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Energy behaviour of the Boris method
for charged-particle dynamics

Ernst Hairer1, Christian Lubich2

Abstract The Boris algorithm is a widely used numerical integrator for the
motion of particles in a magnetic field. This article proves near-conservation
of energy over very long times in the special cases where the magnetic field is
constant or the electric potential is quadratic. When none of these assumptions
is satisfied, it is illustrated by numerical examples that the numerical energy
can have a linear drift or its error can behave like a random walk. If the system
has a rotational symmetry and the magnetic field is constant, then also the
momentum is approximately preserved over very long times, but in a spatially
varying magnetic field this is generally not satisfied.

Keywords. Boris algorithm, charged particle, magnetic field, energy conserva-
tion, backward error analysis, modified differential equation.

Mathematics Subject Classification (2010): 65L06, 65P10, 78A35, 78M25
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1 Introduction

For a particle with position x(t) ∈ R3 moving in an electro-magnetic field,
Newton’s second law together with Lorentz’s force equation gives the second
order differential equation (assuming suitable units)

ẍ = ẋ×B(x) + F (x). (1.1)

Here, F (x) = −∇U(x) is an electric field with the scalar potential U(x), and
B(x) = ∇ × A(x) is a magnetic field with the vector potential A(x) ∈ R3.
We assume throughout this paper that the forces are smooth functions of x.
Denoting by v = ẋ the velocity of the particle, the energy is given by

E(x, v) =
1

2
|v|2 + U(x) (1.2)

and it is conserved along solutions of (1.1).
The simplest discretization of (1.1) is the Boris method [1]

xn+1 − 2xn + xn−1
h2

=
xn+1 − xn−1

2h
×B(xn)−∇U(xn). (1.3)

It is a symmetric, second-order numerical integrator. Its popularity is mostly
due to the fact that it is essentially explicit and has shown a good long-time
behaviour in many examples. It just requires the solution of a 3-dimensional
linear system which can be efficiently solved by a Rodriguez formula. In the
absence of the magnetic field, it reduces to the Störmer–Verlet scheme (see [5,
Section I.1.4] or [4]).

The two-step formulation (1.3) is very sensitive to round-off errors. For
a practical implementation one introduces a velocity approximation for the
difference xn+1 − xn, so that the Boris method becomes

xn+1 = xn + h vn+1/2

vn+1/2 = vn−1/2 + h vn ×B(xn)− h∇U(xn),
(1.4)

where vn = 1
2 (vn+1/2 + vn−1/2) = 1

2h (xn+1 − xn−1) is taken as the velocity
approximation at the grid points. Given the initial values (x0, v0), the method
is started with v1/2 = v0 + h

2 v0 ×B(x0)− h
2 ∇U(x0).

It is known from [9] that the map (xn, vn−1/2) 7→ (xn+1, vn+1/2) is volume-
preserving. Moreover, if the magnetic field B is constant, then with the mo-
menta pn = vn + A(xn), the map (xn, pn) 7→ (xn+1, pn+1) is symplectic. This
follows from the fact that the Boris method is a variational integrator if and
only if B is constant [2].

In Section 2 we describe the backward error analysis (modified differen-
tial equation) for the Boris method. We use this to show long-time near-
conservation of the energy for two particular cases:

– if the magnetic field B is constant (Section 3),
– if the electric potential U is quadratic (Section 4).
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In Section 5 we then illustrate by numerical experiments that in the general
situation the numerical energy can have a linear drift or its error can behave
like a random walk. In Section 6 we discuss the long-time near-conservation of
angular momentum for systems with a rotational symmetry, which holds for
constant B, but not in general.

While we explain here that the Boris method, despite some remarkable
properties, is not fully satisfactory with regard to energy and momentum con-
servation (unless the magnetic field is constant), we mention that recently
several classes of explicit methods for (1.1) were developed that have long-
time near-conservation of energy and momentum also for general non-constant
magnetic fields [3,7,10,11].

2 Backward error analysis

The idea of backward error analysis consists of searching for a modified dif-
ferential equation (as a formal series in powers of h) such that its solution
y(t) formally satisfies y(nh) = xn, where xn represents the numerical solution
obtained by the Boris algorithm. Such a function has to satisfy

y(t+ h)− 2y(t) + y(t− h)

h2
=
y(t+ h)− y(t− h)

2h
×B

(
y(t)

)
−∇U

(
y(t)

)
.

Expanding all appearing functions into powers of h yields (omitting the obvi-
ous argument t)

ÿ +
h2

12

....
y + . . . =

(
ẏ +

h2

6

...
y + . . .

)
×B(y)−∇U(y). (2.1)

For h = 0, the equation reduces to (1.1). The third and higher derivatives
can be recursively eliminated by repeatedly differentiating the equation and
setting h to 0. This then gives the modified differential equation, which is a
second-order differential equation whose right-hand side is a formal series in
even powers of the step size h with coefficient functions that depend on (y, ẏ):

ÿ = ẏ ×B(y)−∇U(y) + h2F2(y, ẏ) + h4F4(y, ẏ) + . . . .

To get a system of first order modified differential equations that is consistent
with (1.4) we introduce the velocity approximation w(t) by

y(t+ h)− y(t− h) = 2hw(t),

so that formally w(nh) = vn. Expanding into powers of h yields the relation

w = ẏ +
h2

3!

...
y +

h4

5!
y(5) + . . . . (2.2)

The third and higher derivatives of y can be expressed with the help of (2.1)
in terms of (y, ẏ). This then permits us to express ẏ in terms of (y, w).
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Taking the inner product of (2.1) with ẏ or with w, we will prove in the
next two sections that the Boris method nearly preserves the energy over very
long times if B is constant or if U is quadratic, as stated in the following
theorem.

Theorem 2.1 Let the magnetic field B(x) and the scalar potential U(x) be
arbitrarily differentiable functions of x, and suppose that the numerical solu-
tion (xn, vn) of the Boris method stays in a compact set that is independent of
the step size h. In the case that one of the following two conditions is satisfied:

– the magnetic field B(x) = B is constant, or
– the scalar potential U(x) = 1

2x
>Qx+ q>x is quadratic,

then for arbitrary truncation number N ≥ 2, the deviation of the energy
E(x, v) = 1

2v
>v + U(x) along the numerical solution is bounded by

|E(xn, vn)− E(x0, v0)| ≤ CNh2 for nh ≤ h−N , (2.3)

where CN is independent of n and h as long as nh ≤ h−N .

Remark 2.1 If the level sets of the energy E(x, v) are compact, then the energy
bound ensures, via an induction argument, that the numerical solution of the
Boris method stays in a fixed compact set over times nh ≤ h−N : if (2.3) holds
true for n, then the numerical solution at step n + 1 has a distance to the
energy surface of at most O(h) and hence stays in a compact set, so that by
Theorem 2.1 the bound (2.3) holds also for n+ 1 as long as (n+ 1)h ≤ h−N .

3 Modified energy – constant magnetic field

To prove near-conservation of energy for the Störmer–Verlet method (in the
absence of the magnetic field), one takes the scalar product of (2.1) with ẏ
and thus finds a modified energy that is close to E(x, v) [4]. In the present
situation, this procedure yields the following result.

Theorem 3.1 There exist h-independent functions E2j(x, v) such that the
function

Eh(x, v) = E(x, v) + h2E2(x, v) + h4E4(x, v) + . . . ,

truncated at the O(hN ) term, satisfies

d

dt
Eh(y, ẏ) = h2 ẏ>

(( 1

3!

...
y +

h2

5!
y(5) + . . .

)
×B(y)

)
+O(hN ) (3.1)

along solutions of the modified differential equation (2.1).

Proof Multiplied with ẏT , even-order derivatives of y give a total derivative:

ẏT y(2m) =
d

dt

(
ẏT y(2m−1)−ÿT y(2m−2)+. . .∓(y(m−1))T y(m+1)±1

2
(y(m))T y(m)

)
.
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Multiplication of (2.1) with ẏ> therefore yields

d

dt

(1

2
ẏ>ẏ + U(y) +

h2

12

(
ẏ>

...
y − 1

2
ÿ>ÿ

)
+ . . .

)
=
h2

6
ẏ>
(...
y ×B(y)

)
+ . . . .

The fact that ẏ is orthogonal to ẏ × B(y) is used on the right-hand side.
Expressing second and higher derivatives of y with the help of the modified
differential equation proves the statement of the theorem. ut

Corollary 3.1 If the magnetic field B(x) = B is constant, there exist h-

independent functions Ẽ2j(x, v), such that the function

Ẽh(x, v) = E(x, v) + h2Ẽ2(x, v) + h4Ẽ4(x, v) + . . . ,

truncated at the O(hN ) term, satisfies

d

dt
Ẽh(y, ẏ) = O(hN ) (3.2)

along solutions of the modified differential equation (2.1).

Proof This follows from Theorem 3.1, because the expression ẏ>
(
y(k) × B

)
can be written as a total derivative for odd values k = 2m+ 1, namely as

d

dt

(
ẏ>
(
y(2m) ×B

)
− ÿ>

(
y(2m−1) ×B

)
+ · · · ± (y(m−1))>

(
y(m+1) ×B

))
,

since (y(m))>
(
y(m) ×B

)
= 0. This total derivative can be moved to the other

side of (3.1) to obtain (3.2). ut

If the numerical solution stays in a compact set that is independent of h,
then Corollary 3.1 implies the long-time near-conservation of energy (2.3) by
the standard argument of writing the deviation of the modified energy as a
telescoping sum,

Ẽh(xn, vn)− Ẽh(x0, v0) =

n∑
j=1

(
Ẽh(xj , vj)− Ẽh(xj−1, vj−1)

)
,

where each term in the sum is of size O(hN+1), uniformly for (xj , vj) in the
compact set.

Alternatively to this proof of long-time near-conservation of energy in the
case of constant B, (2.3) follows also from the known theory of symplectic
integrators, e.g. [5, Chap. IX], since the Boris method is known to be symplectic
in the case of constant B.
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4 Modified energy – quadratic electric potential

Instead of ẏ>, the equation (2.1) is now pre-multiplied with the expression in
front of ×B(y). This implies that the term with the magnetic field disappears.

Theorem 4.1 There exist h-independent functions E2j(x, v) (different from
those of the previous section), such that the function

Eh(x, v) = E(x, v) + h2E2(x, v) + h4E4(x, v) + . . . ,

truncated at the O(hN ) term, satisfies

d

dt
Eh(y, ẏ) = −h2

( 1

3!

...
y +

h2

5!
y(5) + . . .

)
∇U(y) +O(hN ) (4.1)

along solutions of the modified differential equation (2.1).

Proof The proof is similar to that of Theorem 3.1. One uses the fact that the

scalar product y(k)
>
y(l) is a total differential whenever k + l is odd. ut

Corollary 4.1 If the scalar potential is quadratic, U(x) = 1
2x
>Qx+q>x with

a symmetric matrix Q, then there exist h-independent functions Ê2j(x, v) such
that the function

Êh(x, v) = E(x, v) + h2Ê2(x, v) + h4Ê4(x, v) + . . . ,

truncated at the O(hN ) term, satisfies

d

dt
Êh(y, ẏ) = O(hN ) (4.2)

along solutions of the modified differential equation (2.1).

Proof This follows from Theorem 4.1, because the expression y(k)>∇U(y) =
y(k)>(Qy + q) can be written as a total differential for odd values of k. ut

This result shows that for a quadratic potential U(x) = 1
2x
>Qx + q>x

the energy is nearly preserved independently of the form of the magnetic field
B(x), with the same relation as in (2.3). An even stronger result holds.

Theorem 4.2 Let the scalar potential be quadratic, U(x) = 1
2x
>Qx+q>x with

a symmetric matrix Q. Then, for every vector field B(x), the Boris method
(1.4) exactly conserves the discrete modified energy

Eh(x, v) =
1

2
vT v + U(x)− h

2
vT∇U(x)

in the sense that

Eh(xn+1, vn+1/2) = Eh(xn, vn−1/2).
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Proof Taking the scalar product of the lower relation of (1.4) with vn =
(vn+1/2 + vn−1/2)/2 yields

1

2
v>n+1/2vn+1/2 −

1

2
v>n−1/2vn−1/2 = −h

2
(vn+1/2 + vn−1/2)>(Qxn + q).

Adding the identity

U(xn+1)− U(xn) =
1

2
x>n+1Qxn+1 −

1

2
x>nQxn + q>(xn+1 − xn)

= hv>n+1/2

( 1

2
Q (xn+1 + xn) + q

)
and observing that the terms with hv>n+1/2Qxn cancel, this then proves the
statement of the theorem. ut

Remark 4.1 An interesting example (penning trap with asymmetric magnetic
field), for which the Boris algorithm shows an unbounded energy, is given in [8]
(see also [7]) by

U(x) = −5
(
x21 + x22 − 2x23

)
, B(x) = 100

1/3
0
1

+ 50

x2 − x3x1 + x3
x2 − x1


with initial values x(0) =

(
1/3, 0, 1/2

)>
, v(0) =

(
0, 1, 0

)>
. Since the potential

U(x) is quadratic, Theorem 4.2 applies. This shows that the energy can be
unbounded only if the numerical solution does not stay in a compact set. Note
that the level sets of the energy E(x, v) are not compact for this example.

5 Numerical experiments

This section studies the long-time behaviour of the numerical energy in the
situation where the electric potential is non-quadratic and the magnetic field is
non-constant. Inspired by the work [6], where a symmetric, non-symplectic, but
volume-preserving integrator for molecular dynamics simulations is studied, we
expect that the following two situations can arise:

– a linear energy-drift of size O(h2t);
– a random walk behaviour for the error of the numerical energy.

Before passing to the numerical experiments we write the modified energies of
Sections 3 and 4 in terms of y and w. We then have formally xn = y(nh) and
vn = w(nh), where (xn, vn) is the numerical solution obtained by (1.4). For
this we use the relation (2.2) connecting w with ẏ. We have

E(y, ẏ) = E(y, w) +O(h2).

As a consequence of Theorems 3.1 and 4.1 the solution
(
y(t), w(t)

)
of the

modified differential equation is seen to satisfy

d

dt

(
E(y, w) + h2F (y, w)

)
= h2G(y, w) +O(h4). (5.1)
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Fig. 5.1 Energy error E(xn, vn) − E(x0, v0) along numerical solution, for Example 5.1

In the following numerical experiments we plot E(xn, vn).

For both examples of this section we consider the scalar potential

U(x) = x31 − x32 +
1

5
x41 + x42 + x43 (5.2)

and initial values

x(0) = (0.0, 1.0, 0.1)>, v(0) = (0.09, 0.55.0.30)>. (5.3)

The quartic terms imply that the level sets of the energy are compact, so that
the exact solution of the problem exists and remains bounded for all times.

Example 5.1 (Linear drift in the energy) In addition to the scalar potential
(5.2) and the initial values (5.3) we consider the magnetic field

B(x) = ∇× 1

3

−x2
√
x21 + x22

x1
√
x21 + x22
0

 =

 0

0√
x21 + x22

 . (5.4)

We apply the Boris algorithm in its stabilized form (1.4) with step sizes h =
0.001 and h = 0.002. The error in the energy E(xn, vn) − E(x0, v0) along
the numerical solution is plotted in Figure 5.1 as a function of time. The
vertical axis is scaled by h2. Since the figures for both step sizes are similar,
we conclude that there is a linear drift of slope O(h2) in the numerical energy,
which is superposed by high oscillations of size O(h2).

This drift in the energy is somewhat expected. Integrating the relation
(5.1) shows that, in general, we have a linear drift bounded by th2M , where
M is an upper bound of G(y, w). The term h2F (y, w) gives rise to bounded,
high oscillations of size O(h2).
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Fig. 5.2 Energy error E(xn, vn) − E(x0, v0) along numerical solution, for Example 5.2

Example 5.2 (Random walk behaviour of the numerical energy) This time we
consider the magnetic field

B(x) = ∇× 1

4

x
2
3 − x22
x23 − x21
x22 − x21

 =
1

2

x2 − x3x1 + x3

x2 − x1

 . (5.5)

in addition to (5.2) and (5.3). We apply the Boris algorithm (1.4) with step
sizes h = 0.001 and h = 0.002 on an interval of length Tend = 30 000. To better
appreciate the random walk behaviour, we compute the numerical solution for
initial values, where v3(0) is replaced by v3(0) + θ10−13. Here, θ is randomly
chosen in the interval [0, 1]. Figure 5.2 shows the energy error of 41 trajectories.
Thick lines indicate average and variance taken over 101 trajectories.

This behaviour can be explained as in [6]. Let us assume that the solution
of the modified differential equation is ergodic on an invariant set A with
respect to an invariant measure µ. Then we have

lim
t→∞

1

t

∫ t

0

G
(
y(s), w(s)

)
ds =

∫
A

G(x, v)µ
(
d(x, v)

)
for the function G(x, v) of (5.1). If the integral to the right is non-zero, we
will have a linear drift of size O(th2). However, if this integral vanishes, the
error of the modified energy will behave like a random walk. In addition to
the O(h2) term h2F (x, v) of (5.1) there will be a drift of size

√
t h2.

6 Momentum

If the scalar and vector potentials have the invariance properties

U(eτSx) = U(x) and e−τSA(eτSx) = A(x) for all real τ (6.1)
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with a skew-symmetric matrix S, then the momentum

M(x, v) =
(
v +A(x)

)>
Sx (6.2)

is conserved along solutions of the differential equation (1.1). This can be
shown by scalarly multiplying (1.1) with Sx and noting that the skew-symmetry
of S yields x>Sẍ = d

dt (x
TSẋ) and the invariance properties (6.1) imply

S∇U(x) = 0 and x>S(ẋ×B(x)) = − d
dt (x

>SA(x)).

Theorem 6.1 If the vector and scalar potentials have the invariance prop-
erties (6.1), then there exist h-independent functions M2j(x, v) such that the
function

Mh(x, v) = M(x, v) + h2M2(x, v) + h4M4(x, v) + . . . ,

truncated at the O(hN ) term, satisfies

d

dt
Mh(y, ẏ) = h2 y>S

(( 1

3!

...
y +

h2

5!
y(5) + . . .

)
×B(y)

)
+O(hN ) (6.3)

along solutions of the modified differential equation (2.1).

Proof We multiply (2.1) with y>S and note that y>S y(k) can be written as
a total differential for even values of k, and y>S∇U(y) = 0. This yields the
stated result in the same way as in Theorem 3.1. ut

When B(x) = B does not depend on x, then A(x) = − 1
2x × B (up to a

constant vector) and the above invariance properties are satisfied if S is the
skew-symmetric matrix that embodies the cross product with B, i.e., Sv = v×
B, and U is invariant under rotations with the axis B, so that ∇U(x)×B = 0
for all x. The conserved momentum then reads

M(x, v) = v>(x×B)− 1

2
|x×B|2.

Corollary 6.1 If the magnetic field B(x) = B is constant and ∇U(x)×B = 0

for all x, then there exist h-independent functions M̃2j(x, v), such that the
function

M̃h(x, v) = M(x, v) + h2M̃2(x, v) + h4M̃4(x, v) + . . . ,

truncated at the O(hN ) term, satisfies

d

dt
M̃h(y, ẏ) = O(hN ) (6.4)

along solutions of the modified differential equation (2.1).

Proof This follows from Theorem 6.1, since for constant B we have with Sy =
y × B that (y × B)>(y(k) × B) can be written as a total differential for odd
values of k. ut
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If the numerical solution stays in a compact set that is independent of h,
then Corollary 3.1 implies, for arbitrary positive integers N , that

M(xn, vn) = M(x0, v0) +O(h2) for nh ≤ Ch−N , (6.5)

where the constant symbolized by the O-notation is independent of n and h
with nh ≤ Ch−N .
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