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Abstract Long-time integration of Hamiltonian systems is an important issue in
many applications – for example the planetary motion in astronomy or simulations
in molecular dynamics. Symplectic and symmetric one-step methods are known to
have favorable numerical features like near energy preservation over long times and
at most linear error growth for nearly integrable systems. This work studies the
suitability of linear multistep methods for this kind of problems. It turns out that
the symmetry of the method is essential for good conservation properties, and the
more general class of partitioned linear multistep methods permits to obtain more
favorable long-term stability of the integration. Insight into the long-time behavior
is obtained by a backward error analysis, where the underlying one-step method
and also parasitic solution components are investigated. In this way one approaches
a classification of problems, for which multistep methods are an interesting class of
integrators when long-time integration is important. Numerical experiments confirm
the theoretical findings.

1 Introduction

Linear multistep methods are an important alternative to Runge–Kutta one-step
methods for the numerical solution of ordinary differential equations. Adams-type
methods are frequently used for the integration of nonstiff differential equations,
and BDF schemes have excellent properties for the solution of stiff differential
equations. In the context of ‘geometric numerical integration’, where structure-
preservation and long-time integration are important, there has been a remarkable
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publication [15], where certain symmetric multistep methods for second order dif-
ferential equations have been successfully applied to the integration of planetary
motion. A theoretical explanation of the observed excellent long-time behavior has
been given in [9]. It is based on a backward error analysis, and rigorous estimates for
the parasitic solution components are obtained, when the system is Hamiltonian of
the form q̈ =−∇U(q), and derivative approximations are obtained locally by finite
differences.

The main aim of the present contribution is to study to which extend this ex-
cellent behavior and its theoretical explanation is valid also in more general situa-
tions – separable Hamiltonians H(p,q) = T (p)+U(q) with general functions T (p)
and U(q), and problems with position dependent kinetic energy. The presentation
of the results is in three parts. In the first part we briefly recall the classical the-
ory of partitioned linear multistep methods (order, zero-stability, convergence) and
known results on the long-time behavior of symmetric multistep methods for second
order Hamiltonian systems. We also present numerical experiments illustrating an
excellent long-time behavior in interesting situations. The theoretical explanation of
the long-time behavior is based on a backward error analysis for partitioned mul-
tistep methods. Part 2 is devoted to the study of the underlying one-step method.
This method is symmetric, and we investigate conditions on the coefficients of the
method to achieve good conservation of the Hamiltonian. When using multistep
methods one is necessarily confronted with parasitic solution components, because
the order of the difference equation is higher than the order of the differential equa-
tion. These parasitic terms will be studied in Part 3. On time intervals, where the
parasitic terms remain bounded and small, the multistep method essentially behaves
like a symmetric one-step method.

1.1 Classical Theory of Partitioned Linear Multistep Methods

Hamiltonian systems are partitioned ordinary differential equations of the form

ṗ = f (p,q), p(0) = p0,

q̇ = g(p,q), q(0) = q0,
(1)

where f (p,q) = −∇q H(p,q), g(p,q) = ∇p H(p,q), and H(p,q) is a smooth scalar
energy function. For their numerical solution we consider partitioned linear multi-
step methods

k

∑
j=0

α
p
j pn+ j = h

k

∑
j=0

β
p
j f (pn+ j,qn+ j)

k

∑
j=0

α
q
j qn+ j = h

k

∑
j=0

β
q
j g(pn+ j,qn+ j),

(2)

where the p and q components are discretized by different multistep methods. Fol-
lowing the seminal thesis of Dahlquist, we denote the generating polynomials of the
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coefficients α j,β j of a multistep method by

ρ(ζ ) =
k

∑
j=0

α jζ
j, σ(ζ ) =

k

∑
j=0

β jζ
j.

The generating polynomials of the method (2) are thus ρp(ζ ), σp(ζ ) and ρq(ζ ),
σq(ζ ), respectively. In the following we collect some basic properties of linear mul-
tistep methods (see e.g., [12]).

Zero-stability. A linear multistep method is called stable, if the polynomial ρ(ζ )
satisfies the so-called root condition, i.e., all zeros of the equation ρ(ζ ) = 0 satisfy
|ζ | ≤ 1, and those on the unit circle are simple.

Order of consistency. A linear multistep method has order r if

ρ(ζ )
logζ

−σ(ζ ) = O
(
(ζ −1)r) for ζ → 1.

For a given polynomial ρ(ζ ) of degree k satisfying ρ(1) = 0, there exists a unique
σ(ζ ) of degree k such that the order of the method is at least k +1; and there exists
a unique σ(ζ ) of degree k−1 (which yields an explicit method) such that the order
of the method is at least k.

Convergence. If both methods of (2) are stable and of order r, then we have conver-
gence of order r. This means that for sufficiently accurate starting approximations
and for tn = nh≤ T we have

‖pn− p(tn)‖+‖qn−q(tn)‖ ≤C(T )hr for h→ 0. (3)

The constant C(T ) is independent of n and h. It typically increases exponentially as
a function of T .

Symmetry. A multistep method is symmetric if the coefficients satisfy α j =−αk− j
and β j = βk− j for all j. In terms of the generating polynomials this reads

ρ(ζ ) =−ζ
k
ρ(1/ζ ), σ(ζ ) = ζ

k
σ(1/ζ ). (4)

If α0 = 0, the number k has to be reduced in this definition. Symmetry together with
zero-stabilty imply that all zeros of ρ(ζ ) have modulus one and are simple.

Remark 1. The idea to use different discretizations for different parts of the dif-
ferential equation is not new. Already Dahlquist [5, Chapter 7] considers stable
combinations of two multistep schemes for the solution of second order differen-
tial equations. Often, the vector field is split into a sum of two vector fields (stiff and
nonstiff), cf. [2]. In the context of differential-algebraic equations, the differential
and algebraic parts can be treated by different methods, cf. [3]. An essential differ-
ence of these approaches to the present work is the use of symmetric methods with
the aim of preserving a qualitatively correct long-time behavior of the numerical
approximation.



4 Paola Console and Ernst Hairer

1.2 Known results about the long-time behavior

Classical convergence estimates are usually of the form (3), where C(T ) = eLT and
L is proportional to a Lipschitz constant of the differential equation. They give in-
formation only on intervals of length O(1). Different techniques, usually based on
a kind of backward error analysis, are required to get insight into the long-time be-
havior (e.g., energy-preservation or error growth for nearly integrable systems) of
the numerical solution.

From one-step methods it is known that symplecticity and/or symmetry of the
numerical integrator play an important role in the long-time behavior of numerical
approximations for Hamiltonian systems. This motivates the consideration of sym-
metric multistep methods. However, already Dahlquist [5, p. 52] pointed out the
danger of applying symmetric multistep methods for long-time integration, when
he writes1 “then the unavoidable weak instability arising from the root ζ = −1 of
ρ(ζ ) may make [such methods] inferior to methods with a lower value of p in
integrations over a long range”. Also the analysis of [7] indicates that symmetric
multistep methods (applied to the whole differential system) are usually not reliable
for integrations over long times. This is the reason why we are mainly interested
in partitioned multistep methods, where the characteristic polynomials ρp(ζ ) and
ρq(ζ ) do not have common zeros with the exception of ζ = 1.

For separable Hamiltonian systems with

H(p,q) = 1
2

pTM−1 p+U(q), (5)

where M is a constant, symmetric, positive definite matrix, the long-time behavior
of linear multistep methods is well understood. In this case the differential equa-
tion reduces to the second order problem q̈ =−M−1∇U(q). Also in the partitioned
multistep method the presence of the momenta pn can be eliminated, which yields

2k

∑
j=0

α
(2)
j qn+ j =−h2

2k

∑
j=0

β
(2)
j M−1

∇U(qn+ j), (6)

where the generating polynomial ρ2(ζ ),σ2(ζ ) of the coefficients α
(2)
j ,β

(2)
j are re-

lated to those of (2) by

ρ2(ζ ) = ρp(ζ )ρq(ζ ), σ2(ζ ) = σp(ζ )σq(ζ ).

Formula (6) permits the computation of {qn} independent of velocity and momenta.
They can be computed a posteriori by a finite difference formula of the form

pn =
1
h

l

∑
j=−l

δ j M qn+ j. (7)

1 We thank Gustaf Söderlind for drawing our attention to this part of Dahlquist’s thesis.
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This is a purely local approach, which does not influence the propagation of the
numerical solution, and therefore has no effect on its long-time behavior.

We now present a few interesting results from the publication [9] about the long-
time behavior of numerical solutions. This article considers linear multistep meth-
ods (6), which do not necessarily originate from a partitioned method (2), together
with local approximations of the momenta. Assumptions on the method (6) are the
following:

(A1) it is of order r, i.e., ρ2(ζ )/(logζ )2−σ2(ζ ) = O((ζ −1)r) for ζ → 1,
(A2) it is symmetric, i.e., ρ2(ζ ) = ζ kρ2(1/ζ ) and σ2(ζ ) = ζ kσ2(1/ζ ),
(A3) it is s-stable, i.e., apart from the double zero at 1, all zeros of ρ2(ζ ) are simple

and of modulus one.

Under these assumptions we have the following results on the long-time behavior:

• the total energy (5) is preserved up to O(hr) over times O(h−r−2), i.e.,

H(pn,qn) = H(p0,q0)+O(hr) for nh≤ h−r−2,

• quadratic first integrals of the form L(p,q) = pTAq are nearly preserved:

L(pn,qn) = L(p0,q0)+O(hr) for nh≤ h−r−2,

• for integrable reversible systems (under suitable assumptions, see [9]) we have
for the angle variable Θ(p,q) and the action variable I(p,q) the estimates

Θ(pn,qn) = Θ(p0,q0)+O(t hr)
I(pn,qn) = I(p0,q0)+O(hr)

for 0≤ t = nh≤ h−r.

The constants symbolized by O are independent of n and h.

1.3 Numerical experiments

For systems with Hamiltonian (5), partitioned linear multistep methods of the form
(2) have the same long-time behavior as linear multistep methods for second order
problems (Section 1.2) even if the derivative approximation is not given locally by
a finite difference formula as in (7). The aim of this section is to get some insight
into the long-time behavior of partitioned linear multistep methods (2) applied to
Hamiltonian systems that are more general than (5).

Separable Hamiltonian systems. Let us first consider separable polynomial Hamil-
tonians H(p,q) = T (p)+U(q), where

T (p) = ∑
2≤ j+k≤3

a jk p j
1 pk

2 +
(

p4
1 + p4

2
)
, U(q) = ∑

2≤ j+k≤3
b jk q j

1 qk
2 +
(
q4

1 +q4
2
)
.
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Fig. 1 Numerical Hamiltonian of method ‘plmm2’ applied with step size h = 0.005 for problems
(A) and (B), and with h = 001 for problem (C); initial values q1(0) = 1, q2(0) =−1.2, p1(0) = 0.2,
p2(0) =−0.9. Starting approximations are computed with high precision.

The positive definite quartic terms imply that solutions remain in a compact set. We
consider the following three situations:

(A) Non-vanishing coefficients are a02 = 1, a20 = 1, and b02 = 2, b20 = 1, b03 = 1.
Since T (−p) = T (p), the system is reversible with respect to p↔−p. Moreover,
it is separated into two systems with one degree of freedom.

(B) Non-vanishing coefficients are a02 = 1, a20 = 1, a03 = 1, a30 = −0.5, and
b02 = 2, b20 = 1, b03 = 1. The system is not reversible, but still equivalent to
two systems with one degree of freedom.

(C) Non-vanishing coefficients are a02 = 1, a20 = 1, and b02 = 2, b20 = 1, b12 =−1,
b21 = 2. The system is reversible, and it is a coupled system with two degrees of
freedom.

We consider the following partitioned linear multistep methods:
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Table 1 Numerical energy behavior on intervals of length O(h−2); t is time, h the step size.

method problem (A) problem (B) problem (C)

plmm2, order 2 O(h2) O(th2) O(
√

t h2)

plmm4, order 4 O(h4) O(th4) O(h4)

plmm4c, order 4 O(h4) O(h4 + th6) O(h4)

plmm2 ρp(ζ ) = (ζ −1)(ζ +1) σp(ζ ) = 2ζ

ρq(ζ ) = (ζ −1)(ζ 2 +1) σq(ζ ) = ζ 2 +ζ

plmm4 ρp(ζ ) = ζ 4−1 σp(ζ ) = 4
3

(
2ζ 3−ζ 2 +2ζ

)
ρq(ζ ) = ζ 5−1 σq(ζ ) = 5

24

(
11ζ 4 +ζ 3 +ζ 2 +11ζ

)
Figure 1 shows the numerical Hamiltonian for the second order method ‘plmm2’,
and Table 1 presents the qualitative behavior in dependence of time and step size.
Looking at Figure 1, we notice that this partitioned multistep method behaves very
similar to (non-symplectic) symmetric one-step methods, as can be seen from the
experiments of [11]. For non-reversible problems without any symmetry we have
a linear growth in the energy, for reversible problems we observe boundedness for
integrable systems and for problems with one degree of freedom, and we observe a
random walk behavior of the numerical energy for chaotic solutions. This is illus-
trated by plotting the numerical Hamiltonian of 4 trajectories with randomly per-
turbed initial values (perturbation of size ≈ 10−15) for problem (C).

The intervals considered in the experiments of Figure 1 are relatively short. What
happens on longer time intervals? For problem (A), the numerical energy of the
method ‘plmm2’ shows the same regular, bounded, O(h2) behavior on intervals
as long as 107. No secular terms and no influence of parasitic components can be
observed. For problem (B) the linear error growth in the energy as O(th2) can be
observed on intervals of length O(h−2). The behavior for problem (C) is shown
in Figure 2. We observe that after a time that is proportional to h−2 (halving the
step size increases the length of the interval by a factor four) an exponential error
growth is superposed to the random walk behavior of Figure 1. Such a behavior is

0 100000 200000 300000

−.6

−.3

.0

.3

.6 total energy, problem (C)

h = 0.002 h = 0.001

Fig. 2 Numerical Hamiltonian of method ‘plmm2’ for problem (C); data as in Figure 1, but on a
longer time interval.



8 Paola Console and Ernst Hairer

not possible for symmetric one-step methods. It will be explained by the presence
of parasitic solution components.

We have repeated all experiments with the fourth order partitioned linear mul-
tistep method ‘plmm4’ with characteristic polynomials given at the beginning of
this section. Table 1 shows the behavior on intervals of length O(h−2). Whereas
the behavior for problems (A) and (B) is expected, we cannot observe a random
walk behavior for problem (C). On very long time intervals, the energy error re-
mains nicely bounded of size O(h4) for the problem (A). For the problems (B) and
(C), however, an exponential error growth like δ exp(ch2t) with small δ is super-
posed, which becomes visible after an interval of length O(h−2). Consequently, the
exponent two in the length of the interval is not related to the order of the method.

Triple pendulum. For non-separable Hamiltonians, symmetric and/or symplectic
one-step methods are in general implicit. It is therefore of interest to study the be-
havior of explicit symmetric multistep methods applied to such systems. We con-
sider the motion of a triple pendulum, which leads to a Hamiltonian system with

q1

q2

q3

H(p,q) = 1
2

pTM(q)−1 p+U(q),

where U(q) =−3cosq1−2cosq2− cosq3 and

M(q) =

 3 2cos(q2−q1) cos(q3−q1)
2cos(q2−q1) 2 cos(q3−q2)
cos(q3−q1) cos(q3−q2) 1

 .

This matrix is positive definite with det M(q) = 4−2cos2(q2−q1)−cos2(q3−q2).
We have experimented with both partitioned multistep methods (order 2 and order 4)
and we observed that the methods give excellent results when the angles are not to
large, and the motion is not too chaotic.

For example, if we take initial values q1(0) = π/12, q2(0) = π/6, for q3(0) a
value between 0 and 5π/12, and zero initial values for the velocities, then the error
in the Hamiltonian is of size O(h2) (for ‘plmm2’) and O(h4) (for ‘plmm4’) without
any drift. This has been verified numerically on an interval [0,107]. Changing the
initial value for q3(0) to −π/12 shows an exponential increase of the error after
t ≈ 4 ·106, and a change to 6π/12 shows such a behavior already at t ≈ 4000.

Ablowitz–Ladik discrete nonlinear Schrödinger equation. As an example of a
completely integrable lattice equation we consider the Ablowitz–Ladik discrete non-
linear Schrödinger equation (see [1])

i u̇k + 1
∆x2

(
uk+1−2uk +uk−1

)
+ |uk|2(uk+1 +uk−1) = 0,

under periodic boundary conditions uk+N = uk, where ∆x = L/N. Separating real
and imaginary parts in the solution uk = pk + iqk, the equation becomes
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ṗk = − 1
∆x2

(
qk+1−2qk +qk−1

)
− (p2

k +q2
k)(qk+1 +qk−1)

q̇k = 1
∆x2

(
pk+1−2pk + pk−1

)
+(p2

k +q2
k)(pk+1 + pk−1)

(8)

with boundary conditions pk+N = pk and qk+N = qk. This system can be written in
the non-canonical Hamiltonian form

ṗ =−D(p,q)∇q H(p,q), q̇ = D(p,q)∇p H(p,q),

where D(p,q) is the diagonal matrix with entries dk(p,q) = 1
∆x (1+∆x2(p2

k +q2
k)),

and the Hamiltonian is given by

H(p,q) =
1

∆x

N

∑
k=1

(
pk pk−1 +qkqk−1

)
− 1

∆x3

N

∑
k=1

ln
(
1+∆x2(p2

k +q2
k)
)
. (9)

Furthermore, the expression

I(p,q) =
1

∆x

N

∑
k=1

(
pk pk−1 +qkqk−1

)
(10)

is a first integral of the system (8). Since the system is completely integrable, there
are in addition N−2 other independent first integrals.

Since we are confronted with a Poisson system with non-separable Hamiltonian,
there do not exist symplectic and/or symmetric integrators that are explicit. It is
therefore of high interest to study the performance of explicit partitioned linear
multistep methods, when applied to the system (8). Notice that the system is re-
versible with respect to the symmetries p↔−p and q↔−q. Following [16, 13],
we consider initial values

pk(0) = 1
2

(
1− ε cos(bxk)

)
, qk(0) = 0, (11)

where xk =−L/2+(k−1)∆x, ∆x = L/N, b = 2π/L with L = 2π
√

2, and ε = 0.01.
We apply the second order method ‘plmm2’ to the system with N = 16, and we use
various time step sizes for integrations over long time intervals. Figure 3 shows the
error in both first integrals, H and I, to the left on the first subinterval of length 50,
and to the right on the final subinterval starting at t = 106. We observe that halving
the step size decreases the error by a factor of 4 = 22, which is in accordance with
a second order integrator. Similar to an integration with a symplectic scheme, the
partitioned multistep method behaves very well over long times and no drift in the
invariants can be seen. Comparing the results for different step sizes at the final
interval, we notice a time shift in the numerical solution, but amplitude and shape of
the oscillations are not affected. We also observe that the errors are a superposition
of a slowly varying function scaled with h2, and of high oscillations that decrease
faster than with a factor 4, when the step size is halved.
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Fig. 3 Numerical preservation of the invariants H and I, defined in (9) and (10), with the method
‘plmm2’ applied with step sizes h = 0.01 and h = 0.005; initial data are that of (11).

The same qualitative behavior can be observed with the 4th order, explicit, par-
titioned multistep method ‘plmm4’ for step sizes smaller than h = 0.005. As ex-
pected, the error decreases by a factor of 16 = 24 when having the step size. For
larger values of ε , say ε ≥ 0.05 the behavior of the partitioned multistep method is
less regular.

Further numerical experiments can be found in [7]. Excellent long-time behav-
ior of partitioned linear multistep methods is reported for the Kepler problem and
for a test problem in molecular dynamics simulation (frozen Argon crystal). Expo-
nentially fitted partitioned linear multistep methods are considered in [18] for the
long-term integration of N-body problems.

2 Long-time analysis of the underlying one-step method

For one-step methods, the long-time behavior of numerical approximations is easier
to analyze than for multistep methods. Whereas the notions of symplecticity and
energy preservation are straightforward for one-step methods, this is not the case
for multistep methods. It has been shown by Kirchgraber [14] that the numerical
solution of strictly stable2 linear multistep methods essentially behaves like that of
a one-step method, which we call underlying one-step method. For a fixed step size
h and a differential equation ẏ = f (y), it is defined as the mapping Φh(y), such that
the sequence defined by yn+1 = Φh(yn) satisfies the multistep formula. This means
that for starting approximations given by y j = Φ

j
h(y0) for j = 0,1, . . . ,k− 1, the

numerical approximations obtained by the multistep formula coincides with that of
the underlying one-step method (neglecting round-off effects).

2 A linear multistep is called strictly stable, if ζ1 = 1 is a simple zero of the ρ polynomial, and all
other zeros have modulus strictly smaller than one.
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For symmetric linear multistep methods, which cannot be strictly stable, such an
underlying one-step method exists as a formal series in powers of h (see [6, page
274] and [10, Sect. XV.2.2]). Despite its non-convergence, it can give much insight
into the long-time behavior of the method.

2.1 Analysis for the harmonic oscillator

Consider a harmonic oscillator, written as a first order Hamiltonian system,

ṗ = −ω q, p(0) = p0,

q̇ = ω p, q(0) = q0.

Applying the partitioned linear multistep method (2) to this system yields the dif-
ference equations

ρp(E) pn =−ωhσp(E)qn, ρq(E)qn = ωhσq(E) pn, (12)

where we have made use of the shift operator Eyn = yn+1. Looking for solutions of
the form pn = aζ n, qn = bζ n we are led to the 2-dimensional linear system

R(ωh,ζ )
(a

b

)
= 0 with R(ωh,ζ ) =

(
ρp(ζ ) ωhσp(ζ )

−ωhσq(ζ ) ρq(ζ )

)
. (13)

It has a nontrivial solution if and only if detR(ωh,ζ ) = 0. For small values of ωh
the roots of this equation are close to the zeros of the polynomials ρp(ζ ) and ρq(ζ ).
By consistency we have two roots close to 1, they are conjugate to each other, and
they satisfy ζ0 = ζ0(ωh) = 1 + iωh +O(h2) and ζ 0 = ζ 0(ωh) = 1− iωh +O(h2)
(principal roots). They lead to approximations to the exact solution, which is a linear
combination of eiωt and e−iωt . The other roots lead to parasitic terms in the numer-
ical approximations. The general solution (pn,qn)T of the difference equation (12)
is in fact a linear combination of ζ n(a,b)T, where ζ is a root of detR(ωh,ζ ) = 0,
and the vector (a,b)T satisfies the linear system (13).

Underlying one-step method. We consider a numerical solution of (12) that is built
only on linear combinations of ζ n

0 and ζ
n
0. It has to be of the form( pn

qn

)
= Φn

( p0
q0

)
, Φn = 1

2

(
ζ

n
0 +ζ

n
0
)

I + 1
2i

(
ζ

n
0 −ζ

n
0
)

C, (14)

where the matrix C satisfies R0(I− iC) = 0 and R0(I + iC) = 0, so that the vectors
multiplying ζ n

0 and ζ
n
0 satisfy the relation (13) with R0 = R(ωh,ζ0). It follows from

the consistency of the method that for small but nonzero ωh the real and imaginary
parts of the matrix R0 are invertible. This permits us to compute the real matrix
C = −i(R0 + R0)−1(R0−R0). As a consequence of R0 = 1

2 (R0 + R0)(I + iC) and



12 Paola Console and Ernst Hairer

detR0 = 0 we have detC = 1 and traceC = 0, which implies C2 = −I. The matrix
Φn of (14) thus satisfies Φn+1 = ΦnΦ1, and consequently Φn = Φn

1 , so that the
underlying one-step method is seen to be given by( pn+1

qn+1

)
= Φ(ωh)

( pn
qn

)
, Φ(ωh) = 1

2

(
ζ0 +ζ 0

)
I + 1

2i

(
ζ0−ζ 0

)
C. (15)

Notice that Φ(ωh) is not an analytic function of ωh.
Properties of the underlying one-step method. The above derivation is valid for
all partitioned multistep methods. If the method is symmetric, also the coefficients
of the polynomial detR(hω,ζ ) are symmetric, so that with ζ0 = ζ0(ωh) also its
inverse is a solution of detR(hω,ζ ) = 0. This implies ζ

−1
0 = ζ 0, and hence also

|ζ0| = 1. Similarly, the symmetry of the methods (ρp,σp) and (ρq,σq) imply that
C(−ωh) = C(ωh). Consequently, we have Φ(−ωh)Φ(ωh) = I, which proves the
symmetry of the underlying one-step method.

Furthermore, the mapping defined by the matrix Φ(ωh) is symplectic:

Φ(ωh)TJ Φ(ωh) = J with J =
( 0 1
−1 0

)
. (16)

This follows from the relations CTJ + JC = 0 and CT JC = J, which are a conse-
quence of detC = 1 and traceC = 0.

Since the eigenvalues of C are ±i, we have

T C T−1 =
( 0 1
−1 0

)
with T =

(1 0
a b

)
,

where (a,b) is the first row of the matrix C. Notice that we have a = O((ωh)2) and
b = 1 +O((ωh)2). This transformation implies that T Φ(ωh)T−1 is an orthogonal
matrix, so that

ω

2

∥∥∥T
( pn

qn

)∥∥∥2
= ω

2

(
p2

n +(apn +bqn)2
)

is a conserved quantity that is O(h2) close to the true Hamiltonian.

Parasitic solution components. The complete solution of the difference equation
(12) is given by

( pn
qn

)
= Φ1(ωh)n

(a
b

)
+

2k−2

∑
l=1

ζl(ωh)n
(al

bl

)
,

where ζl(ωh) are the roots of detR(ωh,ζ ) = 0 which are different from the princi-
pal roots ζ0(ωh) and ζ 0(ωh). They are called parasitic roots of the method. Initial
approximations (p j,q j) for j = 0,1, . . . ,k−1 uniquely determine the vectors (a,b)
and (al ,bl), recalling that (al ,bl) has to satisfy the relation (13).

If the starting values (p j,q j) approximate for j = 0,1, . . . ,k−1 the exact solution
(p(t0 + jh),q(t0 + jh)) up to an error of size O(hν+1) with ν ≤ r, then we have
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)
=
( p0

q0

)
+O(hν+1),

(al
bl

)
= O(hν+1) for all l.

For zero-stable multistep methods, all roots of detR(ωh,ζ ) = 0 can be bounded
by |ζl(ωh)| ≤ 1+ γωh (here γ > 0 and ω > 0). This implies that |ζl(ωh)n| ≤ eγωT

for nh≤ T , and the parasitic solution components remain small of size O(hν+1) on
intervals of fixed length. To have a similar estimate on arbitrarily long intervals, the
roots ζl(ωh) have to be bounded by 1.

simple root
double root

In general, we do not have a control on the modu-
lus of ζl . However, for symmetric methods we know
that with ζl not only the complex conjugate ζ l , but also
the inverse ζ

−1
l are roots of detR(ωh,ζ ) = 0. Further-

more, the roots ζl(ωh) depend continuously on its ar-
gument. If ζl(0) is a double root of detR(0,ζ ) = 0,
then it is possible that it splits for ωh > 0 into a pair
of roots, one of which has modulus larger than 1, and
one smaller than 1 (see the figure). If ζl(0) is a simple
root, then we must have ζ l(ωh) = ζl(ωh)−1, implying
|ζl(ωh)|= 1 for sufficiently small ωh > 0.

Consequently, if apart from the double root at 1, all roots of detR(0,ζ ) = 0 are
simple (i.e., with the exception of 1, all zeros of ρp(ζ ) are different from those of
ρq(ζ )), the parasitic solution components remain bounded of size O(hν+1) inde-
pendent of the length of the integration interval.

Linear change of coordinates. Partitioned linear multistep methods are invariant
with respect to linear transformations of the form p̃ = Tp p, q̃ = Tq q. However, care
has to be taken when p and q components are mixed. Suppose, for example, that
after such a transformation the harmonic oscillator reduces to a Hamiltonian system
with (we put ω = 1 for convenience)

H(p,q) = 1
2

(
p2 +2ε pq+q2),

where ε 6= 0 is a small parameter. An application of the partitioned multistep method
yields the difference equation

ρp(E) pn = −h
(
ε σp(E) pn +σp(E)qn

)
,

ρq(E)qn = h
(
σq(E) pn + ε σq(E)qn

)
.

(17)

Instead to (13) we are led this time to the system

R(h,ζ )
(a

b

)
= 0 with R(h,ζ ) =

(
ρp(ζ )+ εhσp(ζ ) hσp(ζ )
−hσq(ζ ) ρq(ζ )− εhσq(ζ )

)
.

Even if we only consider symmetric partitioned linear multistep methods, the coef-
ficients of the polynomial detR(h,ζ ) are no longer symmetric, so that the modulus
of its zeros is in general not equal to one. A straightforward computation shows that
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for simple roots of R(0,ζ ) = 0 (for example if we have ρp(ζl) = 0 but ρq(ζl) 6= 0),
the continuous continuation satisfies

ζl(h) = ζl
(
1−µlεh+O(h2)

)
, µl =

σp(ζl)
ζl ρp(ζl)

.

From the symmetry of the method it follows that µl is a real number. It is called
growth parameter. We conclude from this asymptotic formula that |ζl(h)| > 1 for
small h, if the product µlε is negative. In such a situation parasitic solution compo-
nents grow exponentially with time, and the numerical solution becomes meaning-
less on integration intervals whose length T is such that hν+1e−µlεT ≥ 1.

2.2 Backward error analysis (smooth numerical solution)

An important tool for the study of the long-time behavior of numerical approxima-
tions is ‘backward error analysis’. The idea is to interpret the numerical solution of a
one-step method as the exact solution of a modified differential equation (for details
see Chapter IX of [10]). For linear multistep methods, it is in principle possible to
construct the underlying one-step method as a formal series in powers of the step
size h, and then to apply the well-established techniques. Here, we follow the ap-
proach of [7, 9], where the modified differential equation is directly obtained from
the multistep schemes without passing explicitly through the underlying one-step
method.

Theorem 1 (modified differential equation). Consider a consistent, partitioned
linear multistep method (2), applied to a partitioned system (1). There then exist
h-independent functions f j(p,q), g j(p,q), such that for every truncation index N
every solution ph(t),qh(t) of the system

ṗ = f (p,q)+h f1(p,q)+ . . .+hN−1 fN−1(p,q)

q̇ = g(p,q)+hg1(p,q)+ . . .+hN−1gN−1(p,q)
(18)

satisfies the multistep formula up to a defect of size O(hN+1), i.e.,

k

∑
j=0

α
p
j ph(t + jh) = h

k

∑
j=0

β
p
j f
(

ph(t + jh),qh(t + jh)
)
+O(hN+1)

k

∑
j=0

α
q
j qh(t + jh) = h

k

∑
j=0

β
q
j g
(

ph(t + jh),qh(t + jh)
)
+O(hN+1).

(19)

The constant symbolized by O is independent of h, but depends on the truncation
index N. It also depends smoothly on t. If the method is of order r, then we have
f j(p,q) = g j(p,q) = 0 for 1≤ j < r.
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Proof. We closely follow the proof for second order equations in [9]. Denoting time
differentiation by D, the Taylor series expansion of a function can be written as
y(t +h) = ehDy(t). The equations (19) thus become

ρp(ehD)ph(t) = hσp(ehD) f
(

ph(t),qh(t)
)
+O(hN+1)

ρq(ehD)qh(t) = hσq(ehD)g
(

ph(t),qh(t)
)
+O(hN+1).

(20)

With the coefficients of the expansions

xσp(ex)
ρp(ex)

= 1+ µ
p
1 x+ µ

p
2 x2 + . . . ,

xσq(ex)
ρq(ex)

= 1+ µ
q
1 x+ µ

q
2 x2 + . . . , (21)

this becomes equivalent to (omitting the argument t)

ṗh =
(
1+ µ

p
1 hD+ µ

p
2 h2D2 + . . .

)
f (ph,qh)+O(hN)

q̇h =
(
1+ µ

q
1 hD+ µ

q
2 h2D2 + . . .

)
g(ph,qh)+O(hN).

(22)

For a function Ψ(p,q), we have

DΨ(ph,qh) = ∂pΨ(ph,qh) fh(ph,qh)+∂qΨ(ph,qh)gh(ph,qh),

where the functions fh(p,q) and gh(p,q) are an abbreviation for the right-hand side
of (18). Applying this formula iteratively to the expressions in (22) and collecting
equal powers of h, a comparison of the equations (18) and (22) determines recur-
sively the functions f j(p,q) and g j(p,q). ut

The flow of the modified differential equation (18) depends on the parameter h.
If we denote this flow by ϕ

[h]
t (p,q), then the underlying one-step method of the

partitioned linear multistep method is given by Φh(p,q) = ϕ
[h]
h (p,q) up to an error

of size O(hN+1).

Corollary 1. Assume that the partitioned linear multistep method is symmetric, i.e.,
both multistep schemes satisfy the symmetry relations (4). We then have:

a) The expansion of the vector field of the modified differential equation (18) is
in even powers of h.

b) If the differential equation (1) is reversible, i.e., f (−p,q) = f (p,q) and
g(−p,q) =−g(p,q), then the modified differential equation (18) is also reversible.

Proof. The symmetry relations (4) imply that the expressions of (21) are even func-
tions of x. This proves statement (a).

If
(

fh(p,q),gh(p,q)
)

is a reversible vector field, then the function D2Ψ(p,q) has
the same parity in p as the function Ψ(p,q). As a consequence of the recursive
construction of the modified differential equation, and of the fact that only even
powers of D appear in (22), this observation proves the statement (b). ut

Theorem 1 tells us that the solution of the truncated modified differential equation
(18) satisfies the multistep formulas up to a defect of size O(hN+1). Consequently,
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the classical analysis shows that on intervals of length T = O(1),

‖pn− ph(nh)‖+‖qn−qh(nh)‖ ≤C(T )hN .

2.3 Near energy preservation

Whereas the analysis of the previous Section 2.2 is valid for general partitioned
differential equations, we assume here that the vector field is Hamiltonian and given
by

f (p,q) =−∇q H(p,q), g(p,q) = ∇p H(p,q). (23)

In this situation the exact solution satisfies H
(

p(t),q(t)
)
= const, and it is of interest

to study whether numerical approximations of partitioned linear multistep methods
(nearly) preserve the energy H(p,q) over long times. Recall that in this chapter
we consider only ‘smooth’ numerical solutions, which are given by the flow of the
modified differential equation (18) up to an arbitrarily small error of size O(hN).
We therefore have to investigate the near preservation of H

(
ph(t),qh(t)

)
.

The solution of the truncated modified equation satisfies (20). Instead of dividing
by the ρ polynomial, which led us to the construction of the modified differential
equation, we divide the relation by the σ polynomial. This leads to(

1+λ
p
1 hD+λ

p
2 h2D2 + . . .

)
ṗh = −∇q H(ph,qh)+O(hN)(

1+λ
q
1 hD+λ

q
2 h2D2 + . . .

)
q̇h = ∇p H(ph,qh)+O(hN),

(24)

where the coefficients in the expansion are given by

ρp(ex)
xσp(ex)

= 1+λ
p
1 x+λ

p
2 x2 + . . . ,

ρq(ex)
xσq(ex)

= 1+λ
q
1 x+λ

q
2 x2 + . . . . (25)

For symmetric methods, we are concerned with even functions of x, so that the
expansions in (24) are in even powers of h. In this situation we multiply the first
relation of (24) with q̇h, the second one with ṗh, and we subtract both so that the
right-hand side becomes a total differential. This yields

q̇T
h
(
1+λ

p
2 h2D2 + . . .

)
ṗh− ṗT

h
(
1+λ

q
2 h2D2 + . . .

)
q̇h + d

dt
H
(

ph,qh
)
= O(hN). (26)

The main ingredient for a further simplification is the fact that

q̇T
h p(2 j+1)

h − ṗT
h q(2 j+1)

h =
d
dt

( 2 j

∑
l=1

(−1)l+1q(l)T
h p(2 j+1−l)

h

)
(27)

is also a total differential. We now distinguish the following situations:

Case A: both multistep methods are identical. This case has been treated in Sec-
tion XV.4.3 of [10]. We have λ

p
j = λ

q
j for all j, and it follows from (27) that the
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entire left-hand side of (26) is a total differential. Using the modified differential
equation (18), first and higher derivatives of ph and qh can be substituted with
expressions depending only on ph and qh. This proves the existence of functions
H2 j(p,q), such that after integration of (26)

H(ph,qh)+h2H2(ph,qh)+h4H4(ph,qh)+ . . . = const+O(thN). (28)

As long as the solution of the modified differential equation (i.e., the numerical so-
lution) remains in a compact set, we thus have H(ph,qh) = const+O(hr)+O(thN),
where r is the order of the method and N can be chosen arbitrarily large.

This is a nice result, but of limited interest. If the p and q components are dis-
cretized by the same multistep method, parasitic components are usually not under
control and they destroy the long-time behavior of the underlying one-step method.

Case B: separable Hamiltonian with quadratic kinetic energy. This situation is
treated in [9]. For a Hamiltonian of the form H(p,q) = 1

2 pTM−1 p+U(q) (without
loss of generality we assume M = I = identity) we have ∇p H(p,q) = p. The sec-
ond relation of (24) therefore permits to express ph as a linear combination of odd
derivatives of qh. Inserted into (26), this gives rise to a linear combination of terms
q(m)T

h q(2 j+1−m)
h , which all can be written as total differentials because of

2q(m)T
h q(2 j+1−m)

h =
d
dt

( 2 j−m

∑
l=m

(−1)l−mq(l)T
h q(2 j−l)

h

)
. (29)

Without any assumptions on the coefficients λ
p
j and λ

q
j , a modified Hamiltonian

satisfying (28) can be obtained as in Case (A). This is an important result, because
the parasitic components can be shown to remain bounded and small (see [9] and
Chapter 3 below).

Case C: additional order conditions. If both multistep schemes are of order r, then
λ

p
j = λ

q
j = 0 holds for 1≤ j < r. Can we construct schemes, where the polynomials

ρp(ζ ) and ρq(ζ ) have no common zeros other than ζ = 1, such that λ
p
j = λ

q
j also

for j = r (and possibly also for larger j)?
The class of explicit, symmetric 3-step methods of order r = 2 is given by

ρ(ζ ) = (ζ −1)(ζ 2 +2aζ +1), σ(ζ ) = (a+1)(ζ 2 +ζ ),

where |a| < 1 by stability (for a = 1 it is reducible and equivalent to the 2-step
explicit midpoint rule). The coefficient λ2 in the expansion (25) is λ2 = 1

2

( 1
a+1−

1
6

)
,

and it is not possible to have the same λ2 for different values of a.
Symmetric 5-step methods of order r = 4 are given by

ρ(ζ ) = (ζ −1)(ζ 2 +2a1ζ +1)(ζ 2 +2a2ζ +1),

where |a1| < 1 and |a2| < 1 (one of these coefficients is allowed to be equal to 1,
but then the method reduces to a 4-stage method). The polynomial σ(ζ ) is uniquely
determined by assuming the method to be explicit and of order 4. In this case, the
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total energy, problem (C)

Fig. 4 Numerical Hamiltonian of method ‘plmm4c’ applied with step size h = 0.005 for problem
(B), and with h = 0.001 for problem (C); initial values and starting approximations as in Figure 1.

coefficient

λ4 =
131−19(a1 +a2)+11a1a2

720(1+a1)(1+a2)

in (25) depends on two parameters, and it is possible to construct different methods
with the same value of λ4. This happens, for example, when the coefficients ap

j =
cosθ

p
j and aq

j = cosθ
q
j for the two ρ polynomials are given by

plmm4c
ρp(ζ ) : θ

p
1 = π/8 θ

p
2 = 3π/4

ρq(ζ ) : θ
q
1 = 3π/8 θ

q
2 ≈ 0.68π

(here, θ
p
1 , θ

p
2 , θ

q
1 are arbitrarily fixed, and θ

q
2 is computed to satisfy λ

p
4 = λ

q
4 ).

We apply this method to the three problems with separable Hamiltonian of Sec-
tion 1.3. For problem (A) there is no difference to the behavior of methods plmm2
and plmm4. The error in the Hamiltonian is of size O(h4) and no drift can be ob-
served. Numerical results for problems (B) and (C) are presented in Figure 4. For
problem (B) we expect that the dominant error term in the Hamiltonian remains
bounded. In fact, experiments with many different values of the step size h indi-
cate that the error in the Hamiltonian is bounded by O(h4) + O(th6) on intervals
of length O(h−2). Similarly, also for problem (C) the dominant error term remains
bounded. In this case we expect the error to behave like O(h4)+O(

√
th6). The sec-

ond term is invisible on intervals of length O(h−2), see also Table 1. Beyond such
an interval, Figure 4 shows that for both problems, (B) and (C), the error behaves
like δ exp(ch2t) with a small constant δ . This undesirable exponential error growth
will be explained by studying parasitic solution components in Chapter 3.
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2.4 Near preservation of quadratic first integrals

We again consider general differential equations (1) and we assume the existence of
a quadratic first integral of the form L(p,q) = pTE q, i.e.,

f (p,q)TE q+ pTE g(p,q) = 0 for all p and q. (30)

The exact solution satisfies L
(

p(t),q(t)
)

= const, and we are interested to know if
the numerical approximation can mimic this behavior. As in the previous section we
consider only smooth numerical approximations, which are formally equal to the
values of the solution

(
ph(t),qh(t)

)
at t = nh of the modified differential equation.

We therefore have to study the evolution of L
(

ph(t),qh(t)
)
.

Dividing the relations in (20) by h times the σ polynomials, the solution of the
modified differential equation is seen to verify(

1+λ
p
1 hD+λ

p
2 h2D2 + . . .

)
ṗh = f (ph,qh)+O(hN)(

1+λ
q
1 hD+λ

q
2 h2D2 + . . .

)
q̇h = g(ph,qh)+O(hN),

(31)

where the coefficients λ
p
j and λ

q
j are given by (25). We restrict our considerations

to symmetric methods, so that the series are in even powers of h. We multiply the
transposed first relation of (31) with Eqh from the right, and the second one with
pT

h E from the left, and we add both so that by (30) the right-hand side becomes an
expression of size O(hN). We thus obtain(

(1+λ
p
2 h2D2 + . . .)ṗh

)TE qh + pT
h E(1+λ

q
2 h2D2 + . . .) q̇h = O(hN). (32)

An important simplification can be achieved by using the identity

(p2 j+1
h )TE qh + pT

h E q(2 j+1)
h =

d
dt

( 2 j

∑
l=0

(−1)l(p(2 j−l)
h )TE q(l)

h

)
(33)

As in the previous section we now distinguish the following situations:

Case A: both multistep methods are identical. This is the case considered in Sec-
tion XV.4.4 of [10]. We have λ

p
j = λ

q
j for all j, and it follows from (33) that the

expression in (32) is a total differential. As in Section 2.3, first and higher deriva-
tives of ph and qh can be substituted with expressions depending only on ph and
qh. Hence, there exist functions L2 j(p,q) with L0(p,q) = L(p,q) = pTE q, such that
after integration of (32)

L(ph,qh)+h2L2(ph,qh)+h4L4(ph,qh)+ . . . = const+O(thN). (34)

As long as the solution of the modified differential equation (i.e., the numerical so-
lution) remains in a compact set, we thus have L(ph,qh) = const+O(hr)+O(thN),
where r is the order of the method and N can be chosen arbitrarily large.
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Note that such a result is not true in general for symmetric one-step methods.
However, it is of limited interest, because parasitic components are usually not under
control for the situation, where both multistep methods are identical.

Case B: special form of the differential equation. We consider problems of the
form

ṗ = f (q), q̇ = M−1 p,

which are equivalent to second order differential equations q̈ = M−1 f (q). This cor-
responds to the situation treated in [9]. Without loss of generality we assume in the
following that M = I = identity). For such special differential equations the condi-
tion (30) splits into two conditions

f (q)TE q = 0, pTE p = 0 for all p and q,

which implies that E is a skew-symmetric matrix. Moreover, because of g(p,q) = p,
the second relation of (31) permits to express ph as a linear combination of odd
derivatives of qh. Inserted into (32), this gives rise to a linear combination of terms
q(2m+1)T

h E q(2 j−2m+1)
h , which can be written as total differentials because

q(2m+1)T
h E q(2 j−2m+1)

h =
d
dt

( j

∑
l=2m+1

(−1)l−1q(l)T
h E q(2 j−l+1)

h

)
.

Without any assumptions on the coefficients λ
p
j and λ

q
j , a formal first integral of

the form (34) is obtained that is O(hr)-close to the invariant L(p,q) = pTE q of the
differential equation. This result is important, because the parasitic components will
be shown to remain bounded and small (see also [9]).

Case C: additional order conditions. If the partitioned multistep method is of
order r, we have λ

p
j = λ

q
j = 0 for 1 ≤ j < r. If the coefficients of the method are

constructed such that λ
p
j = λ

q
j also for j = r, we can apply the computation of

case (A) to the leading error term. In this way an improved near conservation of
quadratic first integrals can be achieved, similar to the near energy conservation in
the previous section.

2.5 Symplecticity and conjugate symplecticity

In the numerical solution of Hamiltonian systems it is unavoidable to speak also
about symplecticity. Together with the differential equation

ṗ = −∇q H(p,q),
q̇ = ∇p H(p,q),

(35)

whose flow we denote by ϕ t(p0,q0), we consider the variational differential equa-
tion
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Ṗ = −∇2
qp H(p,q)P−∇2

qq H(p,q)Q,

Q̇ = ∇2
pp H(p,q)P+∇2

pq H(p,q)Q,
(36)

where we use the notation ∇2
qp H(p,q) =

(
∂ 2H

∂qi∂ p j

)
. Here, P(t) and Q(t) are the

derivatives with respect to initial values,

P(t) =
(

∂ p(t)
∂ p0

,
∂ p(t)
∂q0

)
, Q(t) =

(
∂q(t)
∂ p0

,
∂q(t)
∂q0

)
and ϕ

′
t(p0,q0) =

( P(t)
Q(t)

)
.

The flow map ϕ t(p0,q0) of (35) is a symplectic transformation, see e.g., [10, VI.2].
This means, by definition, that its Jacobian matrix satisfies

ϕ
′
t (p0,q0)TJ ϕ

′
t (p0,q0) = J or equivalently P(t)TQ(t)−Q(t)TP(t) = J,

where J is the canonical structure matrix already encountered in (16). The important
observation is that symplecticity just means that PTQ−QTP is a quadratic first
integral of the combined system (35)-(36).

The smooth numerical solution of a partitioned multistep method is formally
equal to the exact solution of the modified differential equation of Theorem 1. We
therefore call the multistep method symplectic, if the derivative (Ph(t),Qh(t)) (with
respect to initial values) of the solution (ph(t),qh(t)) of the modified differential
equation (18) satisfies

Ph(t)TQh(t)−Qh(t)TPh(t) = J.

Unfortunately, this is never satisfied unless for some trivial exceptions (implicit mid-
point rule, symplectic Euler method, and the Störmer–Verlet scheme) which are par-
titioned linear multistep methods and one-step methods at the same time. Intuitively
this is clear from the considerations of Section 2.4, because we did not encounter
any result on the exact preservation of quadratic first integrals. A rigorous proof of
this negative result has first been given by Tang [17] (see also [10, Sect. XV.4]).

In view of this negative result, it is natural to consider a weaker property than
symplecticity, which nevertheless retains the same qualitative long-time behavior.
We call a matrix-valued mapping Φh : (p,q) 7→ (P,Q) conjugate symplectic, if there
exists a global change of coordinates (p̂, q̂) = χh(p,q) that is O(hr)-close to the
identity, such that the mapping is symplectic in the new coordinates, i.e., the map-
ping Φ̂h = χh ◦Φh ◦χ

−1
h is a symplectic transformation. Since

Φ̂
′
h(p̂, q̂) = Φ

′
h(p,q)+hrKr(p,q)+hr+1Kr+1(p,q)+ . . . ,

the symplecticity of Φ̂h yields the existence of functions L j(p,q) such that

Φ
′
h(p,q)TJ Φ

′
h(p,q)+hrLr(p,q)+hr+1Lr+1(p,q)+ . . . = J. (37)
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This means that for a method that is conjugate symplectic, there exists a modified
first integral (as a formal series in powers of h) of the modified differential equation
which is O(hr)-close to PT

h Qh−QT
h Ph = (Φ ′h)

TJ Φ ′h.
If Φh represents the underlying one-step method of a partitioned multistep

method, we know from Section 2.4 that under suitable assumptions there exist func-
tions L j(p,q) such that (37) holds. Does this imply that the method Φh is conjugate
symplectic? That this is indeed the case follows from results of Chartier, Faou, and
Murua [4], see also [10, Section XV.4.4]. We do not pursue this question in the
present work.

3 Long-term stability of parasitic solution components

We consider the partitioned linear multistep method (2) applied to the differential
equation (1). We assume that both multistep methods are symmetric and stable, so
that the zeros of the polynomials ρp(ζ ) and ρq(ζ ) are all on the unit circle. We
denote these zeros by ζ0 = 1, and ζ j, ζ− j = ζ j for j = 1, . . . ,κ (if−1 is such a zero,
we let ζ−κ = ζκ =−1). Furthermore, we consider finite products of the zeros of the
ρ-polynomials, which we again denote by ζ j and ζ− j = ζ j. The resulting index set
is denoted by I , so that

{ζl}l∈I = {ζ = ζ
m1
1 · . . . ·ζ

mκ
κ ; m j ≥ 0}.

The index set can be finite (if all zeros of the ρ-polynomials are roots of unity) or it
can be infinite. It is convenient to denote I ∗ = I \{0}.

Our aim is to write the numerical solution of (2) in the form( pn
qn

)
=
( p(tn)

q(tn)

)
+ ∑

l∈I ∗
ζ

n
l

(ul(tn)
vl(tn)

)
, (38)

where tn = nh. Here, (p(t),q(t)) is an h-dependent approximation to the exact so-
lution of (1), called principal solution component. To avoid any confusion, we de-
note in this chapter the exact solution of (1) as (pexact(t),qexact(t)). The functions
(ul(t),vl(t)) also depend on the step size h, and they are called parasitic solution
components. This chapter is devoted to get bounds on these parasitic solution com-
ponents and to investigate the length of time intervals, where the parasitic compo-
nents do not significantly perturb the principal solution component.

A similar representation of the numerical solution has been encountered when
discussing the numerical solution for the harmonic oscillator in Section 2.1. There,
only zeros of the ρ-polynomials are present in the sum. The appearance of products
of such zeros in (38) is due to the nonlinearity of the vector field in (1).
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3.1 Modified differential equation (full system)

We first study the existence of the coefficient functions in the representation (38).
This is an extension of the backward error analysis of the smooth numerical solution
as discussed in Section 2.2. It follows closely the presentation of [10, Sect. XV.3.2].
In the following we use the notations y(t) = (p(t),q(t)), zl(t) = (ul(t),vl(t)), and
we collect in the vector z(t) the components ul(t) (l 6= 0) for which ρp(ζl) = 0 and
the components vl(t) (l 6= 0) for which ρq(ζl) = 0.

Theorem 2. Consider a consistent, symmetric, partitioned linear multistep method
(2), applied to the differential equation (1). Then, there exist h-independent func-
tions f j(p,q,z), g j(p,q,z), and fl, j(p,q,z), gl, j(p,q,z), such that for an arbitrarily
chosen truncation index N and for every solution p(t),q(t),ul(t),vl(t) of the system

ṗ = f (p,q)+h f1(p,q,z)+ . . .+hN−1 fN−1(p,q,z)

q̇ = g(p,q)+hg1(p,q,z)+ . . .+hN−1gN−1(p,q,z)

u̇l = fl,0(p,q,z)+h fl,1(p,q,z)+ . . .+hN−1 fl,N−1(p,q,z) if ρp(ζl) = 0

v̇l = gl,0(p,q,z)+hgl,1(p,q,z)+ . . .+hN−1gl,N−1(p,q,z) if ρq(ζl) = 0

ul = h fl,1(p,q,z)+ . . .+hN fl,N(p,q,z) if ρp(ζl) 6= 0

vl = hgl,1(p,q,z)+ . . .+hNgl,N(p,q,z) if ρq(ζl) 6= 0

ul = 0, vl = 0 if ζl 6= ζ
m1
1 · . . . ·ζ

mκ
κ with m1 + . . .+mκ < N,

(39)
with initial values z(0) = O(h), the function (with n = t/h)( ph(t)

qh(t)

)
=
( p(t)

q(t)

)
+ ∑

l∈I ∗
ζ

n
l

(ul(t)
vl(t)

)
, (40)

satisfies the multistep formula up to a defect of size O(hN+1), i.e.,

k

∑
j=0

α
p
j ph(t + jh) = h

k

∑
j=0

β
p
j f
(

ph(t + jh),qh(t + jh)
)
+O(hN+1)

k

∑
j=0

α
q
j qh(t + jh) = h

k

∑
j=0

β
q
j g
(

ph(t + jh),qh(t + jh)
)
+O(hN+1)

(41)

as long as (p(t),q(t)) remain in a compact set, and ‖z(t)‖ ≤ Ch. The constant
symbolized by O is independent of h, but depends on the truncation index N. It also
depends smoothly on t. If the partitioned multistep method is of order r, then we
have fl(p,q) = gl(p,q) = 0 for 1≤ l < r.

Remark 2. Because of the last line in (39), the sum in (40) is always finite. Sub-
stituting z = 0 in the upper two equations of (39) yields the modified differential
equation (18) of Section 2.2. The solution of the system (39) satisfies u−l(t) = ul(t),
v−l(t) = vl(t), whenever these relations hold for the initial values.
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Proof. The proof is very similar to that of Theorem 1, and we highlight here only
the main differences. We insert the finite sum (40) into (41), we expand the nonlin-
earities around (p(t),q(t)), which we also denote by (u0(t),v0(t)), and we compare
the coefficients of ζ n

j . This yields, recalling that y(t) = (p(t),q(t)) = (u0(t),v0(t))
and zl(t) = (ul(t),vl(t))), and omitting the argument t,

ρp(ζlehD)ul = hσp(ζlehD) ∑
m≥0

1
m! ∑

ζl1 ···ζlm =ζl

f (m)(y)(zl1 , . . . ,zlm
)
+O(hN+1),

ρq(ζlehD)vl = hσq(ζlehD) ∑
m≥0

1
m! ∑

ζl1 ···ζlm =ζl

g(m)(y)(zl1 , . . . ,zlm
)
+O(hN+1),

(42)
where the second sum is over indices l1 6= 0, . . . , lm 6= 0. The summand for m = 0,
which is f (y(t)), resp. g(y(t)), is present only for l = 0, i.e., for ζl = 1. Notice
further that for l = 0 the summand for m = 1 vanishes, because we always have
ζl1 6= ζ0. In view of an inversion of the operators ρp(ζlehD) and ρq(ζlehD) we intro-
duce the coefficients of the expansions (cf. equation (21) for ζ0 = 1)

xσp(ζl ex)
ρp(ζl ex)

= µ
p
l0 + µ

p
l1x+ µ

p
l2x2 + . . . ,

xσq(ζl ex)
ρq(ζl ex)

= µ
q
l0 + µ

q
l1x+ µ

q
l2x2 + . . . .

(43)
If ρp(ζl) 6= 0, we have µ

p
l0 = 0. If ρp(ζl) = 0, the expansion exists because ζl is

a simple zero, and we have µ
p
l0 6= 0 because σp(ζl) 6= 0 as a consequence of the

irreducibility of the method. The same statements hold for the second method. We
therefore obtain the differential equations

u̇l =
(
µ

p
l0 + µ

p
l1hD+ . . .

)
∑

m≥0

1
m! ∑

ζl1 ···ζlm =ζl

f (m)(y)(zl1 , . . . ,zlm
)
+O(hN),

if ρp(ζl) = 0,

v̇l =
(
µ

q
l0 + µ

q
l1hD+ . . .

)
∑

m≥0

1
m! ∑

ζl1 ···ζlm =ζl

g(m)(y)(zl1 , . . . ,zlm
)
+O(hN),

if ρq(ζl) = 0,

(44)

and the algebraic relations

ul =
(
µ

p
l1hD+ µ

p
l2h2D2 + . . .

)
∑

m≥1

1
m! ∑

ζl1 ···ζlm =ζl

f (m)(y)(zl1 , . . . ,zlm
)
+O(hN+1),

if ρp(ζl) 6= 0,

vl =
(
µ

q
l1hD+ µ

q
l2h2D2 + . . .

)
∑

m≥1

1
m! ∑

ζl1 ···ζlm =ζl

g(m)(y)(zl1 , . . . ,zlm
)
+O(hN+1),

if ρq(ζl) 6= 0.
(45)

As in the proof of Theorem 1 we use (44) to recursively eliminate first and higher
derivatives of ul if ρp(ζl) = 0 and of vl if ρq(ζl) = 0. Similarly, we use (45) to re-
cursively eliminate ul and its derivatives if ρp(ζl) 6= 0 and of vl and its derivatives if



Long-Term Stability of Symmetric Partitioned Linear Multistep Methods 25

ρq(ζl) 6= 0. Collecting equal powers of h yields the functions f j(p,q,z), g j(p,q,z),
and fl, j(p,q,z), gl, j(p,q,z).

If ζl 6= ζ
m1
1 · · ·ζ

mκ
κ with m1 + . . .+ mκ < N, the right-hand side of (45) contains

at least N factors of components of z. By our assumption ‖z(t)‖ ≤Ch, this implies
ul = O(hN+1) and vl = O(hN+1), so that these functions can be included in the
remainder term. This justifies the last line of (39) and concludes the proof of the
theorem. ut

Initial values for the system (39). For an application of the multistep formula (2),
starting approximations (p j,q j) for j = 0, . . . ,k−1 have to be provided. We assume
that they satisfy (with 0≤ ν ≤ r)

p j− pexact( jh) = O(hν+1), q j−qexact( jh) = O(hν+1), j = 0, . . . ,k−1. (46)

Initial values for the differential equation (39) have to be such that( p j
q j

)
=
( p( jh)

q( jh)

)
+ ∑

l∈I ∗
ζ

j
l

(ul( jh)
vl( jh)

)
, j = 0, . . . ,k−1. (47)

The solution of (39) is uniquely determined by the initial values y(0),z(0) (for the
notation of y and z see the beginning of Section 3.1), so that the system (47) can
be written as F

(
y(0),z(0),h) = 0. For h = 0, it represents a linear Vandermonde

system for y(0),z(0), which gives a unique solution. The Implicit Function Theorem
thus proves the local existence of a solution of F

(
y(0),z(0),h) = 0 for sufficiently

small step sizes h. Note that the initial values depend smoothly on h. Under the
assumption (46) we have p(0) = pexact(0)+O(hν+1), q(0) = qexact(0)+O(hν+1),
and z(0) = O(hν+1).

3.2 Growth parameters

Before attacking the question of bounding rigorously the parasitic solution com-
ponents, we try to get a feeling of the solution of the system (39). This system is
equivalent to the equations (44) and (45). Our aim is to have small parasitic solution
components. We therefore neglect all terms that are at least quadratic in z.

The equations (44) for l = 0 (principal solution components) become equiva-
lent to the modified equation already studied in Chapter 2. If we consider only the
leading (h-independent) term in the expansion (45), we get zero functions. All that
remains are the equations (44) with l 6= 0 which, for h = 0, are as follows:

• if ζl is a common zero of ρp(ζ ) and ρq(ζ ), we have

u̇l = µ
p
l0

(
fp(p(t),q(t))ul + fq(p(t),q(t))vl

)
v̇l = µ

q
l0

(
gp(p(t),q(t))ul +gq(p(t),q(t))vl

)
,

(48)
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• if ζl is a zero of ρp(ζ ), but ρq(ζl) 6= 0, we have

u̇l = µ
p
l0 fp(p(t),q(t))ul , (49)

• if ζl is a zero of ρq(ζ ), but ρp(ζl) 6= 0, we have

v̇l = µ
q
l0 gq(p(t),q(t))vl . (50)

The coefficient µl = µl0 is called growth parameter of a multistep method with
generating polynomials ρ(ζ ) and σ(ζ ). It is defined by (43) for the limit x→ 0, and
can be computed from

µl =
σ(ζl)

ζl ρ ′(ζl)
.

We remark that for a symmetric linear multistep method the growth parameter is
always real. This follows from σ(1/ζl) = ζ k

l σ(ζl) and −ζ
−2
l ρ ′(ζl) = ζ k

l ρ ′(ζl),
which is obtained by differentiation of the relation ρ(1/ζ ) = ζ kρ(ζ ).

Already when we use for (p(t),q(t)) the exact solution of the original problem,
the equations (48)-(50) give much insight into the behavior of the multistep method.
For example, if we consider the harmonic oscillator, for which f (p,q) = −q,
g(p,q) = p, the differential equation (48) gives bounded solutions only if the prod-
uct of the growth parameters of both methods satisfy µ

p
l µ

q
l > 0 for all l. For non-

linear problems, the differential equation (48) has bounded solutions only in very
exceptional cases.

If the polynomials ρp(ζ ) and ρq(ζ ) do not have common zeros with the excep-
tion of ζ0 = 1, the situation with equation (48) cannot arise. Therefore, only the
equations (49) and (50) are relevant. There are many interesting situations, where
tthe solutions of these equations are bounded, e.g., if f (p,q) only depends on q and
g(p,q) only depends on p, what is the case for Hamiltonian systems with separable
Hamiltonian.

3.3 Bounds for the parasitic solution components

We study the system (39) of modified differential equations. We continue to use the
notation y = (p,q) and, as in Section 3.1, we denote by z(t) the vector whose com-
ponents are ul(t) (l 6= 0) for which ρp(ζl) = 0 and vl(t) (l 6= 0) for which ρq(ζl) = 0.
The system (39) can then be written in compact notations as

ẏ = Fh,N(y)+Gh,N(y,z)
ż = Ah,N(y)z+Bh,N(y,z),

(51)

where Gh,N(y,z) and Bh,N(y,z) collect those terms that are quadratic or of higher or-
der in z. Note that, by the construction via the system (44), the differential equation
for y does not contain any linear term in z.
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We consider a compact subset K0 of the y = (p,q) phase space, and for a small
positive parameter δ we define

K =
{
(y,z) ; y ∈ K0,‖z‖ ≤ δ

}
. (52)

Regularity of the (original) differential equation implies that there exists a constant
L such that

‖Gh,N(y,z)‖ ≤ L‖z‖2, ‖Bh,N(y,z)‖ ≤ L‖z‖2 for (y,z) ∈ K. (53)

Our aim is to get bounds on the parasitic solution components z(t), which then
allow to get information on the long-time behavior of partitioned linear multistep
methods. To this end, we consider the simplified system

ẏ = Fh,N(y),
ż = Ah,N(y)z,

(54)

where quadratic and higher order terms of z have been removed from (51). The dif-
ferential equation for y is precisely the modified differential equation for the smooth
numerical solution (Section 2.2). The differential equation for z is linear with coef-
ficients depending on time t through the solution y(t). Its dominant h-independent
term is the differential equation studied in Section 3.2.

In the case of linear multistep methods for second order Hamiltonian systems, a
formal invariant of the full system (51) has been found that is close to ‖z‖ (see [9]
or [10, Sect. XV.5.3]; the ideas are closely connected to the study of adiabatic in-
variants in highly oscillatory differential equations [8]). This was the key for getting
bounds of the parasitic solution components on time intervals that are much longer
than the natural time scale of the system (54). Here, we include the existence of such
a formal invariant in an assumption (‘S’ for stability and ‘I’ for invariant), and we
later discuss situations, where it is satisfied.

Stability assumption (SI). We say that a partitioned linear multistep method (2)
applied to a partitioned differential equation (1) satisfies the stability assump-
tion (SI), if there exists a smooth function Ih,N(y,z) such that, for 0 < h≤ h0,

• the invariance property

Ih,N
(
y(h),z(h)

)
= Ih,N

(
y(0),z(0)

)
+O(hM+1‖z(0)‖2)

holds for solutions of the differential equation (54), for which (y(t),z(t)) ∈ K
for t in the interval 0≤ t ≤ h;

• there exists a constant C ≥ 1, such that

Ih,N(y,z)≤ ‖z‖2 ≤C Ih,N(y,z) for (y,z) ∈ K.

We are interested in situations, where the stability assumption (SI) is satisfied
with M > 0, and we obviously focus on situations which admit a large M.
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Lemma 1. Under the stability assumption (SI) we have, for 0 < h≤ h0,

Ih,N
(
y(h),z(h)

)
= Ih,N

(
y(0),z(0)

)
+O(hM+1‖z(0)‖2)+O(hδ‖z(0)‖2)

along solutions of the complete system (51) of modified differential equations, pro-
vided that they stay in the compact set K for 0≤ t ≤ h.

Proof. The defect of the solution (y(t),z(t)) of (51), when inserted into (54), is
bounded by O(‖z(0)‖2). An application of the Gronwall Lemma therefore proves
that the difference of the solutions of the two systems with identical initial values is
bounded by O(h‖z(0)‖2). The statement then follows from the mean value theorem
applied to the function Ih,N(y,z) and from the fact that the derivative still contains a
factor of z. ut

We are now able to state and prove the main result of this chapter. It tells us the
length of the integration interval, on which the parasitic solution components do not
destroy the long-time behavior of the underlying one-step method.

Theorem 3. In addition to the stability assumption (SI) we require that

(A1) the partitioned linear multistep method (2) is symmetric, of order r, and the
generating polynomials ρp(ζ ) and ρq(ζ ) do not have common zeros with the
exception of ζ = 1;

(A2) the vector field of (1) is defined and analytic in an open neighborhood of a
compact set K1;

(A3) the numerical solution yn = (pn,qn) stays for all n with 0 ≤ nh ≤ T0 in a
compact set K0 ⊂ K1 which has positive distance from the boundary of K1;

(A4) the starting approximations (p j,q j), j = 0, . . . ,k− 1 are such that the ini-
tial values for the full modified differential equation (51) satisfy y(0) ∈ K0, and
‖z(0)‖ ≤ δ/

√
2eC with C from the stability assumption (SI) and δ = O(h).

For sufficiently small h and δ and for a fixed truncation index N, chosen large
enough such that hN ≤ max(hMδ ,δ 2), there exist constants c1,c2 and functions
y(t),zl(t) on an interval of length

T = min
(
T0, c1 δ

−1, c2 h−M), (55)

such that

• the numerical solution satisfies yn = y(nh)+∑l∈I ∗ ζ n
l zl(nh) for 0≤ nh≤ T ;

• on every subinterval [mh,(m+1)h), the functions y(t),zl(t) are a solution of the
system (51);

• at the time instants tm = mh the functions y(t),zl(t) have jump discontinuities of
size O(hN+1);

• the parasitic solution components are bounded: ‖z(t)‖ ≤ δ for 0≤ nh≤ T .

Proof. The proof closely follows that of Theorem 8 in the publication [9], see
also [10, Sect. XV.5.3]. We separate the integration interval into subintervals of
length h. On a subinterval [mh,(m+1)h) we define the functions y(t) = (p(t),q(t))
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and zl(t) = (ul(t),vl(t)) as the solution of the system (39) with initial values such
that (47) holds with j = m,m + 1, . . . ,m + k− 1. It follows from Theorem 2, for-
mula (41), that ym+k−y(tm+k) = O(hN+1). Consequently, the construction of initial
values for the next subinterval [(m+1)h,(m+2)h) yields for the functions y(t) and
zl(t) a jump discontinuity at tm+1 that is bounded by O(hN+1).

We now study how well the expression Ih,N(y(t),z(t)) is preserved on long time
intervals. Lemma 1 gives a bound on the maximal deviation within a subinterval of
length h. Together with the O(hN+1) bound on the jump discontinuities at tm this
proves for Im = Ih,N(y(tm),z(tm)) the estimate

Im+1 = Im
(
1+C1hM+1 +C2hδ

)
+C3hN+1

δ

as long as (y(t),z(t)) remains in K. With γ = C1hM +C2δ the discrete Gronwall
Lemma thus yields

Im = I0(1+ γ h)m +
(1+ γ h)m−1

γ h
C3hN+1

δ ,

which, for γ tm ≤ 1, gives the estimate Im ≤ I0 e+C3(e−1)hNδ tm. This implies

‖z(t)‖2 ≤ C e‖z(0)‖2 +C4hN
δ t,

so that ‖z(t)‖ ≤ δ for times t subject to γ t ≤ 1, if the truncation index N is chosen
sufficiently large. ut

It is straight-forward to construct partitioned linear multistep methods of high or-
der satisfying (A1). The assumption (A2) is satisfied for many important differential
equations. The assumption (A3) can be checked a posteriori. If the method is of or-
der r and if the starting approximations are computed with very high precision, then
assumption (A4) is fulfilled with δ = O(hr+1). This follows from the construction
of the initial values for the system (39) as explained in the end of Section 3.1. The
difficult task is the verification of the stability assumption (SI).

3.4 Near energy conservation

Combining our results on the long-time behavior of smooth numerical solutions
with the bounded-ness of parasitic solution components we obtain the desired state-
ments on the preservation of energy and of quadratic first integrals.

The near energy preservation has been studied analytically in Section 2.3 for
smooth numerical solutions of symmetric partitioned multistep methods. We con-
sider methods which, when applied to Hamiltonian systems, have a modified energy

Hh(p,q) = H(p,q)+hrHr(p,q)+ . . .+hN−1HN−1(p,q), (56)

where r is the order of the method and N > r, such that
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Hh(ph,qh) = const+O(t hN) (57)

along solutions of the modified differential equation (18). There are situations (cases
(A) and (B) of Section 2.3), where N is arbitrarily large. This is the best behavior
we can hope for. In the case (C) of Section 2.3 we achieve N = r + 2. The worst
behavior is when N = r, in which case a linear drift for the numerical Hamiltonian
is present from the beginning. This behavior of smooth numerical solutions carries
over to the general situations as follows:

Theorem 4. Consider a partitioned linear multistep method (2) of order r, applied
to a Hamiltonian system (23). Assume that there exists a modified energy (56) such
that (57) holds for smooth numerical solutions.

Under the assumptions of Theorem 3 with δ = O(hr), the numerical solution
satisfies

H(pn,qn) = const+O(hr) for nh≤ T,

where the length of the time interval T is limited by (55) and by T ≤ O(hr−N).

Proof. Let y(t) = (p(t),q(t)) and zl(t) (for tm ≤ t ≤ tm+1, tm = mh) be a solution of
the complete system (51) as in the statement of Theorem 3. Applying the proof of
Lemma 1 to the near invariant Hh(p,q) yields

Hh
(

p(tm+1),q(tm+1)
)

= Hh
(

p(tm),q(tm)
)
+O(hδ

2)+O(hN+1).

Since the jump discontinuities at the grid points tm can be neglected, we obtain by
following the proof of Theorem 3 that

Hh(pn,qn) = Hh(p0,q0)+O(tnδ
2)+O(tnhN),

so that the statement follows from (56) and the requirement δ = O(hr). ut

Analogous statements are obtained for the near conservation of quadratic first in-
tegrals. In this case the results of Section 2.4 have to be combined with the bounded-
ness of the parasitic solution components (Theorem 3).

3.5 Verification of the stability assumption (SI)

It remains to study the stability assumption (SI), and to investigate how large the
number M in the invariance property can be. The nice feature is that we only have to
consider the simplified system (54), where the subsystem for the principle solution
component y is separated from the parasitic solution components. Therefore, the dif-
ferential equation for z is a linear differential equation with coefficients depending
on t via the principle solution y(t). Another nice feature is that we are concerned
only with a local result (estimates on an interval of length h which is the step size of
the integrator).
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The linear system ż = Ah,N(y(t))z is obtained from (42), where terms are ne-
glected that are either at least quadratic in z or contain a sufficiently high power
of h. We consider ζl 6= 1 satisfying ρp(ζl) = 0 and ρq(ζl) 6= 0. By irreducibility of
the method we then have σp(ζl) 6= 0. For ease of presentation, we assume3 that also
σq(ζl) 6= 0. We then can apply the inverse of the operators σp(ζlehD) and σq(ζlehD)
to both sides of (42) and thus obtain(

ρp

σp

)(
ζlehD)ul = h ∑

m≥1

1
m! ∑

ζl1 ···ζlm =ζl

f (m)(y)(zl1 , . . . ,zlm
)
+O(hN+1),(

ρq

σq

)(
ζlehD)vl = h ∑

m≥1

1
m! ∑

ζl1 ···ζlm =ζl

g(m)(y)(zl1 , . . . ,zlm
)
+O(hN+1).

(58)

Expanding the left-hand side into powers of h leads to the consideration of the series

i
ρp(ζl eix)
σp(ζl eix)

= λ
p
l0 +λ

p
l1x+λ

p
l2x2 + . . . , i

ρq(ζl eix)
σq(ζl eix)

= λ
q
l0 +λ

q
l1x+λ

q
l2x2 + . . .

(note that λ
p
l0 = 0 if ρp(ζl) = 0). The symmetry of the methods implies that the

coefficients λ
p
l j and λ

q
l j are real. For the conjugate root ζ−l = ζl we have

λ
p
−l, j = (−1) j+1

λ
p
l, j, λ

q
−l, j = (−1) j+1

λ
q
l, j. (59)

Removing in (58) the terms with m≥ 2, we thus obtain

. . . + λ
p
l2 (−ih)2 ül + λ

p
l1 (−ih) u̇l = ih

(
fp(p,q)ul + fq(p,q)vl

)
. . . + λ

q
l2 (−ih)2 v̈l + λ

q
l1 (−ih) v̇l + λ

q
l0 vl = ih

(
gp(p,q)ul +gq(p,q)vl

) (60)

and the same relations for l replaced by −l. An important ingredient for a further
study is the fact that

ℜ

(
zTz(2m+1)

)
=

1
2

d
dt

( 2m

∑
j=0

(−1) j(z( j))Tz(2m− j)
)

ℑ

(
zTz(2m)

)
=

1
2i

d
dt

(2m−1

∑
j=0

(−1) j(z( j))Tz(2m− j−1)
) (61)

are total differentials. We first put the main result of [9] on the long-time behavior
of parasitic solution components into the context of the present investigation.

Second order Hamiltonian systems. We consider partitioned systems

ṗ =−∇U(q), q̇ = p,

3 The case σq(ζl) = 0 needs special attention, see the end of Section 3.5 or [9] for the special case
of second order differential equations.
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which are equivalent to second order differential equations q̈ = −∇U(q). In this
case we have gq(p,q) = 0 and gp(p,q) = I, so that from the lower line of (60) the
expression ihul is seen to be a linear combination of derivatives of vl . Inserted into
the upper relation of (60) this gives

. . . − λl3 (−ih)2 v(3)
l − λl2 (−ih) v̈l − λl1 v̇l =−ih∇

2U(q)vl , (62)

where λl1 = λ
p
l1λ

q
l0, λl2 = λ

p
l2λ

q
l0 + λ

p
l1λ

q
l1, etc. are real coefficients. It follows from

the symmetry of the Hessian matrix ∇2U(q) that ℑ(vT
l ∇2U(q)vl) = 0. Taking the

scalar product of (62) with vT
l and considering its real part, we thus obtain

. . . + h2
λl3 ℜ(vT

l v(3)
l ) − hλl2 ℑ(vT

l v̈l) − λl1 ℜ(vT
l v̇l) = 0.

The magic formulas (61) show that the left-hand expression is a total differential. Its
dominant term is the derivative of −λl1

1
2‖vl‖2. The other terms are the derivative

expressions containing higher derivatives of vl . These can be eliminated with the
help of the simplified modified differential equation. Because of λl1 6= 0, we thus
get a formal invariant (a near invariant if the series is truncated) of the system (60),
which is of the form

. . . + h2Il2(y,z) + hIl1(y,z) + ‖vl‖2 = Il(y,z).

Since all functions Il j(y,z) are bounded by a constant times ‖z‖2 and since we obtain
such a formal invariant for all components of z, the stability assumption (SI) is
proved with C = 1+O(h) and for arbitrarily large M.

Remark 3. This derivation of a near invariant that is close to ‖vl‖2 essentially relies
on the fact that the polynomials ρp(ζ ) and ρq(ζ ) do not have common roots other
than ζ = 1. If, in addition to ρp(ζl) = 0, also ρq(ζl) = 0 would be satisfied, then the
coefficient λ

q
l0 would be zero. This would imply λl1 = 0, so that the formal invariant

does not contain the term ‖vl‖2.

Separable Hamiltonian systems. We next consider a Hamiltonian system with

H(p,q) = T (p)+U(q).

We still consider partitioned linear multistep methods (2), where the ρ-polynomials
do not have common zeros with the exeption of ζ = 1. In the situation of (60) the
vector vl contains a factor h. Since fp(p,q) = 0 for a separable Hamiltonian system,
the differential equation for ul contains an additional factor h. Consequently, the
differential equation (54) for z is in fact of the form ż = hA0

h,N(y)z. Therefore we
have ‖z(h)‖ ≤ ‖z(0)‖(1 +O(h2)), so that the stability assumption (SI) is satisfied
with M = 1.

Discussion of the examples of Section 1.3. In the numerical experiments of Sec-
tion 1.3 we have seen situations, where the parasitic solution components remain
bounded on intervals of length O(h−2). According to our Theorem 3 this requires
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the stability assumption to be satisfied for M = 2. The system (60) is of the form

λ
p
l1u̇l = ∇2U(q)vl +O(h2‖z‖)

λ
q
l0vl = ih∇2T (p)ul +O(h2‖z‖)

(63)

which yields the differential equation

u̇l = ihλ ∇
2U(q)∇2T (p)ul +O(h2‖z‖)

with λ = λ
q
l0/λ

p
l1. If the product of the two Hessian matrices is symmetric or, equiv-

alently, if their commutator vanishes, i.e.,[
∇

2U(q),∇2T (p)
]
= ∇

2U(q)∇2T (p)−∇
2T (p)∇2U(q) = 0, (64)

we can multiply the differential equation with uT
l and we obtain

‖ul(h)‖2 = ‖ul(0)‖2 +O(h3‖z(0)‖2)

as a consequence of ℑ(uT
l ∇2U(q)∇2T (p)ul) = 0. This prove the validity of the

stability assumption (SI) with M = 2. Unfortunately, the commutativity of the two
Hessian matrices is a strong requirement and not often satisfied.

The examples (A) and (B) of Section 1.3 are separable Hamiltonian equations,
which split into independent subsystems having one degree of freedom. The condi-
tion (64) is therefore trivially satisfied.

For the example (C) the condition (64) is not satisfied, so that we do not have
better than M = 1 in the stability assumption (SI). Let us explain the behavior ob-
served in Figure 2. The parasitic roots of method ‘plmm2’ are ζ1 = i, ζ−1 =−i, and
ζ2 =−1.

We have σq(ζ2) = 0, so that the division by σq(ζ2ehD) is not permitted in (58).
We thus go back to formula (42), which shows that for ρq(ζl) 6= 0 and σq(ζl) = 0
the vector vl is an expression multiplied by h2. Inserted into the first equation of (63)
we see that the right-hand side of the differential equation for u2 contains the factor
h2, so that ‖u2(h)‖2 = ‖u2(0)‖2 +O(h3‖z(0)‖2).

For the root ζ1 = i we study numerically the dominant term of the parasitic solu-
tion component. We have λ

p
l0 =−1 and λ

q
l1 = 2 for the method ‘plmm2’, so that the

differential equation for vl becomes

v̇1 =− ih
2

∇
2T (p)∇2U(q)v1 +O(h2‖z‖).

We neglect the O(h2‖z‖) term and solve the linear differential equation for v1 nu-
merically with the code DOPRI5 of [12]. Since the problem is chaotic, care has to
be taken about the credibility of the results. We therefore solve the problem with a
high accuracy requirement of tol = 10−12 and with many different initial values of
norm ‖v1(0)‖ = 1. The result is qualitatively the same for all runs, and we plot in
Figure 5 one such parasitic solution.
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Fig. 5 Euclidean norm of the parasitic solution component v1; data for the Hamiltonian system are
as in Figure 1, problem (C); initial data for the parasitic component are normalized to ‖v1(0)‖= 1.

If the starting approximations for the partitioned multistep method are computed
with high accuracy (what is the case for all our numerical experiments), the initial
values of the parasitic solution components are of size O(hr+1) (where r denotes
the order of the method). Consequently, the functions shown in Figure 5 have to be
scaled with a factor O(hr+1). A comparison with Figure 2 shows that this solution,
where we have removed quadratic and higher order terms in z as well a linear terms
in z with a a factor of at least h2, cannot be the reason of the exponential divergence
in Figure 2. It must be a consequence of the next term having a factor h2. This
nicely explains why the parasitic solution components remain small and bounded
on intervals of length O(h−2).

Conclusion

We have studied the long-time behavior of partitioned linear multistep methods ap-
plied to Hamiltonian systems. These are methods, where the momenta p and the
positions q of the system are treated by two different multistep formula. It turns out
that the following two properties are essential for a qualitative correct simulation
over long times:

- both multistep schemes have to be symmetric;
- the generating polynomials ρp(ζ ) and ρq(ζ ) of the two methods are not allowed

to have common zeros with the exception of ζ = 1.

The study is motivated by the analysis of [9] for special multistep methods and
Hamiltonian systems of the form q̈ =−∇U(q). We have extended the techniques of
proof to a more general situation.

The positive insight of our investigation is that for problems having symme-
tries and a regular solution behavior, the numerical results concerning long-time
preservation of energy and quadratic first integrals are excellent. This is remark-
able, because the considered methods are explicit, of arbitrarily high order, and can
be implemented very efficiently. We expect that this excellent long-time behavior
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is typical for all nearly integrable systems. A more thorough investigation of this
question is outside the scope of the present work.

For separable Hamiltonian systems with chaotic solution, we observed that the
‘smooth’ numerical solution behaves exactly like a symmetric (non-symplectic)
one-step method. The parasitic solution components are typically bounded on a time
interval of length O(h−2), but usually not on longer time intervals. This observation
is independent of the order of the method.

Recently we have extended our numerical experiments and also the theoretical
investigations to constrained Hamiltonian systems, which are differential-algebraic
equations of index 3. Preliminary results are very encouraging and we expect to
obtain a new efficient class of methods for such problems.
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