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Long-term analysis of a variational integrator for
charged-particle dynamics in a strong magnetic field

Ernst Hairer1, Christian Lubich2

Abstract The differential equations of motion of a charged particle in a strong
non-uniform magnetic field have the magnetic moment as an adiabatic invari-
ant. This quantity is nearly conserved over long time scales covering arbitrary
negative powers of the small parameter, which is inversely proportional to
the strength of the magnetic field. The numerical discretisation is studied
for a variational integrator that is an analogue for charged-particle dynamics
of the Störmer–Verlet method. This numerical integrator is shown to yield
near-conservation of a modified magnetic moment and a modified energy over
similarly long times. The proofs for both the continuous and the discretised
equations use modulated Fourier expansions with state-dependent frequencies
and eigenvectors.
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Fourier expansion.
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1 Introduction

This paper is concerned with the long-time behaviour of a numerical integrator
for the equations of motion of a particle in a strong non-uniform magnetic field.
In particular we study the long-time near-conservation of the energy and of the
magnetic moment, which is an adiabatic invariant of the system of differential
equations.
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1.1 Motion of charged particles in a strong magnetic field

We consider the differential equation that determines the position x(t) ∈ R3

of a charged particle moving in a strong magnetic field,

ẍ =
1

ε
ẋ×B(x) + E(x), 0 < ε� 1, (1.1)

where B(x) = ∇x × A(x) with a vector potential A(x) ∈ R3 and E(x) =
−∇xU(x) with a scalar potential U(x) ∈ R. It is assumed that A and U are
given smooth functions. We are interested in the situation of a small positive
scaling parameter ε, and we assume |B(x)| ≥ 1 in the Euclidean norm | · |. The
differential equations (1.1) are the Euler–Lagrange equations for the Lagrange
function L(x, ẋ) = 1

2 |ẋ|
2 + 1

εA(x)>ẋ− U(x).
We consider initial values

x(0) = O(1), ẋ(0) = O(1), (1.2)

so that the energy (which is a conserved quantity)

H(x, ẋ) =
1

2
|ẋ|2 + U(x) (1.3)

is bounded independently of ε along the solution.
It is well known [14,2,4] that the magnetic moment is an adiabatic invariant

(see, e.g., [1,12] for this notion):

I(x, ẋ) =
1

2

|ẋ×B(x)|2

|B(x)|3
=

1

2

|ẋ⊥|2

|B(x)|
, (1.4)

where ẋ⊥ is the component of the velocity that is orthogonal to B(x). The
particle motion is composed of fast rotations in the plane orthogonal to the
magnetic field around a guiding center (Larmor rotation) and slow motion of
the guiding center, in such a way that the magnetic moment is approximately
conserved.

Differential equations of the form (1.1) also arise in rapidly rotating shallow-
water equations for semi-geostrophic particle motion [5].

1.2 Numerical integrators

In this paper we are interested in the long-time near-conservation of the en-
ergy and the magnetic moment along the numerical solution obtained with a
numerical integrator applied to (1.1).

The most widely used integrator for charged-particle dynamics is the Boris
method [3]

xn+1 − 2xn + xn−1
h2

=
1

ε

(xn+1 − xn−1)

2h
×B(xn) + E(xn), (1.5)
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with the velocity approximation

vn =
1

2h

(
xn+1 − xn−1

)
. (1.6)

The Boris method is known to have good long-time energy behaviour for a fixed
ε and step size h� ε in the case of a constant magnetic field B, though not for
general magnetic fields [10]. The Boris method is not a variational/symplectic
integrator unless the magnetic field B is constant [6].

A related variational integrator, which coincides with the Boris method for
constant B (or equivalently, linear A(x)), is constructed like in the interpreta-
tion of the Störmer–Verlet method as a variational integrator: the integral of
the Lagrangian L(x, ẋ) = 1

2 |ẋ|
2 + 1

εA(x)>ẋ−U(x) over a time step is approx-
imated by replacing x(t) with the linear interpolant of the endpoint positions
and then approximating the integral by the trapezoidal rule, and finally this
approximation to the action integral is extremised; see, e.g., [11, Chap. VI,
Example 6.2] and [15]. With the derivative matrix A′(x) = (∂jAi(x))3i,j=1 and

its transpose A′(x)>, this variational integrator reads

xn+1 − 2xn + xn−1
h2

=
1

ε
A′(xn)>

(xn+1 − xn−1)

2h

−1

ε

A(xn+1)−A(xn−1)

2h
−∇U(xn),

(1.7)

again taken with the velocity approximation (1.6). Like the Störmer–Verlet
method, this method can be given a one-step formulation that maps (xn, vn)
to (xn+1, vn+1). It is, however, an implicit method. This variational integra-
tor will be shown to have similar behaviour regarding the long-time near-
conservation of the energy and the adiabatic invariant as the Störmer–Verlet
method has for mechanical systems with high-frequency oscillations that are
due to a strong constraining potential [7,8].

1.3 Outline of the paper

In Section 2 we state the main results of this paper: Theorem 2.1 states the
long-time near-conservation of the magnetic moment for the continuous sys-
tem, and Theorem 2.2 states the long-time near-conservation, over the time
scale t ≤ ε−N , of a modified magnetic moment for the discretised system
with step size h ≤ cNε. Theorem 2.3 states the long-time near-conservation
of a modified energy for the discretised system. Section 3 presents numerical
experiments that illustrate the theoretical results.

In Section 4 we derive a modulated Fourier expansion for the exact solu-
tion, which is then used to prove Theorem 2.1. In Section 5 we derive, in a
similar way, a modulated Fourier expansion for the numerical solution, which
is then used to prove Theorems 2.2 and 2.3. In contrast to previous works using
modulated Fourier expansions (e.g., [11, Chapter XIII] and [8]), in the problem
considered here both the eigenvalues (frequencies) and the eigenvectors of the
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dominant linear map, which here is v 7→ 1
εv×B(x), are state-dependent. The

dependence on x needs to be addressed specifically in the construction of the
modulated Fourier expansion. The particular discretization of the magnetic
term in (1.7) is of no importance for the existence of the modulated Fourier
expansion, but it is essential for the existence of its almost-invariants, which
yield the near-conservation of the modified magnetic moment and energy.

2 Main results

2.1 Adiabatic invariant of the continuous problem

While it has been common knowledge in physics that the magnetic moment is
an adiabatic invariant, at least since the work by Northrop [14], it seems that a
rigorous proof of the near-conservation of the magnetic moment over very long
times was first given by Benettin & Sempio [2], who show the adiabatic invari-
ance over exponentially long times t ≤ e−c/ε with c > 0 (for real-analytic B
and in the case E = 0). Their proof is based on a sequence of nonlinear canon-
ical transformations of Hamiltonian perturbation theory that transform the
Hamiltonian to a normal form. Since this technique of proof does not appear
to lend itself to studying the long-time behaviour of numerical discretisations
such as (1.7), we prove the long-time near-conservation of the magnetic mo-
ment with the alternative technique of modulated Fourier expansions (see [11,
Chapter XIII] and [8]), which does not use nonlinear coordinate transforms
and will later be shown to apply equally to the numerical discretisation.

Incidentally, modulated Fourier expansions (though not under this name,
which was coined in [11]) were already used by Kruskal [13] in 1958 to give a
formal derivation of an adiabatic invariant. However, he did not prove long-
time near-preservation of the adiabatic invariant as stated in the following
theorem, which we will prove in Section 4.

Theorem 2.1 There exists ε0 > 0 such that the following holds for 0 < ε ≤ ε0.
Under the bounded-energy condition (1.2) and provided that the solution x(t)
of (1.1) stays in a compact set K, the magnetic moment is nearly conserved
over long times: for arbitrary N ≥ 1,∣∣I(x(t), ẋ(t)

)
− I
(
x(0), ẋ(0)

)∣∣ ≤ CN ε for t ≤ ε−N .

The constant CN is independent of ε ≤ ε0 and t with t ≤ ε−N , but depends
on N , on bounds of the first N + 1 derivatives of B and E on the compact
set K, and on the constants in (1.2).

2.2 Near-conservation of the magnetic moment of the variational integrator

We define

ξ(x) = 2 arctan
( h

2ε
|B(x)|

)
(2.1)
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and we note that ξ(x) ≈ (h/ε)|B(x)| for small h/ε.

We consider the modified magnetic field

Bh(x) = ρ
(
ξ(x)

)
B(x) with ρ(ξ) = cos4(ξ/2),

and we note that 1 − ρ(ξ) ∼ 1
2ξ

2 for small ξ. We then define the modified
magnetic moment as

Ih(x, v) =
1

2

|v ×Bh(x)|2

|Bh(x)|3
=

1

ρ(ξ(x))
I(x, v).

With the modified velocity ṽ = v/ρ(ξ(x))1/2 we have Ih(x, v) = I(x, ṽ). The
proof of the following theorem is given in Section 5.

Theorem 2.2 There exist ε0 > 0 and h0 > 0 such that the following holds
for 0 < ε ≤ ε0 and 0 < h ≤ h0. Let N ≥ 1 be an arbitrary integer. Under the
bounded-energy condition (1.2) and provided that the numerical solution (xn)
of the variational integrator (1.7) stays in a compact set K and is obtained
with a step size h for which h

ε |B(xn)| ≤ 2 tan
(

π
2(N+3)

)
for some N ≥ 1, the

modified magnetic moment is nearly conserved over long times:∣∣Ih(xn, vn)− Ih(x0, v0)∣∣ ≤ CN ε for nh ≤ ε−N .

The constant CN is independent of ε, h, and n with nh ≤ ε−N , but depends
on N , on bounds of the first N + 1 derivatives of B and E on the compact
set K, and on the constants in (1.2).

2.3 Near-conservation of energy of the variational integrator

We consider the modified energy

Hh(x, v) = H(x, v) + θ
(
ξ(x)

)
I(x, v) |B(x)|

with ξ(x) from (2.1) and θ(ξ) = θkin(ξ) + θmag(ξ), where1

θkin(ξ) =
2 sinc(ξ)− sinc(ξ/2)2

sinc(ξ)2
− 1,

θmag(ξ) =
sinc(ξ/2)(sinc(ξ)− cos(ξ))

cos(ξ/2) sinc(ξ)2
.

We note that θ(ξ) ∼ 5
12ξ

2 for small ξ. The proof of the following theorem is
given in Section 5.

1 We use the notation sinc(ξ) = sin(ξ)/ξ.
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Theorem 2.3 Under the assumptions of Theorem 2.2, the modified energy is
nearly conserved over long times:∣∣Hh

(
xn, vn

)
−Hh

(
x0, v0

)∣∣ ≤ CN ε for nh ≤ ε−N .

The constant CN is independent of ε, h, and n with nh ≤ ε−N , but depends
on N , on bounds of the first N + 1 derivatives of B and E on the compact
set K, and on the constants in (1.2).

Remark 2.1 In the case of a confining potential, i.e., such that U(x) → +∞
as |x| → ∞, Theorem 2.3 actually implies by an induction argument that the
numerical solution xn stays in a compact set K that depends on bounds of
the initial values, but is independent of ε, h, and n subject to the conditions
of the theorem.

Remark 2.2 Theorems 2.2 and 2.3 hold also for the Boris method in the special
case of a constant magnetic field B, because the variational integrator coincides
with the Boris method in this case.

3 Numerical experiments

To illustrate the statements of the preceding section we consider Example 5.2
of [10] with an additional factor 1/ε. We have the scalar potential

U(x) = x31 − x32 +
1

5
x41 + x42 + x43, (3.1)

the magnetic field

B(x) = ∇× 1

4

x
2
3 − x22
x23 − x21
x22 − x21

 =
1

2

x2 − x3x1 + x3

x2 − x1

 , (3.2)

and we take the initial values

x(0) = (0.0, 1.0, 0.1)>, ẋ(0) = (0.09, 0.55.0.30)>. (3.3)

The quartic terms in (3.1) imply compact level sets of the energy, so that the
exact solution of the problem exists and remains bounded for all times.

For different values of ε and η we apply the variational integrator (1.7)
with step size h = ηε. The nonlinear equation is solved by simplified Newton
iterations. Figure 3.1 shows the relative error

(
I(xn, vn)− I(x0, v0)

)/
I(x0, v0)

of the magnetic moment along the numerical solution. It is drawn in black
for η = 0.8 and in grey for η = 0.2. We observe that this error is of size
O(1) for all choices of ε. Figure 3.2 shows the same experiment, where the
exact magnetic moment is replaced by the modified magnetic moment Ih(x, v)
with ρ(ξ) = cos4(ξ/2). For this modified magnetic moment the relative error
is of size O(ε) (note that the vertical axis is scaled by ε). This is in perfect
agreement with the statement of Theorem 2.2.
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Fig. 3.1 Relative error
(
I(xn, vn)− I(x0, v0)

)/
I(x0, v0) of the magnetic moment I(x, v) as

a function of time, along the numerical solution of the variational integrator (1.7), obtained
with h = ηε, where η = 0.8 (black) and η = 0.2 (grey).
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Fig. 3.2 Relative error
(
Ih(xn, vn)− Ih(x0, v0)

)/
Ih(x0, v0) of the modified magnetic mo-

ment Ih(x, v) as a function of time, along the numerical solution of the variational integra-
tor (1.7), obtained with h = ηε, where η = 0.8 (black) and η = 0.2 (grey).

Our next numerical experiment is concerned with the energy H(x, v) of the
system. Figure 3.3 shows the relative error

(
H(xn, vn)−H(x0, v0)

)/
H(x0, v0)

of the energy along the numerical solution of the variational integrator. We
observe that the error is not smaller than O(1). This experiment also demon-
strates that, although the variational integrator is symplectic when written in
canonical variables, the energy error is small only for step sizes h � ε. Fig-
ure 3.4 shows the relative error

(
Hh(xn, vn) − Hh(x0, v0)

)/
Hh(x0, v0) of the

modified energy Hh(x, v), which is observed to be of size O(ε) in agreement
with the statement of Theorem 2.3.
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Fig. 3.3 Relative error
(
H(xn, vn)−H(x0, v0)

)/
H(x0, v0) of the energy H(x, v) as a func-

tion of time, along the numerical solution of the variational integrator (1.7), obtained with
h = ηε, where η = 0.8 (black) and η = 0.2 (grey).
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Fig. 3.4 Relative error
(
Hh(xn, vn) − Hh(x0, v0)

)/
Hh(x0, v0) of the modified energy

Hh(x, v) as a function of time, along the numerical solution of the variational integra-
tor (1.7), obtained with h = ηε, where η = 0.8 (black) and η = 0.2 (grey).

Numerical experiments as in Figures 3.1 and 3.3 with the non-variational
Boris algorithm are similar to those obtained with the variational integrator.
This is somewhat surprising, because for the Boris algorithm we do not know of
a modified magnetic moment or of a modified energy that would be conserved
up to errors of size O(ε); see also [10] for an example (with a moderately
strong magnetic field) where a linear drift of the energy is observed for the
Boris method.
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4 Modulated Fourier expansion of the exact solution

For the solution of (1.1) we consider the modulated Fourier expansion

x(t) ≈
∑
k∈Z

zk(t) eikφ(t)/ε, (4.1)

where z0(t) describes the guiding-center motion, and the Larmor rotation is
captured in the functions zk(t) eikφ(t)/ε for k 6= 0. We require that the phase
function φ(t) and the modulation functions zk(t) are smooth in the sense that
all their derivatives are bounded independently of ε. Since x(t) is real, we

assume z−k(t) = zk(t).
In this section we show how the phase function φ(t) and the coefficient

functions zk(t) have to be chosen to get an accurate approximation of the
solution x(t) of (1.1) over some short time interval. We follow the approach
of the varying-frequency modulated Fourier expansion constructed in [8] for
a different problem with state-dependent high frequencies. We now encounter
the additional difficulties that in the present situation the right-hand side of
(1.1) depends on the velocity and the eigenvectors of the linear map v 7→
ε−1(v ×B(x)) depend on x.

Inserting the ansatz (4.1) and its derivatives into the differential equation
(1.1) and comparing the coefficients of eikφ(t)/ε yields

z̈k + 2ik
φ̇

ε
żk +

(
ik
φ̈

ε
− k2 φ̇

2

ε2

)
zk = F k, (4.2)

where we use the abbreviation

F k =
1

ε

∑
k1+k2=k

(
żk1 + ik1

φ̇

ε
zk1
)
×
∑
m≥0

s(α)=k2

1

m!
B(m)(z0) zα

−
∑
m≥0
s(α)=k

1

m!

(
∇U

)(m)
(z0) zα.

Here, α = (α1, . . . , αm) is a multi-index with αj ∈ Z\{0}, s(α) = α1+. . .+αm,
and zα = (zα1 , . . . , zαm). For m = 0 we interpret α as the empty set ∅, and
we use the convention that s(∅) = 0 and that the argument z∅ is not present
in the above expressions.

4.1 Construction of the modulated Fourier expansion

Our construction of φ(t) and the coefficient functions zk(t) in (4.1) is based
on asymptotic expansions, which are typically divergent. To obtain rigorous
statements we have to truncate the series. We choose a truncation index N
and we consider

x̃(t) =
∑

|k|≤N+1

zk(t) eikφ(t)/ε, (4.3)
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where φ(t) and the coefficient functions zk(t) are determined such that the
defect when x̃(t) is inserted into the differential equation (1.1), is of size O(εN ).

We first diagonalize the linear map v 7→ v × B(x). It has eigenvalues
λ1 = i|B(x)|, λ0 = 0, and λ−1 = −i|B(x)|. The corresponding normalised
eigenvectors are denoted v1(x), v0(x), v−1(x). Note that v0(x) is collinear to
B(x). We further denote the orthogonal projections onto the eigenspaces by
Pj(x) = vj(x)vj(x)∗.

We put

ζ0 = z0 − c0, ζk = ε−|k|zk, k 6= 0, (4.4)

where c0 is a constant vector that will be fixed later. We will determine the
scaled vectors ζk such that ζk = O(1). These vectors are written in the time-
dependent basis v1(z0), v0(z0), v−1(z0),

ζk = ζk1 + ζk0 + ζk−1

so that ζkj = Pj(z
0)ζk is collinear to vj(y

0). As a consequence of v−1(y0) =

v1(y0) and the fact that v0(y0) is real, it follows from z−k = zk that

ζ−k−1 = ζk1 , ζ−k0 = ζk0 , ζ−k1 = ζk−1. (4.5)

Differentiating the identity ζkj = Pj(z
0)ζk with respect to time, the relation

(4.2), after suitable truncation, yields for j ∈ {1, 0,−1} (with z0 = c0 + ζ0)

ζ̈0j − 2Ṗj(z
0)ż0 − P̈j(z

0)(z0 − c0) = Pj(z
0)F̃ 0(

ζ̈kj − 2Ṗj(z
0)ζ̇k − P̈j(z0)ζk

)
+ 2ik

φ̇

ε

(
ζ̇kj − Ṗj(z0)ζk

)
+
(

ik
φ̈

ε
− k2 φ̇

2

ε2

)
ζkj = Pj(z

0)F̃ k,

(4.6)

where we use the notation Ṗj(z
0) = d

dtPj(z
0) and similar for P̈j(z

0). The

vector F̃ k, written in terms of the scaled variables, is given by

F̃ k = ε−|k|−1
∑

k1+k2=k

ε|k1|
(
ζ̇k1 + ik1

φ̇

ε
ζk1
)
×

∑
0≤m≤N+1
s(α)=k2

ε|α|

m!
B(m)(z0) ζα

− ε−|k|
∑

0≤m≤N+1
s(α)=k

ε|α|

m!

(
∇U

)(m)
(z0) ζα,

where ζα = (ζα1 , . . . , ζαm), |α| = |α1| + . . . + |αm|, and all indices k, k1, k2,
α1, . . . , αm are restricted to the range {−N − 1, . . . , N + 1} with αj 6= 0.

We extract the leading term from F̃ k,

F̃ k =
1

ε

(
ζ̇k + ik

φ̇

ε
ζk
)
×B(z0) + F̂ k,
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and we note that

P0(z0)F̃ k = P0(z0)F̂ k,

P±1(z0)F̃ k = ∓k φ̇|B(z0)|
ε2

ζk±1 ± i
|B(z0)|

ε
P±1(z0)ζ̇k + P±1(z0)F̂ k,

which follows from P0(z0)
(
v × B(z0)

)
= 0 and from P±1(z0)

(
v × B(z0)

)
=

±i|B(z0)|P±1(z0)v for all vectors v. We further have F̂ 0 = O(1), F̂±1 =

O(ε−1), and F̂ k = O(ε−2) for all other values of k.
To annihilate the ε−2 terms in (4.6) for j = k = ±1, we define the phase

function φ(t) by

φ(t) =

∫ t

0

∣∣B(z0(s)
)∣∣ds, so that φ̇(t) =

∣∣B(z0(t)
)∣∣. (4.7)

Our aim is to define smooth coefficient functions ζkj of size O(1) satisfying
(4.6). In each equation we look for the highest derivative appearing in the
terms with the lowest power of ε.

– k = 0, j = 0: The highest derivative of ζ00 is the second one and it appears
in the term ζ̈00 − P̈0(z0)(z0 − c0).

– k = 0, j = ±1: The only ε−1-term for j = 1 is ε−1i|B(z0)|P1(z0)ζ̇0 and the
highest derivative of ζ01 is the first one. Using P1(z0)ζ̇0 = ζ̇01 − Ṗ1(z0)(z0−
c0), this term becomes ε−1i|B(z0)|

(
ζ̇01 − Ṗ1(z0)(z0− c0)

)
. The case j = −1

is treated in the same way.
– k = j = ±1: By (4.7), the ε−2 terms cancel each other in (4.6). For k = j =

1, the dominant terms containing ζ̇11 are ε−12iφ̇ζ̇11 (on the left side) and
ε−1i|B(z0)|P1(z0)ζ̇1 (on the right side). From P1(z0)ζ̇1 = ζ̇11 − Ṗ1(z0)ζ1 we
thus obtain the first derivative of ζ11 . The same argument can be repeated
for k = j = −1.

– the remaining values of k and j: combining the dominant ε−2 term from
the left and right sides of (4.6) gives ε−2k(j − k)φ̇2ζkj for j ∈ {1, 0,−1}.
Hence we obtain algebraic relations for ζkj .

This leads to the following system of equations (with z0 = c0 + ζ01 + ζ00 + ζ0−1):

ζ̈00 − P̈0(z0)(z0 − c0) = f00
(
ε, z0, ż0, (ζl, ζ̇l)l 6=0

)
(4.8)

ζ̇01 − Ṗ1(z0)(z0 − c0) = −i ε|B(z0)|−1
(
ζ̈01 − P̈1(z0)(z0 − c0)

)
+ εf01

(
ε, z0, ż0, (ζl, ζ̇l)l 6=0

)
(4.9)

ζ̇0−1 − Ṗ−1(z0)(z0 − c0) = i ε|B(z0)|−1
(
ζ̈0−1 − P̈−1(z0)(z0 − c0)

)
+ εf0−1

(
ε, z0, ż0, (ζl, ζ̇l)l 6=0

)
(4.10)

ζ̇11 = f11
(
ε, z0, ż0, z̈0, ζ̈11 , (ζ

l, ζ̇l)l 6=0

)
(4.11)

ζ̇−1−1 = f−1−1
(
ε, z0, ż0, z̈0, ζ̈−1−1 , (ζ

l, ζ̇l)l 6=0

)
(4.12)

ζkj = fkj
(
ε, z0, ż0, z̈0, ζ̈kj , (ζ

l, ζ̇l)l 6=0

)
, (4.13)
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where |k| ≤ N + 1 and |l| ≤ N + 1. We note that the functions fkj are
polynomials in ε. Equation (4.13) is valid for |k| ≤ N + 1 and j ∈ {1, 0,−1}
satisfying k(j − k) 6= 0. For these values of k and j the ε-independent term of

fkj consists of those terms from F̂ k for which k1 and α1, . . . , αm have all the

same sign. It thus depends only on z0 and on ζl with 0 < |l| < |k|. Moreover,
fkj starts with the O(ε)-term for |k| = 1 and j 6= k.

To obtain a regular differential equation we have to eliminate recursively
the algebraic variables and the higher derivatives of the differential variables.
We start with the highest index |k| = N +1. Using the relation (4.13) for such
an index and its differentiated versions, we can recursively push the depen-

dence on ζ
±(N+1)
j (for j ∈ {1, 0,−1}) and on its derivatives to higher powers

of ε until it contains a sufficiently large power of ε. For decreasing |k| we then
eliminate all ζkj (and their derivatives) with k(j − k) 6= 0 from the right-hand
side of the system (4.8)-(4.13).

We next consider the equations (4.11) and (4.12). The ε-independent term
of f±1±1 depends on ζ±1±1 , but not on its derivatives. Therefore, these equations

permit us to eliminate the first and higher derivatives of ζ±1±1 from the whole
system (4.8)-(4.13).

For the functions gj = ζ̇0j − Ṗj(z0)(z0 − c0) we have ġj = ζ̈0j + P̈j(z
0)(z0 −

c0) + Ṗj(z
0)ż0. Including Ṗj(z

0)ż0 in the expression f0j , the equations (4.9)-

(4.10) become gj = ±iε|B(z0)|−1ġj + . . .. By differentiation and substitution
the first term in the right-hand side of (4.9)-(4.10) can be removed.

Carrying out all these operations, the previous system of equations becomes

ζ̈00 − P̈0(z0)(z0 − c0) = f00
(
ε, z0, ż0, . . . , ζ11 , ζ

−1
−1
)

+O(εN ) (4.14)

ζ̇01 − Ṗ1(z0)(z0 − c0) = εf01
(
ε, z0, ż0, . . . , ζ11 , ζ

−1
−1
)

+O(εN ) (4.15)

ζ̇0−1 − Ṗ−1(z0)(z0 − c0) = εf0−1
(
ε, z0, ż0, . . . , ζ11 , ζ

−1
−1
)

+O(εN ) (4.16)

ζ̇11 = f11
(
ε, z0, ż0, . . . , ζ11 , ζ

−1
−1
)

+O(εN+1) (4.17)

ζ̇−1−1 = f−1−1
(
ε, z0, ż0, . . . , ζ11 , ζ

−1
−1
)

+O(εN+1) (4.18)

ζkj = fkj
(
ε, z0, ż0, . . . , ζ11 , ζ

−1
−1
)

+O(εN−|k|+2), (4.19)

where the three dots stand for a finite number of derivatives of z0. Recalling
that z0 = c0 + ζ01 + ζ00 + ζ0−1, and that P̈0(z0) + P̈1(z0) + P̈−1(z0) = 0, the sum
of (4.14) and of the differentiated equations (4.15)-(4.16) gives

z̈0 = f0
(
ε, z0, ż0, . . . , ζ11 , ζ

−1
−1
)

+O(εN ). (4.20)

Since the ε-independent term of the polynomial f0(ε, . . .) only depends on z0,
ż0, ζ11 , and ζ−1−1 , second and higher derivatives of z0 can be eliminated in the
right-hand sides of (4.20) as well as from those of the system (4.14)-(4.19),
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and we obtain the differential-algebraic system

ζ̈00 − P̈0(z0)(z0 − c0) = f00
(
ε, z0, ż0, ζ11 , ζ

−1
−1
)

+O(εN ) (4.21)

ζ̇01 − Ṗ1(z0)(z0 − c0) = εf01
(
ε, z0, ż0, ζ11 , ζ

−1
−1
)

+O(εN ) (4.22)

ζ̇0−1 − Ṗ−1(z0)(z0 − c0) = εf0−1
(
ε, z0, ż0, ζ11 , ζ

−1
−1
)

+O(εN ) (4.23)

ζ̇11 = f11
(
ε, z0, ż0, ζ11 , ζ

−1
−1
)

+O(εN+1) (4.24)

ζ̇−1−1 = f−1−1
(
ε, z0, ż0, ζ11 , ζ

−1
−1
)

+O(εN+1) (4.25)

ζkj = fkj
(
ε, z0, ż0, ζ11 , ζ

−1
−1
)

+O(εN−|k|+2). (4.26)

Removing the O(·)-terms in (4.21)-(4.26), we obtain a system that is no longer
singularly perturbed, i.e., there is no division by ε. We still have to prove the
solvability of this system. In equations (4.22)-(4.23) the vectors ζ̇01 and ζ̇0−1
appear as ζ̇0j −

(
P ′j(z

0)(ζ̇01 + ζ̇0−1)
)
(z0−c0) in the left-hand side, and multiplied

by ε in the right-hand side. If z0 − c0 is sufficiently small we obtain a unique
solution for ζ̇01 , ζ̇0−1 that is bounded uniformly for ε → 0. Similarly, the left-

hand side of (4.21) contains the second derivative of ζ00 as ζ̈00−
(
P ′0(z0)ζ̈00

)
(z0−

c0), which permits us to compute ζ̈00 provided that z0− c0 is sufficiently small.
This is the correct place to discuss the choice of c0, which until now has

been treated as an arbitrary vector. Since z0(t) approximates the solution x(t)
of the differential equation, a natural choice for c0 is c0 = x(0). This implies
that z0(t) is close to c0 as long as |t| is not too large.

Initial values. For the differential-algebraic system, described above, we need
initial values ζ00 (0), ζ̇00 (0), ζ01 (0), ζ0−1(0), ζ11 (0), ζ−1−1 (0) that are bounded inde-
pendently of ε. Assuming φ(0) = 0, they have to be computed from∑

|k|≤N+1

zk(0) = x(0),
∑

|k|≤N+1

(
żk(0) + ik

φ̇(0)

ε
zk(0)

)
= ẋ(0). (4.27)

Using the algebraic relations (4.26) with removed remainder term, the first
equation of (4.27) can be written as

z0(0) = x(0) + εG0

(
ε, z0(0), ż0(0), ζ11 (0), ζ−1−1 (0)

)
. (4.28)

Multiplying the second relation with P0

(
z0(0)

)
= P0

(
x(0)

)
+O(ε) and using

the fact that ζ±10 (0) = O(ε), we obtain

P0

(
z0(0)

)
ż0(0) = P0

(
x(0)

)
ẋ(0) + ε Ĝ0

(
ε, z0(0), ż0(0), ζ11 (0), ζ−1−1 (0)

)
. (4.29)

Differentiating ζ00 = P0(z0)ζ0 with respect to time yields

ż0 = ζ̇0 = ζ̇00 + ζ̇01 + ζ̇0−1 = P0(z0)ż0 + Ṗ0(z0)(z0 − c0) + ζ̇01 + ζ̇0−1.

Inserting (4.29) and (4.22)-(4.23) with remainder terms removed, and using
Ṗ0(z0) + Ṗ1(z0) + Ṗ−1(z0) = 0 we obtain the equation

ż0(0) = P0

(
x(0)

)
ẋ(0) + εG1

(
ε, z0(0), ż0(0), ζ11 (0), ζ−1−1 (0)

)
. (4.30)
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Multiplying the second relation of (4.27) with P±1
(
z0(0)

)
gives

P±1
(
z0(0)

)
ż0(0)± i

∣∣B(x(0)
)∣∣ζ±1±1 (0) = P±1

(
z0(0)

)
ẋ(0)

+ ε Ĝ±
(
ε, z0(0), ż0(0), ζ11 (0), ζ−1−1 (0)

)
.

(4.31)

Inserting (4.30) and using P±1
(
z0(0)

)
P0

(
x(0)

)
= O(ε) yields

ζ±1±1 (0) = ∓i
∣∣B(x(0)

)∣∣−1P±1(x(0)
)
ẋ(0) + εG±

(
ε, z0(0), ż0(0), ζ11 (0), ζ−1−1 (0)

)
.

(4.32)
Fixed point iteration applied to the system (4.28)-(4.30)-(4.32) gives initial
values z0(0), ż0(0), ζ11 (0), ζ−1−1 (0). They provide ζ0j (0) = Pj

(
z0(0)

)
(z0(0) − c0)

and ζ̇00 (0) = P0

(
z0(0)

)
ż0(0) + Ṗ0(z0)

∣∣
t=0

(
z0(0)− c0

)
.

The autonomous differential-algebraic system (4.21)-(4.26), with remainder
term removed, together with these initial values define the coefficient func-
tions ζkj (t) and hence also zkj (t) of the modulated Fourier expansion on an
ε-independent non-empty interval.

Uniqueness of the modulated Fourier expansion. The above construc-
tion shows that, for a given c0, the coefficient functions ζkj are uniquely deter-

mined. Obviously, the functions ζ0j depend on the choice of c0. We show here

that in spite of this dependence, the function z0(t) and all zk(t) of (4.1) are
independent of c0.

We first note that the functions fkj of (4.8)-(4.13) as well as those of (4.21)-

(4.26) do not explicitly depend on the parameter c0. This is also true for
the function f0 of (4.20). Therefore, the equation (4.20), where second and
higher derivatives of z0 are recursively removed, together with (4.24) and (4.25)
constitute a regular ordinary differential equation for z0, ż0, ζ11 , ζ

−1
−1 that does

not depend on c0 as parameter. Concerning the initial values, we note that
also the functions G0, G1, and G± are independent of c0. Therefore, the values
z0(0), ż0(0), ζ11 (0), ζ−1−1 (0), obtained from (4.28)-(4.30)-(4.32) do not depend
on c0.

4.2 Bounds for the coefficient functions and for the remainder

The construction of Section 4.1 yields bounds for the coefficient functions that
are collected in the following theorem.

Theorem 4.1 Let x(t) be a solution of (1.1) that satisfies the bounded energy
condition (1.2) and stays in a compact set K for 0 ≤ t ≤ Tε with Tε = O(ε).
Then, we have

x(t) =
∑

|k|≤N+1

zk(t) eikφ(t)/ε +RN (t) (4.33)

for arbitrary N ≥ 1, where the phase function is given by (4.7). The functions
zk(t) together with their derivatives (up to order N) are bounded as

zk = O(ε|k|) for all |k| ≤ N + 1 (4.34)
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and further satisfy

ż0 ×B(z0) = O(ε), Pj(z
0)zk = O(ε2) for |k| = 1, j 6= k. (4.35)

The remainder term and its derivative are bounded by

RN (t) = O(t2εN ), ṘN (t) = O(tεN ) for 0 ≤ t ≤ Tε. (4.36)

The functions zk are unique up to O(εN+2). The constants symbolised by the
O-notation are independent of ε and t with 0 ≤ t ≤ Tε, but they depend on N ,
on the constants in (1.2), on bounds of derivatives of B(x) and E(x), and
on Tε.

Proof The construction of Section 4.1 yields the bounds (4.34) and the unique-
ness up to O(εN+2) of the coefficient functions. The first relation of (4.35)
follows from (4.2) with k = 0 by multiplying with ε and then considering the
ε-independent term. The improved estimates for |k| = 1 and j 6= k are a con-
sequence of the fact that the corresponding functions fkj in (4.13) contain a
factor ε.

The above construction shows that the truncated series (4.3) satisfies the
differential equation (1.1) up to a defect of size O(εN ). Since the Lipschitz
constant of vector field (1.1), when written as a first order system, is of size
O(ε−1), an application of Gronwall’s lemma proves the bounds (4.36) on in-
tervals of length O(ε). ut

4.3 The modulation system as Euler–Lagrange equation

With the functions φ(t) and zk(t), constructed in Section 4.1, we let

yk(t) = zk(t)eikφ(t)/ε for |k| ≤ N + 1,

and we put yk(t) = 0 for |k| > N + 1. For |k| ≤ N + 1 the equations (4.2) then
have the form

ÿk =
1

ε

∑
k1+k2=k

ẏk1 ×
∑

0≤m≤N+1
s(α)=k2

1

m!
B(m)(y0)yα

−
∑

0≤m≤N+1
s(α)=k

1

m!

(
∇U

)(m)
(y0)yα +O(εN ),

(4.37)

where α = (α1, . . . , αm) with αj ∈ Z \ {0}, and yα = (yα1 , . . . , yαm). In this
section it is essential that the magnetic field B(x) = ∇x × A(x) is given by
a vector potential A(x). For the vector y = (yk)k∈Z we then consider the
extended potentials

U(y) =
∑

0≤m≤N+1
s(α)=0

1

m!
U (m)(y0)yα

A(y) =
( ∑

0≤m≤N+2
s(α)=k

1

m!
A(m)(y0)yα

)
k∈Z

=
(
Ak(y)

)
k∈Z

.
(4.38)
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Theorem 4.2 Under the assumptions of Theorem 4.1 the system (4.37) can
be written as the Euler–Lagrange equations

d

dt

∂L
∂ẏk

(y, ẏ) =
∂L
∂yk

(y, ẏ) +O(εN ) (4.39)

for the Lagrangian

L(y, ẏ) =
1

2
ẏ∗ẏ +

1

ε
A(y)∗ẏ − U(y). (4.40)

Proof With (4.40) the Euler–Lagrange equations (4.39) become

ÿk +
1

ε

∑
j∈Z

∂Ak
∂yj

(y) ẏj =
1

ε

∑
j∈Z

(∂Aj
∂yk

(y)
)∗
ẏj −

( ∂ U
∂yk

(y)
)∗

+O(εN ), (4.41)

where we have used that A−k(y) is the complex conjugate of Ak(y). We note
that2

∂Ak
∂yj

(y) =
∑

0≤m≤N+1
s(α)=k−j

1

m!
A(m+1)(y0)yα

where α = (α1, . . . , αm). This expression only depends on the difference k− j,
so that ∂Aj/∂yk is the complex conjugate of ∂Ak/∂yj . Consequently, (4.41)
can be written as

ÿk +
1

ε

∑
j∈Z

∑
0≤m≤N+1
s(α)=k−j

1

m!

(
A(m+1)(y0)yα −

(
A(m+1)(y0)yα

)>)
ẏj

= −
( ∂ U
∂yk

(y)
)∗

+O(εN ).

Because of v ×B(x) =
(
A′(x)> −A′(x)

)
v, and consequently

v ×B(m)(x)yα =
((
A(m+1)(x)yα

)> −A(m+1)(x)yα
)
v, (4.42)

the above equation is seen to be equivalent to (4.37). ut

4.4 Almost-invariant of the modulated Fourier expansion

With the mapping S(λ)y = (eikλyk)k∈Z we have the invariance properties

U
(
S(λ)y

)
= U(y), A

(
S(λ)y

)
= S(λ)A(y) for all λ.

Differentiation with respect to λ (at λ = 0) yields∑
k∈Z

ik
∂ U
∂yk

(y)yk = 0 (4.43)

∑
j∈Z

ij
∂Ak
∂yj

(y)yj = ikAk(y) for k ∈ Z. (4.44)

2 Actually, for j = 0 the sum is over 0 ≤ m ≤ N + 2. However, the term with m = N + 2
is of size O(εN+2) and can be absorbed in the remainder.
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Here, we assume that only finitely many yk are non-zero. The expression (mo-
tivated by Noether’s theorem)

I(y, ẏ) =
(∂L
∂ẏ

)∗ d

dλ

∣∣∣
λ=0

S(λ)y =
1

ε

∑
k∈Z

(
ẏk +

1

ε
Ak(y)

)∗
ikyk (4.45)

then satisfies

d

dt
I(y, ẏ) =

1

ε

∑
k∈Z

ik

((
ÿk +

1

ε

d

dt
Ak(y)

)∗
yk +

1

ε
Ak(y)∗ẏk

)
,

because the sum of the terms for k and −k vanishes in
∑
k∈Z ik|ẏk|2. For the

solution of the Euler–Lagrange equations (4.39) (or equivalently (4.41)) this
shows that

d

dt
I(y, ẏ) =

1

ε

∑
k∈Z

ik

(
1

ε

∑
j∈Z

(∂Aj
∂yk

(y)
)∗
ẏj −

( ∂ U
∂yk

(y)
)∗)∗

yk

+
1

ε2

∑
k∈Z

ikAk(y)∗ẏk +O(εN ).

The sum containing the derivative of U(y) vanishes by (4.43). In the arising
double sum we exchange the (finite) summation, we use the identity (4.44)

and the fact that yk = y−k and Ak = A−k. This proves that

d

dt
I(y, ẏ) = O(εN ). (4.46)

Theorem 4.3 Under the assumption of Theorem 4.1 we have

I
(
y(t), ẏ(t)

)
= I(y(0), ẏ(0)

)
+O(tεN )

I
(
y(t), ẏ(t)

)
= I

(
x(t), ẋ(t)

)
+O(ε).

The constants symbolised by O are independent of ε and t with 0 ≤ t ≤ Tε
(recall that Tε = O(ε)), but depend on the truncation index N .

Proof The first statement follows by integration of (4.46). To prove the second
statement we write I

(
x(t), ẋ(t)

)
in terms of the coefficient functions zkj . The

bounds of Theorem 4.1 yield

x = z0 +O(ε), ẋ = ż0 + i
φ̇

ε
z11 eiφ/ε − i

φ̇

ε
z−1−1 e−iφ/ε +O(ε).

Consequently, we have

ẋ×B(x) = ż0 ×B(z0)− |B(z0)|2

ε

(
z11 eiφ/ε + z−1−1 e−iφ/ε

)
+O(ε).

From (4.35) and from the orthogonality of z11 and z−1−1 it follows that

I(x, ẋ) =
1

2

|ẋ×B(x)|2

|B(x)|3
= |B(z0)| |z

1
1 |2

ε2
+O(ε).
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The dominant terms for I
(
y(t), ẏ(t)

)
are for k = ±1, so that

I(y, ẏ) =
i

ε

(
i
φ̇

ε
z11 +

1

ε
A′(z0)z11

)∗
z11 −

i

ε

(
−i
φ̇

ε
z−1−1 +

1

ε
A′(z0)z−1−1

)∗
z−1−1 +O(ε)

=
|B(z0)|
ε2

(
|z11 |2 + |z−1−1 |2

)
+

i

ε2
(z11)∗

(
A′(z0)> −A′(z0)

)
z11 +O(ε)

=
2|B(z0)|

ε2
|z11 |2 +

i

ε2
(z11)∗

(
z11 ×B(z0)

)
+O(ε)

= |B(z0)| |z
1
1 |2

ε2
+O(ε).

This implies the second statement of the theorem. ut

4.5 From short to long time intervals

We are now prepared to prove that the magnetic moment (1.4) is an adiabatic
invariant (Theorem 2.1). We divide the interval [0, T ] into small intervals of
length O(ε), and we put tn = nε. On each subinterval [tn, tn+1] we consider
the modulated Fourier expansion corresponding to initial values at tn given by
the exact solution of (1.1), and for φ(tn) we take the value at tn of the phase
function from the previous subinterval. We denote its coefficient functions by
yn(t). The uniqueness of the modulation system up to O(εN+2) implies that
yn(tn) = yn−1(tn) +O(εN+2). The first statement of Theorem 4.3 then shows
that I

(
yn(tn), ẏn(tn)

)
differs form I

(
yn−1(tn), ẏn−1(tn)

)
only by O(εεN ).

Summing up these differences yields

I
(
yn(t), ẏn(t)

)
= I

(
y0(0), ẏ0(0)

)
+O(tεN )

for t ∈ [tn, tn+1]. The second statement of Theorem 4.3 then gives

I
(
x(t), ẋ(t)

)
= I
(
x(0), ẋ(0)

)
+O(ε) +O(tεN )

= I
(
x(0), ẋ(0)

)
+O(ε) for t ≤ ε−N+1.

If we replace the arbitrarily chosen integer N by N+1, this is the result stated
in Theorem 2.1.

5 Modulated Fourier expansion of the variational integrator

For the proof of near-conservation of the magnetic moment and the energy
(see Theorems 2.2 and 2.3) we extend the modulated Fourier expansion of
Section 4 to the numerical solution of the variational integrator.

With the finite difference notation δ2hxn = (xn+1 − xn−1)/2h and δ2hxn =
(xn+1 − 2xn + xn−1)/h2 the variational integrator (1.7) becomes

δ2hxn =
1

ε

(
A′(xn)>δ2hxn − δ2hA(xn)

)
−∇U(xn), (5.1)
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and, because of v ×B(x) =
(
A′(x)> −A′(x)

)
v, can also be written as

δ2hxn =
1

ε
δ2hxn ×B(xn)−∇U(xn) +

1

ε

(
A′(xn)δ2hxn − δ2hA(xn)

)
. (5.2)

For its solution we consider the modulated Fourier expansion

xn ≈
∑
k∈Z

zk(t) eikφ(t)/ε =
∑
k∈Z

yk(t) (5.3)

where yk(t) = zk(t) eikφ(t)/ε and t = tn. We use the same notation zk(t) and
φ(t) as in Section 4, but here these functions depend on the stepsize h and on
the quotient η = h/ε. For the finite differences we have

δ2hy
k(t) =

yk(t+ h)− yk(t− h)

2h
= eikφ(t)/ε

∑
l≥0

εl−1ckl (t)
dl

dtl
zk(t)

δ2hy
k(t) =

yk(t+ h)− 2yk(t) + yk(t− h)

h2
= eikφ(t)/ε

∑
l≥0

εl−2dkl (t)
dl

dtl
zk(t),

where c02j = 0, c02j+1 = η2j/(2j+1)!, and d00 = 0, d02j = 2η2j−2/(2j)!, d02j+1 = 0.
The first coefficients for k 6= 0 are

ck0(t) =
i

η
sin
(
kηφ̇(t)

)
− εkη

2
sin
(
kηφ̇(t)

)
φ̈(t) +O(ε2)

ck1(t) = cos
(
kηφ̇(t)

)
+O(ε)

dk0(t) = − 4

η2
sin2

(kηφ̇(t)

2

)
+ i ε k cos

(
kηφ̇(t)

)
φ̈(t) +O(ε2)

dk1(t) =
2 i

η
sin
(
kηφ̇(t)

)
+O(ε).

(5.4)

Note that these coefficients depend on η, ε, and t via derivatives of φ(t).

Inserting the modulated Fourier expansion into (5.2) and comparing the
coefficients of eikφ(t)/ε yields (omitting the argument t)

∑
l≥0

εl−2dkl
dl

dtl
zk = F k (5.5)
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where the right-hand side is given by

F k =
1

ε

∑
k1+k2=k

(∑
l≥0

εl−1ck1l
dl

dtl
zk1
)
×
∑
m≥0

s(α)=k2

1

m!
B(m)(z0) zα

−
∑
m≥0
s(α)=k

1

m!

(
∇U

)(m)
(z0) zα

+
1

ε

∑
k1+k2=k

( ∑
m≥0

s(α)=k2

1

m!
A(m+1)(z0) zα

)(∑
l≥0

εl−1ck1l
dl

dtl
zk1
)

− 1

ε

∑
l≥0

εl−1ckl
dl

dtl

( ∑
m≥0
s(α)=k

1

m!
A(m)(z0) zα

)
.

These equations are the analogue of (4.2). The main difference is that there
are additional terms with derivatives of zk higher than 2 which, however, are
multiplied by some power of ε.

5.1 Construction of the modulated Fourier expansion

We closely follow the construction of Section 4 for the exact solution. We
consider a truncated modulated Fourier expansion (4.3), we consider the pro-
jections Pj(z

0) onto the eigenspaces of the linear mapping v 7→ v × B(z0),
and we introduce scaled vectors ζk as in (4.4), which are decomposed as
ζk = ζk1 + ζk0 + ζk−1. Written in the scaled variables the above system becomes

ζ̈0j − 2Ṗj(z
0)ż0 − P̈j(z0)(z0 − c0) + Pj(z

0)
∑
l≥4

εl−2d0l
dl

dtl
ζ0 = Pj(z

0)F̃ 0

1

ε2
dk0ζ

k
j +

1

ε
dk1

(
ζ̇kj − Ṗj(z0)ζk

)
+ Pj(z

0)
∑
l≥2

εl−2dkl
dl

dtl
ζk = Pj(z

0)F̃ k.

(5.6)

The vector F̃ k, written in terms of the scaled variables, is given by

F̃ k = ε−|k|−1
∑

k1+k2=k

ε|k1|
(∑
l≥0

εl−1ck1l
dl

dtl
ζk1
)
×

∑
0≤m≤N+1
s(α)=k2

ε|α|

m!
B(m)(z0) ζα

− ε−|k|
∑

0≤m≤N+1
s(α)=k

ε|α|

m!

(
∇U

)(m)
(z0) ζα

+ ε−|k|−1
∑

k1+k2=k

ε|k1|
( ∑

0≤m≤N+1
s(α)=k2

ε|α|

m!
A(m+1)(z0) ζα

)(∑
l≥0

εl−1ck1l
dl

dtl
ζk1
)

− ε−|k|−1
∑
l≥0

εl−1ckl
dl

dtl

( ∑
0≤m≤N+1
s(α)=k

ε|α|

m!
A(m)(z0) ζα

)
.
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This is the analogue of equation (4.6). As in Section 4 we extract the leading

term from F̃ k,

F̃ k =
1

ε

(ck0
ε
ζk + ck1 ζ̇

k
)
×B(z0) + F̂ k,

and we note that

P0(z0)F̃ k = P0(z0)F̂ k,

P±1(z0)F̃ k = ±i ck0
|B(z0)|
ε2

ζk±1 ± i ck1
|B(z0)|

ε
P±1(z0)ζ̇k + P±1(z0)F̂ k,

Despite the additional terms in the formula for F̃ k (and hence also in F̂ k)

we still have F̂ 0 = O(1), F̂±1 = O(ε−1), and F̂ k = O(ε−2) for all other
values of k. This follows for k = 0 from c00 = 0 and d

dtA(z0) = A′(z0)ż0, and
for k = ±1 from the fact that the only O(ε−2)-term in the third line of the

definition of F̃ k is obtained for k1 = k = ±1 and k2 = 0 and this term is equal
to the O(ε−2)-term in the fourth line.

To annihilate the ε−2 terms in (5.6) for j = k = ±1 we require that
±i c±10 |B(z0)| = d±10 with coefficients c±10 and d±10 taken for ε = 0. Insert-
ing (5.4) this gives

−1

η
sin
(
ηφ̇(t)

) ∣∣B(z0(t)
)∣∣ = − 4

η2
sin2

(ηφ̇(t)

2

)
which is equivalent to

tan
(η

2
φ̇(t)

)
=
η

2

∣∣B(z0(t)
)∣∣. (5.7)

This definition of φ̇(t) ∈ (0, π/η) (and of φ(t) by integration) replaces (4.7) for
the exact solution.

As in Section 4 we extract the dominant term from (5.6) which is ζ̈00 for
k = j = 0, ζ̇0±1 for k = 0 and j = ±1, ζ̇±1±1 for k = j = ±1, and ζkj for all other
choices of (k, j). We get the following system of equations

ζ̈00 − P̈0(z0)(z0 − c0) = f00
(
ε, z0, ż0, . . . , (ζl, ζ̇l, . . .)l 6=0

)
(5.8)

ζ̇01 − Ṗ1(z0)(z0 − c0) = −i ε|B(z0)|−1
(
ζ̈01 − P̈1(z0)(z0 − c0)

)
+ εf01

(
ε, z0, ż0, . . . , (ζl, ζ̇l, . . .)l 6=0

)
(5.9)

ζ̇0−1 − Ṗ−1(z0)(z0 − c0) = i ε|B(z0)|−1
(
ζ̈0−1 − P̈−1(z0)(z0 − c0)

)
+ εf0−1

(
ε, z0, ż0, . . . , (ζl, ζ̇l, . . .)l 6=0

)
(5.10)

e11ζ̇
1
1 = f11

(
ε, z0, ż0, . . . , (ζl, ζ̇l, . . .)l 6=0

)
(5.11)

e−1−1ζ̇
−1
−1 = f−1−1

(
ε, z0, ż0, . . . , (ζl, ζ̇l, . . .)l 6=0

)
(5.12)

ekj ζ
k
j = fkj

(
ε, z0, ż0, . . . , (ζl, ζ̇l, . . .)l 6=0

)
, (5.13)

where z0 = c0 + ζ01 + ζ00 + ζ0−1, and

e±1±1 = d±11 ∓ i c±11

∣∣B(z0)
∣∣, ekj = dk0 − i j ck0

∣∣B(z0)
∣∣
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with coefficients d±11 , c±11 , dk0 , c
k
0 taken at ε = 0. The difference to the sys-

tem (4.8)-(4.13) is that the right-hand side also depends on a finite number of
higher derivatives of the variables, and that an additional factor is present in
the equations (5.11)-(5.13). Using (5.7), these factors are given by

e±1±1 = ±2 i

η
cos(ηφ̇)

(
tan(ηφ̇)− tan

(η
2
φ̇
))

ekj = − 2

η2
sin(kηφ̇)

(
tan
(kη

2
φ̇
)
− j tan

(η
2
φ̇
))
.

Under the assumption

(N + 1)η
∣∣φ̇(t)

∣∣ ≤ C < π, (5.14)

which corresponds to a step size restriction for h = ηε, it follows from the
inequalities tan(α+ β) > tanα+ tanβ (with α > 0, β > 0, α+ β < π/2) and
tan(kα) > k tanα and from |B(x)| ≥ 1 that the absolute values of the factors
e±1±1, e

k
j are bounded from below by a positive constant for |k| ≤ N+1. We can

divide the equations (5.11)-(5.13) by these factors and thus obtain a system
whose left-hand side is identical to that of (4.8)-(4.13). The right-hand side is
again a polynomial in ε. We still have that the ε-independent term of fkj (for

k(j − k) 6= 0) only depends on z0 and ζl with 0 < |l| < |k|, and that fkj starts
with the O(ε)- term for |k| = 1 and j 6= k. Furthermore, the ε-independent
term of f±1±1 depends on ζ±1±1 , but not on its derivatives, and the equations for

ζ̇0±1 have the same structure as for the exact solution. Therefore, a regular
differential-algebraic system for the coefficient functions ζkj is obtained as in
Section 4.

Initial values. The numerical approximation to the velocity ẋ(t) is given by
vn = δ2hxn = (xn+1 − xn−1)/2h. It has the expansion (with t = nh)

vn ≈
∑
k∈Z

δ2hy
k(t) =

∑
k∈Z

eikφ(t)/ε
∑
l≥0

εl−1ckl
dl

dtl
zk(t). (5.15)

Assuming φ(0) = 0, the initial values for the differential-algebraic system,
constructed above, have to satisfy∑
|k|≤N+1

zk(0) = x(0),
∑

|k|≤N+1

(ck0
ε
zk(0) + ck1 ż

k(0) + . . .
)

= ẋ(0), (5.16)

where the coefficient functions ckl are evaluated at t = 0. The dots indicate
O(ε)-terms depending on derivatives of zk at t = 0. The only difference to the
construction of Section 4 for the exact solution is formula (4.31), which now
becomes

P±1
(
z0(0)

)
ż0(0) + c±10 ζ±1±1 (0) = P±1

(
z0(0)

)
ẋ(0) +O(ε) (5.17)

with c±10 = ±iη−1 sin
(
ηφ̇(0)

)
. By assumption (5.14) and |B(x)| ≥ 1, the inverse

of c±10 exists and is bounded, so that ζ±1±1 (0) can be extracted from this relation.
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Uniqueness of the modulated Fourier expansion. The differential-al-
gebraic system and the initial values are obtained from equations that have
the same structure as those for the exact solution in Section 4. Therefore the
coefficient functions zk(t) are independent of the choice of the parameter c0.

5.2 Bounds for the coefficient functions and for the remainder

We complete the construction of the previous section by giving precise bounds
for the coefficient functions of the modulated Fourier expansion and by esti-
mating the remainder caused by truncation of the series.

Theorem 5.1 Let xn be the numerical solution of the variational integrator
(1.7) applied to (1.1) with initial values satisfying (1.2). Suppose that, for
0 ≤ nh ≤ Tε with Tε = O(ε), xn stays in a compact set K and

h

ε
|B(xn)| ≤ 2 tan

( C

2(N + 1)

)
with C < π (5.18)

for some integer N ≥ 1. Then we have

xn =
∑

|k|≤N+1

zk(t) eikφ(t)/ε +RN (t), t = nh, (5.19)

where the phase function φ(t) is given by (5.7). The functions zk(t) together
with their derivatives (up to order N) are bounded as

zk = O(ε|k|) for all |k| ≤ N + 1 (5.20)

and further satisfy

ż0 ×B(z0) = O(ε), Pj(z
0)zk = O(ε2) for |k| = 1, j 6= k. (5.21)

The remainder term is bounded by

RN (t) = O(t2εN ) for 0 ≤ t ≤ Tε. (5.22)

The functions zk are unique up to O(εN+2). The constants symbolised by the
O-notation are independent of ε and n with 0 ≤ nh ≤ Tε, but they depend on
N , Tε, the constants in (1.2), and on bounds of derivatives of A(x) and U(x).

Proof The construction of Section 5.1 yields the bounds (5.20) and the unique-
ness up to O(εN+2) of the coefficient functions. Over a time interval of length
O(ε), a standard discrete Gronwall argument, similar to the continuous case,
allows us to conclude from a defect of size O(εN ) to an error of size O(t2εN ).

ut
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Remark 5.1 The guiding center motion of the system (1.1) is given by the non-
oscillating term z0(t) in the modulated Fourier expansion. It is determined by
the differential equation

z̈0 =
1

ε
ż0 ×B(z0) +

2iφ̇

ε2
χ(ηφ̇) Re

(
z1 ×B′(z0)z−1

)
−∇U(z0) +O(ε2),

where χ(ξ) = 1 for the exact solution and χ(ξ) = sinc(ξ) for the numerical
solution (see (4.2) and (5.5)). The initial values z0(0), ż0(0) are, up to terms
of size O(ε), the same for the exact and the numerical solution. However, we
have that z11(0) (which equals z1(0) up to O(ε)) is determined by the relation

εP1

(
z0(0)

)
ż0(0) + iφ̇(0)χ

(
ηφ̇(0)

)
z11(0) = εP1

(
z0(0)

)
ẋ(0) +O(ε2)

with χ(ξ) as above (see (4.31) and (5.17)). If η = h/ε is not small, the vector
z11(0) for the numerical solution differs from that for the exact solution by
the factor sinc

(
ηφ̇(0)

)
. Therefore, the values of z̈0(0) for the exact and the

numerical solution differ by O(η2), so that the guiding center motion z0(t) is
not correctly approximated over intervals of length O(1) for η ∼ 1.

In the situation where the magnetic field B(x) = B is constant, the ex-
pression depending on z1 in the differential equation for z0 is absent, and the
differential equations for the exact and numerical solution are the same up to
terms of size O(ε2). The guiding center motion is much better approximated
in this case. Also for a nearly constant magnetic field B(x) = B0 + εB1(x) we
have an improved approximation.

5.3 The modulation system in terms of yk

With the functions zk(t) constructed in Section 5.1, we consider yk(t) =
zk(t)eikφ(t)/ε (for |k| ≤ N + 1) with the phase function φ(t) given by (5.7). We
further put yk(t) = 0 for |k| > N + 1. Using (4.42) the equation (5.5) for the
modulation functions can be written as

δ2hy
k =

1

ε

(∑
j∈Z

(∂Aj
∂yk

(y)
)∗
δ2hy

j − δ2hAk(y)
)
−
( ∂ U
∂yk

(y)
)∗

+O(εN ) (5.23)

with Aj(y) and U(y) given by (4.38). This is equivalent to using the for-
mulation (5.1) of the variational integrator instead of (5.2), which is more
convenient for the construction of the modulation functions. In the definitions
of U(y) and Ak(y) we can restrict the sum to 0 ≤ m ≤ N + 1 by including
further terms in the remainder O(εN ). Consequently all appearing sums are
finite.
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5.4 Near-conservation of a modified magnetic moment

We recall from Section 2.2 the modified magnetic moment

Ih(x, v) =
1

ρ(ξ(x))
I(x, v),

where ξ(x) = 2 arctan
(
1
2η|B(x)|

)
with η = h/ε, and ρ(ξ) = cos4(ξ/2).

Theorem 5.2 Under the assumptions of Theorem 5.1 and with the coefficient
functions z(t) =

(
zk(t)

)
|k|≤N+1

of the modulated Fourier expansion, there

exists an almost-invariant Ih[z](t), such that for 0 ≤ t ≤ Tε (with Tε = O(ε))

Ih[z](t) = Ih[z](0) +O(tεN )

Ih[z](nh) = Ih(xn, vn) +O(ε) for nh ≤ Tε.

The constants symbolised by O are independent of ε and h, but depend on N .

Proof Multiplication of (5.23) with −ik(yk)∗, where yk(t) = zk(t)eikφ(t)/ε, and
summation over k yields

−
∑
k

ik(yk)∗δ2hy
k +

1

ε

∑
j

ijAj(y)∗δ2hy
j − 1

ε

∑
k

ik(yk)∗δ2hAk(y) = O(εN+1),

where we have used (4.43) and (4.44). This relation can be written as

Ih[z](t)− Ih[z](t− h) = O(hεN )

with3

Ih[z](t) = − i

εh

∑
k

k yk(t)∗yk(t+ h)

+
i

2ε2

∑
k

k
(
Ak
(
y(t)

)∗
yk(t+ h)− yk(t)∗Ak

(
y(t+ h)

))
.

(5.24)

It defines the almost-invariant of the modulation system and proves the first
statement of the theorem.

We shall show that Ih[z](t) is close to the modified magnetic moment.
Computing its dominant term, which is for k = ±1, and using the relation
(5.7) we obtain

Ih[z](t) = |B(z0)| |z
1
1 |2

ε2
+O(ε).

On the other hand, inserting the modulated Fourier expansion for xn and
vn = (xn+1 − xn−1)/2h into (1.4), we obtain

I(xn, vn) = sinc2(ηφ̇(tn))
φ̇(tn)2

|B(z0(tn))|
|z11(tn)|2

ε2
+O(ε). (5.25)

3 We thank Ludwig Gauckler for drawing our attention to this idea in connection with
the problem considered in [8].
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With |B(z0(t))| computed from (5.7) and with the use of the identity sin ξ =
2 sin ξ

2 cos ξ2 this yields

I(xn, vn) = cos4
(
1
2ηφ̇(tn)

)
|B(z0(tn))| |z

1
1(tn)|2

ε2
+O(ε),

and the result follows from the definition of Ih(x, v). ut

5.5 Near-conservation of a modified energy

We recall the definition of the modified energy

Hh(x, v) = H(x, v) + θ(ξ(x))I(x, v) |B(x)|,

where θ(ξ) is given in Section 2.3, and again ξ(x) = 2 arctan
(
1
2η|B(x)|

)
with

η = h/ε.

Theorem 5.3 Under the assumptions of Theorem 5.1, there exists an almost-
invariant Hh[z](t), such that for 0 ≤ t ≤ Tε (with Tε = O(ε))

Hh[z](t) = Hh[z](0) +O(tεN )

Hh[z](nh) = Hh(xn, vn) +O(ε) for nh ≤ Tε.

The constants symbolised by O are independent of ε and h, but depend on N .

Proof Multiplication of (5.23) with (ẏk)∗ and summation over k yields∑
k

(ẏk)∗δ2hy
k +

1

ε

∑
k

( d

dt
Ak(y)∗δ2hy

k − (ẏk)∗δ2hAk(y)
)

+
d

dt
U(y) = O(εN ).

(5.26)
As in the proof of [8, Theorem 5.1], the first sum is a total differential, and
the second sum is a total differential by the proof of [9, Proposition 6.2]. We
thus obtain the existence of a smooth function Hh[z](t) such that the above
expression equals

d

dt
Hh[z](t) = O(εN ).

This proves the first statement of the theorem.
We now determine the dominant part of

Hh[z](t) = Kh[z](t) +Mh[z](t) + U(z(t)), (5.27)

where the time derivatives of the three terms on the right-hand side equal the
three corresponding terms on the left-hand side of (5.26). The dominant term
in the integral of

d

dt
Kh[z] =

∑
k

(ẏk)∗δ2hy
k =

∑
k

(
żk +

ikφ̇

ε
zk
)∗(∑

l≥0

εl−2dkl
dl

dtl
zk
)

= (ż0)∗z̈0 +
2φ̇φ̈

ε2
cos(ηφ̇)|z1|2

+
2

ε2η2

(
ηφ̇ sin(ηφ̇)− 2 sin2

(ηφ̇
2

))(
(ż1)∗z1 + (z1)∗ż1

)
+O(ε),
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where η = h/ε, is seen to be

Kh[z] =
1

2
|ż0|2 +

2|z1|2

ε2η2

(
ηφ̇ sin(ηφ̇)− 2 sin2

(ηφ̇
2

))
+O(ε).

We next consider Mh[z]. The dominating terms appear for k = 0 and
k = ±1. For k = 0 we deal with smooth functions and hence δ2hy

0 = ẏ0+O(h2)
and δ2hA0(y) = d

dtA0(y)+O(h2). Since these quantities are real, the term for
k = 0 is of size O(ε). For k = ±1 we note

d

dt
Ak(y)∗δ2hy

k − (ẏk)∗δ2hAk(y)

=
1

ε

(
d

dt

(
A′(z0)zk

)
+

ikφ̇

ε
A′(z0)zk

)∗(1

ε
ck0z

k + ck1 ż
k
)

−
(
żk +

ikφ̇

ε
zk
)∗(1

ε
ck0A

′(z0)zk + ck1
d

dt

(
A′(z0)zk

))
+O(ε)

with ck0 , c
k
1 given by (5.4). Using the fact that z−1, c−kl are the complex con-

jugate of z1, ckl , the sum (for k = 1 and k = −1) of this expression can be
written as

− iφ̇

ε3
(
c10 + c−10

)((
A′(z0)z1

)∗
z1 − (z1)∗A′(z0)z1

)
+

1

ε2
(
c10 − iφ̇c−11

)( d

dt

(
A′(z0)z1

)∗
z1 +

(
A′(z0)z1

)∗
ż1

−(ż1)∗
(
A′(z0)z1

)
− (z1)∗

d

dt

(
A′(z0)z1

))
+O(ε).

(5.28)

It follows from

c10 + c−10 = −εη sin(ηφ̇)φ̈+O(ε2)

c10 − iφ̇c−11 = iφ̇
(
sinc(ηφ̇)− cos(ηφ̇)

)
+O(ε)

and from the relation(
A′(z0)z1

)∗
z1 − (z1)∗A′(z0)z1 = i|B(z0)| |z1|2 +O(ε)

that the expression (5.28) is the total derivative of

Mh[z] = κ(ηφ̇) φ̇|B(z0)| |z
1|2

ε2
+O(ε) with κ(ξ) = sinc(ξ)− cos(ξ).

Moreover,
U(z) = U(z0) +O(ε).

We now consider the dominant term in H(xn, vn) = 1
2 |vn|

2 +U(xn). We insert
the modulated Fourier expansion for xn and vn = (xn+1−xn−1)/(2h) to obtain
xn = z0(tn) +O(ε) and hence

U(xn) = U(z0(tn)) +O(ε),
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and (omitting from now on the argument tn in the coefficient functions)

vn = ż0 +
i

h

(
z11eiφ/ε − z−1−1e−iφ/ε

)
sin(ηφ̇) +O(ε),

where again zkj = Pj(z
0)zk and we use the estimates for the coefficient func-

tions in Theorem 5.1. From (5.21) we have that ż0 = P0(z0)ż0 + O(ε). By
orthogonality of the vectors P0(z0)ż0, z11 , and z−1−1 , this implies

1

2
|vn|2 =

1

2
|ż0|2 +

|z11 |2

ε2η2
sin2(ηφ̇) +O(ε).

From (5.25) we note

|z11 |2

ε2η2
sin2(ηφ̇) = |B(z0)| I(xn, vn) +O(ε).

Moreover, by (5.7) we have ηφ̇ = ξ(z0) with ξ(x) = 2 arctan( 1
2η|B(x)|). Sub-

tracting the expressions obtained forHh[z](nh) and H(xn, vn) from each other,
we thus obtain

Hh[z](nh)−H(xn, vn) = θ(ξ(xn))|B(xn)| I(xn, vn) +O(ε),

which yields Hh[z](nh)−Hh(xn, vn) = O(ε) by the definition of the modified
energy Hh. ut

5.6 From short to long time intervals

The statements of Theorems 2.2 and 2.3 can now be obtained by patching
together the local near-conservation results of the previous sections in the
same way as it was done for the exact solution in Section 4.5.
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