )

−cj (λj−11 − λj−12 ) + (2 + z) cj (λj1 − λ
j
2)− dj (λN−j1 − λN−j2 ) = 1

for the coefficients cj , dj . With (2 + z)λji = λj+1
i + λj−1i for i ∈ {1, 2} as well

as λ1λ2 = 1, a short calculation yields the coefficients cj , dj and we obtain [9]

gj,k(z) =
1

(λ1 − λ2)(λN+1
1 − λN+1

2 )

{
(λN+1−j

1 − λN+1−j
2 )(λk1 − λk2) for k ≤ j

(λj1 − λ
j
2)(λN+1−k

1 − λN+1−k
2 ) for k ≥ j.

This explicit formula for the elements gj,k(z) permits us to bound the maxi-
mum norm (4.2). Without loss of generality we assume |λ1| ≥ 1 ≥ |λ2|. Using
a geometric series for the case |λ1| > 1, and the fact that |λ2|/

(
|λ2| − 1

)
=

1/
(
1− |λ1|

)
, we obtain

j∑
k=1

(
|λ1|k + |λ2|k

)
=
|λ1|

(
|λ1|j − 1

)
|λ1| − 1

+
|λ2|

(
|λ2|j − 1

)
|λ2| − 1

≤ |λ1|
j+1 − |λ2|j

|λ1| − 1
,

N∑
k=j+1

(
|λ1|N+1−k + |λ2|N+1−k

)
=

N−j∑
r=1

(
|λ1|r + |λ2|r

)
≤ |λ1|

N−j+1 − |λ2|N−j

|λ1| − 1
.

and consequently also

(
|λ1|N+1−j + |λ2|N+1−j

) j∑
k=1

(
|λ1|k + |λ2|k

)
+
(
|λ1|j + |λ2|j

)
·

N∑
k=j+1

(
|λ1|N+1−k + |λ2|N+1−k

)
≤ |λ1|+ 1

|λ1| − 1

(
|λ1|N+1 − |λ2|N+1

)
.

Using the triangle inequality in the explicit formula for gj,k(z) as well as
|λN+1

1 − λN+1
2 | ≥ |λ1|N+1 − |λ2|N+1, the formula (4.2) leads to the bound

∥∥(zI − T )−1
∥∥
∞ ≤

|λ1|+ 1

|λ1 − λ2|(|λ1| − 1)
. (4.5)
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4.2 Resolvent bound depending on the angle of the argument

Here, we present a proof of the bound announced in [6]. It is common to use
the notation, sec t ≡ 1/ cos t.

Lemma 4.1 We have the resolvent bound∥∥(zI − T )−1
∥∥
∞ ≤

sec(α/2)

|z|
for z = ρ eiα 6= 0, |α| < π.

Proof Motivated by (4.5) we consider the function

ω(ρ, α) =
|z|(|λ(z)|+ 1)

(|λ(z)| − 1)|λ(z)− 1/λ(z)|
, (4.6)

where λ(z) is the root of maximum modulus in (4.4). To prove the statement
of the lemma, we have to show that ω(ρ, α) ≤ sec(α/2).

By taking the square root of (λ − 1)2 = zλ with z = ρ eiα, it follows that
λ = λ(z) = 1 +

√
ρ eiα/2 +O(ρ) for ρ→ 0+. Inserted into (4.6), this implies

lim
ρ→0+

ω(ρ, α) = sec(α/2). (4.7)

For a fixed α and for z = ρ eiα we write λ(z) in polar coordinates as

λ(z) = x(ρ) eiφ(ρ). (4.8)

In part (A) below we prove that x(ρ) is a strictly monotonically increasing
function satisfying x(0) = 1 and x(∞) =∞. We denote its inverse by ρ(x). We
then prove in part (B) that ω(x) = ω

(
ρ(x), α

)
is a monotonically decreasing

function of x. From ω(ρ, α) = ω
(
x(ρ)

)
and from the chain rule we have

∂ρω(ρ, α) = ω′
(
x(ρ)

)
x′(ρ).

Since x′(ρ) > 0 by (A) and ω′(x) ≤ 0 by (B), we have ∂ρω(ρ, α) ≤ 0, so that
ω(ρ, α) is a monotonically decreasing function of ρ. From (4.7) it therefore
follows ω(ρ, α) ≤ sec(α/2), which proves the statement of the lemma.

(A) It follows from (λ − 1)2 = zλ that x(0) = 1 and x(∞) = ∞. Taking
real and imaginary parts of λ+ λ−1 = 2 + z yields

(x2 + 1) cosφ = 2x+ ρx cosα, (x2 − 1) sinφ = ρx sinα. (4.9)

Implicit differentiation with respect to ρ (with constant α) gives

2xx′ cosφ− (x2 + 1)φ′ sinφ = 2x′ + (x+ ρx′) cosα

2xx′ sinφ+ (x2 − 1)φ′ cosφ = (x+ ρx′) sinα.
(4.10)

Assume now, by contradiction, that x′(ρ) = 0 for some ρ > 0. The rela-
tions (4.10) then read

x cosα = −(x2 + 1)φ′ sinφ, x sinα = (x2 − 1)φ′ cosφ.
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Together with (4.9) we obtain

tanα =
(1− x2) cosφ

(x2 + 1) sinφ
=

(x2 − 1) sinφ

(x2 + 1) cosφ− 2x
. (4.11)

Taking the cross product results in

(x2 − 1)(x2 + 1− 2x cosφ) = 0,

which is a contradiction, because x > 1 for |α| < π. Consequently, x′(ρ) > 0
for all ρ > 0, which proves the monotonicity of x(ρ).

(B) Squaring (4.6) and using (4.8) we obtain

ω2(x− 1)2
(
(x2 + 1)2 − 4x2 cos2 φ

)
= (ρx)2(x+ 1)2. (4.12)

By eliminating cosφ and ρ in (4.12) with the help of (4.9), a straightforward
calculation (we have used Mathematica [20]) leads to(

(1 + x)4 − ω2(1 + 6x+ x4)
)2

= 16ω4x2(1 + x2)2 cos2 α.

Taking the square root (we have to take the plus sign, because ω → sec(α/2)
for x→ 1) we obtain the explicit formula

ω2 =
(1 + x)4

(1 + x)4 + 4x(1 + x2)(cosα− 1)
.

Its derivative

2ωω′ =
dω2

dx
=

4(1 + x)3(x− 1)3(cosα− 1)(
(1 + x)4 + 4x(1 + x2)(cosα− 1)

)2
is strictly negative for x > 1 and 0 < |α| ≤ π, which implies that ω(x) is
monotonically decreasing from ω(1) = sec(α/2) to ω(∞) = 1. ut

4.3 Resolvent bound depending on the modulus of the argument

The estimate of Lemma 4.1 is optimal for small ρ = |z|, but it can be much
improved for large ρ close to the negative real axis.

Lemma 4.2 We have the resolvent bound∥∥(zI − T )−1
∥∥
∞ ≤

1

|z| − 4
=

ρ

(ρ− 4) |z|
for ρ = |z| > 4.

Proof Since ‖T‖∞ = 4, we have for |z| > 4 that ‖z−1T‖∞ < 1. Applying
Neumann’s series∥∥(zI − T )−1

∥∥
∞ =

∥∥∥z−1∑
j≥0

z−jT j
∥∥∥
∞
≤ |z|−1

∑
j≥0

|z|−j‖T‖j∞ =
1

|z| − 4
.

yields the desired bound. ut
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Now, from the lemmas above we have the following bound.

Lemma 4.3 We have the resolvent bound∥∥(zI − µT )−1∥∥∞ ≤ ωρ,α
|z|

for z = ρ eiα, ρ > 0, −π < α ≤ π, µ > 0,

(4.13)
where ωρ,α = min(ωα, ωρ) with

ωα = sec(α/2), ωρ =
{ρ/(ρ− 4µ) for ρ > 4µ

∞ for ρ ≤ 4µ.

Proof We note that
(
zI − µT

)−1
= µ−1

(
µ−1z I − T

)−1
for z = ρ eiα. Conse-

quently, the bound (4.13) with ωα in place of ωρ,α follows from Lemma 4.1,
and with ωρ in place of ωρ,α from Lemma 4.2. ut

5 Using Cauchy’s integral formula

The stability matrix (1.3) is a function of τDj , where τ is the time step size and
Dj = (αj/∆x

2
j )(INm ⊗ . . .⊗TNj ⊗ . . .⊗ IN1

). We let T (omitting the subscript
Nj) be the tridiagonal matrix of dimension Nj with entries (1,−2, 1). With
the notation µj = αjτ/∆x

2
j > 0 the eigenvalues of τDj are real and lie in the

interval (−4µj , 0). We also denote

µ := ατ(N + 1)2 ≥ max
1≤j≤m

µj .

Assume that f(z) is analytic in the bounded open connected set Ω ⊂ C,
and that the negative real interval (−4µ, 0) ⊂ Ω is a subset of Ω. With Γ = ∂Ω
(smooth and positively oriented boundary) we then have

f(µT ) =
1

2πi

∫
Γ

f(z)
(
zI − µT

)−1
dz. (5.1)

An extension to functions of more than one variable is possible by applying
the formula successively to all variables. For the nth power of the stability
matrix (1.3)

f(z1, z2, . . . , zm) = R(z1, z2, . . . , zm)n, (5.2)

and m = 3, we obtain the following formula

R(τD1, τD2, τD3)n =
1

(2πi)3

∫
Γ1

∫
Γ2

∫
Γ3

R(z1, z2, z3)n

·
(
z3I − µ3TN3

)−1 ⊗ (z2I − µ2TN2

)−1 ⊗ (z1I − µ1TN1

)−1
dz3 dz2 dz1,

where Γj = ∂Ωj is a closed, positively oriented path in the zj-plane that
surrounds the real interval (−4µ, 0) and such that θ−1 /∈ Ωj ∪ Γj for j =
1, . . . ,m. From the estimates of Section 4 we get the following bound∥∥R(τD1, τD2, τD3)n

∥∥
∞ ≤

ω3

(2π)3

∫
Γ1

∫
Γ2

∫
Γ3

∣∣R(z1, z2, z3)
∣∣n |dz3|
|z3|

|dz2|
|z2|

|dz1|
|z1|

.
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β r1

r2

β r1

r2

Fig. 5.1 Integration paths consist of arcs of circles of radius r1 and r2 and of straight lines;
the open set Ω is the shaded region.

where

ω = max
{
ωρ,α

∣∣ ρ eiα ∈ Γ1 ∪ Γ2 ∪ Γ3

}
.

For the paths of Figure 5.1, by assuming that 0 < r1 < θ−1 < r2, we have
ω = sec((π−β)/2) (left picture) and ω = max(2, sec((π−β)/2)

)
(right picture)

provided that r2 ≥ 8µ.

If the set Ω is unbounded (left picture of Figure 5.1), the Cauchy’s integral
formula reads for f(z) analytic in C∪ {∞} \Ω (recall that f(z) is analytic at
∞ if and only if f(1/z) is analytic at z = 0)

f(µT ) = f(∞) I − 1

2πi

∫
Γ

f(z)
(
zI − µT

)−1
dz. (5.3)

It can also be extended to functions of more than one variable. Thus, by
considering the case (5.2) with m = 2, we have that (below for the cases
m = 2 and m = 3, I represents identity matrices of appropriate dimensions)

R
(
τD1, τD2

)n
= R

(
∞,∞

)n
I +

(
−1

2πi

)∮
Γ1

R
(
z1,∞

)n (
I ⊗

(
z1I − µ1TN1

)−1)
dz1

+

(
−1

2πi

)∮
Γ2

R
(
∞, z2

)n ((
z2I −2 TN2

)−1 ⊗ I) dz2
+

(
−1

2πi

)2 ∮
Γ1

∮
Γ2

R
(
z1, z2

)n ((
z2I − µ2TN2

)−1 ⊗ (z1I − µ1TN1

)−1)
dz2dz1,

(5.4)
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We also include the case m = 3 which can directly be extended to a general
formula for arbitrary m,

R
(
τD1, τD2, τD3

)n
= R

(
∞,∞,∞

)n
I +

(
−1

2πi

)∮
Γ1

R
(
z1,∞,∞

)n (
I ⊗ I ⊗

(
z1I − µ1TN1

)−1)
dz1

+

(
−1

2πi

)∮
Γ2

R
(
∞, z2,∞

)n (
I ⊗

(
z2I − µ2TN2

)−1 ⊗ I) dz2
+

(
−1

2πi

)∮
Γ3

R
(
∞,∞, z3

)n ((
z3I − µ1TN3

)−1 ⊗ I ⊗ I) dz3
+

(
−1

2πi

)2 ∮
Γ1

∮
Γ2

R
(
z1, z2,∞

)n (
I ⊗

(
z2I − µ2TN2

)−1 ⊗ (z1I − µ1TN1

)−1)
dz2dz1

+

(
−1

2πi

)2 ∮
Γ1

∮
Γ3

R
(
z1,∞, z3

)n ((
z3I − µ3TN3

)−1 ⊗ I ⊗ (z1I − µ1TN1

)−1)
dz3dz1

+

(
−1

2πi

)2 ∮
Γ2

∮
Γ3

R
(
∞, z2, z3

)n ((
z3I − µ3TN3

)−1 ⊗ (z2I − µ2TN2

)−1 ⊗ I) dz3dz2
+

(
−1

2πi

)3 ∮
Γ1

∮
Γ2

∮
Γ3

R
(
z1, z2, z3

)n ((
z3I − µ3TN3

)−1 ⊗ (z2I − µ2TN2

)−1 ⊗ (z1I − µ1TN1

)−1)
dz3dz2dz1.

(5.5)

6 Proof of Theorem 2.1: power boundedness in dimension m ≥ 3

The stability function corresponding to the stability matrix (1.3) is given by
(1.4). Motivated by the integration paths of Figure 5.1 we also consider the
sets

Kθ =
{
z ∈ C

∣∣∣ |z| ≤ 1

2θ
or |z| ≥ 2

θ

}
, Lβ =

{
z ∈ C

∣∣∣ | arg(−z)| ≤ β
}
.

We know from [10,11] that for θ ≥ 1/2

|R(z1, . . . , zm)| ≤ 1 for zj ∈ Lβ iff β ≤ π

2(m− 1)
, (6.1)

even if we consider 0 and ∞ as elements of Lβ .
In the following we use the notation ν(z) = min{|z|, |z|−1}.

Lemma 6.1 For θ ≥ 1/2 and 0 < β ≤ π
2(m−1) we have for zj ∈ Kθ ∪ Lβ the

following bound for the stability function (1.4)∣∣R(z1, . . . , zm)
∣∣ ≤ 1 + C

∑
zj∈Kθ\Lβ

ν(zj)

with a positive constant C depending on θ.

Proof Let m0 be the number of zj among {z1, . . . , zm} ⊂ Kθ ∪Lβ that satisfy
zj ∈ Kθ \ Lβ . Note that 0 ∈ Lβ and ∞ ∈ Lβ .
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We give a proof by induction on m0. For m0 = 0 we have zj ∈ Lβ for all j,
so that the statement is a consequence of (6.1). Assume next that zm ∈ Kθ\Lβ .
We have to distinguish between |zm| ≤ 1/(2θ) and |zm| ≥ 2/θ.

If zm ∈ Kθ \ Lβ and |zm| ≤ 1/(2θ) we write

R(z1, . . . , zm) = R(z1, . . . , zm−1, 0) + zmS0(z1, . . . , zm)

with S0(z1, . . . , zm) =
1 + θ(z1 + . . .+ zm−1)

(1− θz1) · . . . · (1− θzm)
.

Since {z1, . . . , zm−1, 0} has one element less in Kθ \Lβ , the statement follows
from the induction hypothesis and from the boundedness of S0(z1, . . . , zm).

If zm ∈ Kθ \ Lβ and |zm| ≥ 2/θ we write (with wm = z−1m )

R(z1, . . . , zm) = R(z1, . . . , zm−1,∞) + wmS∞(z1, . . . , zm)

with S∞(z1, . . . , zm) =
θ−1
(
1 + θ(z1 + . . .+ zm−1)

)
(1− θz1) · . . . · (1− θzm−1)(wm − θ)

.

The same argument as before concludes the proof. ut

Proof of Theorem 2.1 for m = 3 (Similar ideas apply to arbitrary m > 3).

Applying the Cauchy’s integral formula (5.5) and using the estimate (4.13) for
the resolvent yields the bound (here written for m = 3)∥∥R(τD1, τD2, τD3)n

∥∥
∞ ≤ |R(∞,∞,∞)|n +

ω

2π

∫
Γ1

|R(z1,∞,∞)|n |dz1|
|z1|

+ . . .+
ω2

(2π)2

∫
Γ1

∫
Γ2

|R(z1, z2,∞)|n |dz2|
|z2|

|dz1|
|z1|

+ . . . (6.2)

+
ω3

(2π)3

∫
Γ1

∫
Γ2

∫
Γ3

∣∣R(z1, z2, z3)
∣∣n |dz3|
|z3|

|dz2|
|z2|

|dz1|
|z1|

,

where ω = sec((π − β)/2). To estimate this expression we use the bound of
Lemma 6.1, which is of the form 1 + x. Using 1 + x ≤ ex (for x ∈ R), and
consequently 1 + a1 + . . . + aj ≤ ea1 · . . . · eaj , the estimate of Lemma 6.1
yields a product of terms each of which depends only on one variable. Hence,
the j-tuple integral over |R(z1, . . . , zm)|n in (6.2) is reduced to a product of j
simple path integrals.

For all variables we use the integration path Γ of the left picture of Fig-
ure 5.1 with

r1 = c1/n, r2 = c2n, where 0 < c1 < θ−1 < c2 are two constants. (6.3)

Since the bounds of Lemma 6.1 only depend on the absolute value |zj |, it is
sufficient to consider the integrals over the upper half of the path Γ (for each
variable). We split it into γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1 = {r1eiφ ; 0 ≤ φ ≤ π − β} γ2 = {ρei(π−β) ; r1 ≤ ρ ≤ 1}

γ3 = {ρei(π−β) ; 1 ≤ ρ ≤ r2} γ4 = {r2eiφ ; 0 ≤ φ ≤ π − β}.
(6.4)
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Since the paths γ2 and γ3 are entirely in Lβ , there is no contribution of the
corresponding variable in the right-hand side of the estimate in Lemma 6.1.
We are therefore concerned with the following path integrals:∫

γ1

eCn|z|
|dz|
|z|

=

∫ π−β

0

eCnr1 dφ = (π − β) eCc1 ,∫
γ2

|dz|
|z|

=

∫ 1

r1

dρ

ρ
= − ln r1,

∫
γ3

|dz|
|z|

=

∫ r2

1

dρ

ρ
= ln r2,∫

γ4

eCn|z|
−1 |dz|
|z|

=

∫ π−β

0

eCn/r2 dφ = (π − β) eC/c2 .

(6.5)

The first and fourth of these integrals are bounded independently of n. The
second and third are bounded by O(1 + lnn). Since the bound (6.2) contains
products of at most three integrals of the type (6.5) (and at most m integrals
in dimension m), this completes the proof. �

7 Proof of Theorem 2.2: general bound

For the proof of Theorem 2.2 we need different bounds for the modulus
|R(z1, . . . , zm)| than those of Lemma 6.1. We denote

K0
θ =

{
z ∈ C

∣∣∣ |z| ≤ 1

2θ

}
, Lβ =

{
z ∈ C

∣∣∣ | arg(−z)| ≤ β
}
,

and we let L0
β = {z ∈ Lβ | |z| ≤ 1} and L∞β = {z ∈ Lβ | |z| ≥ 1} so that

Lβ = L0
β ∪ L∞θ .

Lemma 7.1 For θ ≥ 1/2 and β = π
4m we consider (z1, . . . , zm) with

zj ∈ K0
θ ∪Lβ , |zj | ≤ r2 := c2(N+1), c2 = 8αc∗, (j = 1, . . . ,m) (7.1)

and we denote by m0 the number of elements in L∞β among {z1, . . . , zm}.
Then, we have the following bound for the stability function (1.4)∣∣R(z1, . . . , zm)

∣∣ ≤ 1 + C1

∑
zj∈K0

θ\L
0
β

|zj | −
C2

rm0
2

∑
zj∈L0

β

|zj | (7.2)

with positive constants C1 and C2 only depending on θ.

Remark 7.1 It should be observed that the same constants C1 and C2 in (7.2)
are valid for any β fulfilling 0 < mβ ≤ π/4.

Proof An argument zj ∈ K0
θ \ L0

β can be treated as in the proof of the
Lemma 6.1. This gives rise to the first sum in the estimate of the stability
function. We can therefore assume without loss of generality that all zj are
in Lβ and satisfy |zj | ≤ r2.
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We assume that z1, . . . , zk ∈ L0
β and zk+1, . . . , zm ∈ L∞β , so that m0 =

m− k. The stability function can then be written as (recall that wj = z−1j )

1 +
z + w

(1− θz1) · . . . · (1− θzk)(θ − wk+1) · . . . · (θ − wm)

z = (z1 + . . .+ zk)(−wk+1) · . . . · (−wm)

w = −
m∑

j=k+1

(−wk+1) · . . . · (̂−wj) · . . . · (−wm),

where the hat on (−wj) indicates that this factor has to be omitted in building
the product. For z1, . . . , zk, wk+1, . . . , wm close to zero, the stability function
satisfies R(z1, . . . , zm) ≈ 1 + θk−m(z + w). By the assumption zj ∈ Lβ with
mβ ≤ π/4, each summand u in z and in w is in Lπ/4, so that <u ≤ −2−1/2|u|.
This implies that there exists a positive constant C ′2, such that

|R(z1, . . . , zm)| ≤ 1− C ′2
(
|z|+ |w|

)
(7.3)

for z1, . . . , zk, wk+1, . . . , wm close to zero. This together with (6.1) imply that
the expression

(
1 − |R(z1, . . . , zm)|

)/(
|z| + |w|

)
is positive on the compact

set z1, . . . , zk, wk+1, . . . , wm ∈ L0
β . Therefore, there exists (a possibly smaller)

C ′2 > 0 such that (7.3) holds true on this compact set.
Since |zj | ≤ r2, we have |wj | ≥ r−12 and |z| ≥ 2−1/2rk−m2

(
|z1|+ . . .+ |zm|

)
.

Consequently, it follows from (7.3) that

|R(z1, . . . , zm)| ≤ 1−C ′2
(
|z|+ |w|

)
≤ 1−C ′2|z| ≤ 1−C2r

k−m
2

(
|z1|+ . . .+ |zm|

)
with C2 = 2−1/2C ′2. This yields the statement of Lemma 7.1. ut

Proof of Theorem 2.2 (first inequality).

Take r2 as defined in (7.1), then it holds that

r2 = c2(N+1) = 8αc∗(N+1) ≥ 8ατ(N+1)2 = 8µ ≥ 8µj > 0, (j = 1, . . . ,m).

We use Cauchy’s integral formula with the path of Figure 5.1 (right pic-
ture). We split the upper half of the path into four parts γ1, γ2, γ3, γ4, where
the first three paths are as in (6.4), but with r1 defined in (6.3) and

γ4 = {r2eiφ ; π − β ≤ φ ≤ π}, r2 = c2(N + 1). (7.4)

With the help of Lemma 7.1 the estimate of the m-tuple integral reduces to a
product of m factors among the four expressions∫

γ1

eC1n|z| |dz|
|z|

,

∫
γ2

e−C2n|z|/r
m0
2
|dz|
|z|

,

∫
γ3

|dz|
|z|

,

∫
γ4

|dz|
|z|

. (7.5)

As in Section 6 the first and the fourth of these integrals are bounded inde-
pendently of n and N . For the second integral we have, with r1 = c1/n,∫

γ2

e−C2n|z|/r
m0
2
|dz|
|z|

=

∫ 1

r1

e−C2nρ/r
m0
2

dρ

ρ
= E1(c1C2/r

m0
2 )
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which, by the estimates of Section 10, see (10.1)-(10.2), is bounded by A +
m0 ln(1 + N), where A is some constant only depending on m, c1 and C2.
Finally, the third integral is bounded by ln r2 = ln(c2(1 + N)). Since the
bound of ‖R(τD1, . . . , τDm)n‖∞ is a sum of products that contain at most m
factors from (7.5), it is bounded by O

(
(ln(1+N))m

)
. This completes the proof

of the first statement of Theorem 2.2 for any dimension m ≥ 3. �

8 Proof of Theorem 2.2: special case of dimension 3

This section is devoted to the improved bounds of Theorem 2.2 in dimension
m = 3 for large values of n. The proof is based on Taylor series expansions
around 0 and ∞. The stability function is (with θ ≥ 1/2)

R(z1, z2, z3) = 1 +
z1 + z2 + z3

(1− θz1)(1− θz2)(1− θz3)
, (8.1)

and, if some of the arguments are replaced by wj = 1/zj , it becomes

R(z1, z2, z3) =
(

1− 1

θ

)
− w3 + θ2(z1 + z2)− θ2(θ − w3)z1z2

θ(1− θz1)(1− θz2)(θ − w3)

R(z1, z2, z3) = 1 +
z1w2w3 + w2 + w3

(1− θz1)(θ − w2)(θ − w3)

R(z1, z2, z3) = 1− w1w2 + w1w3 + w2w3

(θ − w1)(θ − w2)(θ − w3)
.

We still consider the sets K0
θ , L0

β , and L∞β as introduced in Section 7, and we

continue to use the notation ν(z) = min{|z|, |z|−1}.

Lemma 8.1 For θ ≥ 1/2 and 0 < 3β ≤ π/4, we have for the stability function
(8.1) the following bounds with positive constants C1 and C2 only depending
on θ and β,

1 + C1

(
|z1|+ |z2|+ |z3|

)
for z1, z2, z3 ∈ K0

θ

1 + C1

(
|z1|+ |z2|

)
− C2ν(z3) for z1, z2 ∈ K0

θ , z3 ∈ Lβ

1 + C1|z1| − C2

(
ν(z2) + ν(z3)

)
for z1 ∈ K0

θ , z2, z3 ∈ Lβ

1− C2

(
|z1|+ |z2|+ ν(z3)

)
for z1, z2 ∈ L0

β , z3 ∈ Lβ

1− C2

(
|z1w2w3|+ |w2|+ |w3|

)
for z1 ∈ L0

β , z2, z3 ∈ L∞β

1− C2

(
|w1w2|+ |w1w3|+ |w2w3|

)
for z1, z2, z3 ∈ L∞β .

Proof The first bound follows from the triangle inequality applied to (8.1).
We next consider the fourth bound. Assume first that z1, z2, z3 ∈ L0

β .

We note that R(z1, z2, z3) = 1 + z1 + z2 + z3 + O
(
|z1|2 + |z2|2 + |z3|2

)
close

to the origin. This implies
∣∣R(z1, z2, z3)

∣∣ ≤ 1 − C2

(
|z1| + |z2| + |z3|

)
for
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z1, z2, z3 ∈ Lβ ∩ {z; |z| ≤ c} with c > 0 sufficiently small. It follows from
[11] that

∣∣R(z1, z2, z3)
∣∣ < 1 for z1, z2, z3 ∈ Lβ \ {0}. Consequently, a com-

pactness argument yields
(
1− |R(z1, z2, z3)|

)/
(|z1|+ |z2|+ |z3|) ≥ C2 > 0 for

zj ∈ Lβ ∩ {z; c ≤ |z| ≤ 1]} with a possibly different value for C2.
For z1, z2 ∈ L0

β , but z3 ∈ L∞β we have that (recall w3 = z−13 )

R(z1, z2, z3) = (1− θ−1)− z1 − z2 − θ−2w3 +O
(
|z1|2 + |z2|2 + |w3|2

)
,

so that
∣∣R(z1, z2, z3)

∣∣ ≤ 1 − C2

(
|z1| + |z2| + |w3|

)
close to (0, 0,∞). This

follows from the fact that 1 − θ−1 ∈ [−1, 0) is negative for 1/2 ≤ θ < 1, and
1− θ−1 ∈ [0, 1) is strictly smaller than one for θ ≥ 1. This completes the proof
for the fourth bound. We remark that this bound also holds if either z1 or z2
or both are replaced by 0.

For the second bound we write R(z1, z2, z3) = R(0, 0, z3)+z1S1(z1, z2, z3)+
z2S2(z1, z2, z3) with bounded functions S1(z1, z2, z3) and S2(z1, z2, z3), and we
use the fact that |R(0, 0, z3)| ≤ 1− C2ν(z3).

For the third bound we use R(z1, z2, z3) = R(0, z2, z3)+z1S(z1, z2, z3) with
bounded S(z1, z2, z3) together with |R(0, z2, z3)| ≤ 1− C2(ν(z2) + ν(z3)). For
z2 ∈ L0

β , z3 ∈ Lβ this inequality is a consequence of the fourth bound by
putting z1 = 0. If both z2, z3 are in L∞β , the inequality follows from the above

compactness argument, because R(0, z2, z3) = 1 + θ−2(w2 + w3) +O(|w2|2 +
|w3|2).

For the fifth bound we put w = z1w2w3 + w2 + w3, and we note that
the product z1w2w3 and also w are in the sector Lπ/4. Since R(z1, z2, z3) =

1 + w + O
(
|w| · max(|z1|, |w2|, |w3|)

)
, it holds |R(z1, z2, z3)| ≤ 1 − C ′2|w| for

(z1, z2, z3) close to (0,∞,∞). Moreover,

|w| ≥ |<w| = |<(z1w2w3)|+ |<w2|+ |<w3| ≥ 2−1/2
(
|z1w2w3|+ |w2|+ |w3|

)
,

so that
∣∣R(z1, z2, z3)

∣∣ ≤ 1−C2

(
|z1w2w3|+ |w2|+ |w3|

)
close to (0,∞,∞). The

same compactness argument as before proves the bound for all z1 ∈ L0
β and

z2, z3 ∈ L∞β .
For the last bound we put w = w1w2 + w1w3 + w2w3. Here, the negative

products −wiwj and −w are in the sector Lπ/4. Since R(z1, z2, z3) = 1−w +

O
(
|w| ·max(|w1|, |w2|, |w3|)

)
, the modulus of the stability function is bounded

by 1−C2

(
|w1w2|+ |w1w3|+ |w2w3|

)
for (z1, z2, z3) close to (∞,∞,∞). Again,

the compactness argument concludes the proof. ut

Proof of Theorem 2.2 (second inequality).

We assume n2 > N. Now, for
∥∥R(τD1, τD2, τD3)n

∥∥
∞ we use Cauchy’s integral

formula with the integration path of the right picture of Figure 5.1, and we
split the upper half into γ1, γ2, γ3, γ4 as in Section 7, see (7.4).

It is sufficient to consider the integrals

Ik,l,m =

∫
γk

∫
γl

∫
γm

∣∣R(z1, z2, z3)
∣∣n |dz3|
|z3|

|dz2|
|z2|

|dz1|
|z1|

, (8.2)
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for 1 ≤ k ≤ l ≤ m ≤ 4. If one of the first four bounds of Lemma 8.1 is relevant
the triple integral in (8.2) reduces to a product of three simple path integrals
of the form∫
γ1

eC1n|z| |dz|
|z|

,

∫
γ2

e−C2n|z| |dz|
|z|

,

∫
γ3

e−C2n|z|−1 |dz|
|z|

,

∫
γ4

e−C2n|z|−1 |dz|
|z|

.

The first and the fourth integrals are bounded independently of n and N as
in (6.5). For the second integral we have∫

γ2

e−C2n|z| |dz|
|z|

=

∫ 1

r1

e−C2nρ
dρ

ρ
≤ E1(C2nr1) = E1(C2c1), (8.3)

which is also bounded. The third integral∫
γ3

e−C2n|z|−1 |dz|
|z|

=

∫ r2

1

e−C2nρ
−1 dρ

ρ
=

∫ 1

r−1
2

e−C2nρ
dρ

ρ
≤ E1(C2nr

−1
2 )

is bounded by E1(C2/c2) for n > N , see (7.4).
From these arguments it is not hard to show that all Ii,j,k integrals are

uniformly bounded except the following cases that have to be considered in
more detail, I2,3,3, I2,3,4, I2,4,4, I3,3,3, I3,3,4, I3,3,4 and I4,4,4.

By item (8.3) we have for parameters w2, w3 ∈ γ3 ∪ γ4 that∫
γ2

e−C2n|zw2w3| |dz|
|z|
≤ E1(C2|w2w3|) ≤ A+ 2 ln(1 +N),

because

1 ≥ |w2w3| ≥
(

1

r2

)2

=

(
1

c2(N + 1)

)2

.

This yields bounds of size O(ln(1 +N)) for the cases I2,3,3, I2,3,4, I2,4,4.
The triple integral I3,3,3, if we let ρj = |wj | = |zj |−1, becomes

I3,3,3 ≤
∫ 1

r−1
2

∫ 1

r−1
2

∫ 1

r−1
2

e−C2n(ρ1ρ2+ρ1ρ3+ρ2ρ3)
dρ1
ρ1

dρ2
ρ2

dρ3
ρ3

.

Introducing the variables u1 = ρ2ρ3, u2 = ρ1ρ3, u3 = ρ1ρ2, whose Jacobian
determinant is |∂u/∂ρ| = 2ρ1ρ2ρ3, we obtain

I3,3,3 ≤
1

2

∫ 1

r−2
2

∫ 1

r−2
2

∫ 1

r−2
2

e−C2n(u1+u2+u3)
du1
u1

du2
u2

du3
u3
≤ 1

2
E1(C2nr

−2
2 )3,

because (ρ1ρ2ρ3)2 = u1u2u3. This expression is bounded independently of N
and n for n ≥ (N + 1)2, due to the fact that

E1(C2nr
−2
2 ) ≤ E1

(
C2

c22

)
.
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For an estimate of I3,3,4 we first integrate over the path γ4. This leads to
the double integral∫ 1

r−1
2

∫ 1

r−1
2

e−C2n(ρ1ρ2+r
−1
2 (ρ1+ρ2))

dρ1
ρ1

dρ2
ρ2
≤
∫ 1

r−1
2

∫ 1

r−1
2

e−C2nr
−1
2 (ρ1+ρ2)

dρ1
ρ1

dρ2
ρ2

,

which is bounded by E1(C2nr
−2
2 ), similar as for I3,3,3.

For an estimate of I3,4,4 we integrate over both paths γ4, and obtain the
simple integral∫ 1

r−1
2

e−C2n(2r
−1
2 ρ1+r

−2
2 ) dρ1

ρ1
≤
∫ 1

r−1
2

e−2C2nr
−1
2 ρ1

dρ1
ρ1
≤ E1(2C2nr

−2
2 ).

Finally, for the proof of the boundedness of I4,4,4 it is sufficient to apply
the bound |R(z1, z2, z3)| ≤ 1 for z1, z2, z3 ∈ γ4. This concludes the proof. �

9 Power boundedness of further stability matrices

The technique of proof for the main results of the present article is not re-
stricted to the simple stability matrix (1.3), but extends straightforwardly to
a much larger class of stability matrices.

Let us illustrate this claim at the stability matrix (1.5) of the Hundsdorfer–
Verwer scheme [12, Section IV.5.2]. For the value θ = (3 +

√
3)/6 it defines a

method of (classical) order 3, otherwise it is of order 2.
The most difficult step in proving power boundedness of the stability ma-

trix is to prove for the stability function given in (1.6) that |R(z1, . . . , zm)| ≤ 1
in a sector z1, . . . , zm ∈ Lβ with positive β. According to the numerical com-
putations of [12, Section IV.5.2], this is satisfied for m = 1, θ ≥ 1/4 with
β = π/2, for m = 2, θ ≥ (3 +

√
3)/6 with β = π/2 and for m = 3, θ ≥ 1/2 with

β = π/4.
The next step is to verify the bounds of Lemma 6.1 and Lemma 7.1. Minor

changes in the proofs yield these bounds for (1.6). The rest is identical to the
proof for (1.3), because the application of Cauchy’s integral formula and the
estimates of the resolvent do not depend on the particular stability function.
This proves the bounds O

(
ln(1+n))m

)
and O

(
(ln(1+N))m

)
of Section 2 also

for (1.5).

9.1 Improved bounds in dimension m = 2

In dimension m = 2 we are not aware of a representation for (1.6) that permits
a simple proof of power boundedness like that of Section 2 for the stability
matrix (1.3). To prove power boundedness of the stability matrix (1.5) with
bounds that are independent of n and N we need the following lemma, which
improves the bound of Lemma 6.1. The sets Kθ and Lβ as well as the function
ν(z) are same as in Lemma 6.1.
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Lemma 9.1 For θ > 1/2 and 0 < β < π/4 we have for zj ∈ Kθ ∪ Lβ the
following bound for the stability function (1.6) in dimension m = 2,

|R(z1, z2)| ≤ 1 + C1

∑
zj∈Kθ\Lβ

ν(zj)− C2

∑
zj∈Lβ

ν(zj) (9.1)

with positive constants C1, C2 only depending on θ and β.

Proof There are several cases to be considered: zero, one, or two elements
among {z1, z2} can lie in Lβ , and each of them can have a modulus larger or
smaller than 1. If both, z1 and z2, are in Kθ but not in Lβ , the proof is the same
as that for Lemma 6.1. Also the proof of the first four bounds of Lemma 8.1
extends straight-forwardly to the stability function (1.6) by putting z1 = 0,
because only the dominant terms in Taylor series expansions play a role.

It remains to consider the situation, where z1 ∈ K∞θ and z2 ∈ Lβ . We
write R(z1, z2) = R(∞, z2) + z−11 S(z1, z2), where S(z1, z2) is bounded and

R(∞, z2) = 1− 2

θ(1− θz2)
+

1

2θ2(1− θz2)2
.

The proof of |R(∞, z2)| ≤ 1− C2ν(z2) is by the same compactness argument
as in the previous lemmata. For z2 ∈ L∞β we have R(∞, z2) = 1 + 2θ−2z−12 +

O(|z2|−2), so that (1 − |R(∞, z2)|)/|z−12 | ≥ C ′2 > 0 for z2 close to ∞. For
z2 ∈ L0

β we haveR(∞, z2) = p(θ)+(θ−1−2)z2+O(|z2|2) with p(θ) = 1− 2
θ+ 1

2θ2 .
The inequality follows from the fact that |p(θ)| < 1 for θ > 1/2. ut

The estimate of Lemma 9.1 permits us to prove power boundedness for
the stability matrix (1.6). The proof shows that we have power boundedness
for all stability matrices that correspond to stability functions satisfying the
estimate of Lemma 9.1.

Theorem 9.1 In dimension m = 2 the stability matrix (1.5) (with θ ≥ 1/2)
satisfies ∥∥R(τD1, τD2)n

∥∥
∞ ≤ c2 for n ≥ 1,

where the constant c2 only depends on θ.

Proof From the Cauchy’s integral formula (5.4), by using the estimate for the
resolvent to get the bound∥∥R(τD1, τD2)n

∥∥
∞ ≤ |R(∞,∞)|n (9.2)

+
ω

2π

(∫
Γ1

|R(z1,∞)|n |dz1|
|z1|

+

∫
Γ2

|R(∞, z2)|n |dz2|
|z2|

)
+

ω2

(2π)2

∫
Γ1

∫
Γ2

∣∣R(z1, z2)
∣∣n |dz2|
|z2|

|dz1|
|z1|

,

where ω = sec((π − β)/2) with β considered in Lemma 9.1. We again use the
integration path Γ of the left picture of Figure 5.1 with r1 and r2 defined in
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(6.3), and we split it into γ1 ∪ γ2 ∪ γ3 ∪ γ4 as in (6.4). Using the estimate of
Lemma 9.1 it follows from (9.2) that we have power boundedness if the four
integrals∫

γ1

eC1n|z| |dz|
|z|

,

∫
γ2

e−C2n|z| |dz|
|z|

,

∫
γ3

e−C2n|z|−1 |dz|
|z|

,

∫
γ4

eC1n|z|−1 |dz|
|z|

are bounded independently of n. For the first and fourth of these integrals this
follows from (6.5). For the second and third integrals we have∫

γ2

e−C2n|z| |dz|
|z|

=

∫ 1

r1

e−C2nρ
dρ

ρ
≤ E1(C2nr1) = E1(C2c1)∫

γ3

e−C2n|z|−1 |dz|
|z|

=

∫ r2

1

e−C2nρ
−1 dρ

ρ
=

∫ 1

r−1
2

e−C2nρ
dρ

ρ
≤ E1(C2/c2)

which are bounded by the exponential integral (see Section 10). Using these
bounds in the estimate (9.2) for ‖R(τD1, τD2)n‖∞ concludes the proof of
Theorem 9.1. ut

We note that in dimension m = 2 the stability function (1.4) also satisfies
the estimate of Lemma 9.1. Since the proof of Theorem 9.1 only depends
on (9.1) and not on the special form of the stability function, we have an
alternative proof of Theorem 2.1 for m = 2.

10 Appendix

The exponential integral is defined by the strictly decreasing function

E1(x) =

∫ ∞
x

e−t

t
dt for x > 0.

We have the estimate (see [1, p. 229, Formula 5.1.20])

1

2
e−x ln

(
1 +

2

x

)
< E1(x) < e−x ln

(
1 +

1

x

)
. (10.1)

A change of variables immediately leads to∫ ∞
a

e−ct

t
dt = E1(ac), whenever a > 0, c > 0. (10.2)
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22 S. González-Pinto et al.

References

1. Abramowitz, M., and Stegun, I. A. Handbook of mathematical functions with formu-
las, graphs, and mathematical tables, vol. 55 of National Bureau of Standards Applied
Mathematics Series. For sale by the Superintendent of Documents, U.S. Government
Printing Office, Washington, D.C., 1964.

2. Arrarás, A., in ’t Hout, K. J., Hundsdorfer, W., and Portero, L. Modified
Douglas splitting methods for reaction-diffusion equations. BIT 57, 2 (2017), 261–285.

3. Craig, I. J. D., and Sneyd, A. D. An alternating-direction implicit scheme for
parabolic equations with mixed derivatives. Comput. Math. Appl. 16, 4 (1988), 341–350.

4. Crouzeix, M. Analyticity of the one-dimensional discrete heat equation in L∞ for
equidistant grids. Note, 1988.

5. Douglas, Jr., J., and Rachford, Jr., H. H. On the numerical solution of heat
conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82
(1956), 421–439.
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