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Summary For neutral delay differential equations the right-hand
side can be multi-valued, when one or several delayed arguments cross
a breaking point. This article studies a regularization via a singularly
perturbed problem, which smooths the vector field and removes the
discontinuities in the derivative of the solution. A low-dimensional
dynamical system is presented, which characterizes the kind of gen-
eralized solution that is approximated. For the case that the solution
of the regularized problem has high frequency oscillations around a
codimension-2 weak solution of the original problem, a new stabiliz-
ing regularization is proposed and analyzed.
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1 Introduction

We consider systems of neutral delay differential equations

ẏ(t) = f(y(t), ẏ(α1(y(t))), . . . , ẏ(αm(y(t)))) for t > 0

y(t) = ϕ(t) for t ≤ 0
(1)

with smooth functions f(y, z1, . . . , zm), ϕ(t) and αj(y). More gen-
eral situations, where f also depends on t and on y(αj(y(t))), can
be treated as well without any further difficulties. We consider time
intervals where the solution satisfies αj(y(t)) < t for all j.
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The solution y(t) is continuous at t = 0, but its derivative has a
jump discontinuity at t = 0 if

ϕ̇(0) 6= f(ϕ(0), ϕ̇(α1(ϕ(0))), . . . , ϕ̇(αm(ϕ(0)))). (2)

This article focusses on this situation, and we use the notation

ẏ−0 = ϕ̇(0), ẏ+0 = f(ϕ(0), ϕ̇(α1(ϕ(0))), . . . , ϕ̇(αm(ϕ(0)))).

As long as αj(y(t)) < 0 for all j we are concerned with the ordinary
differential equation

ẏ(t) = f(y(t), ϕ̇(α1(y(t))), . . . , ϕ̇(αm(y(t)))) (3)

and the classical theory can be applied. An interesting situation arises
when for the first time one of the lag terms becomes zero, for example,
α1(y(t1)) = 0. Such a time instant is called breaking point. Because
of (2) the vector field has a jump discontinuity along the manifold
M1 = {y;α1(y) = 0} and we have to distinguish two situations.
Either, a classical solution continues to exist in the region α1(y) > 0,
or the vector field points towards the manifold M1 from both sides.
In the second case it is possible to define a weak solution evolving in
the manifold (see Section 2).

Consider such a weak solution and assume that at some time t2
the second lag term becomes zero: α2(y(t2)) = 0. We then encounter
several different situations. An interesting case is when α1(y(t)) = 0
and α2(y(t)) = 0 on a nonempty interval starting at t2. This corre-
sponds to a weak solution in the codimension-2 manifold M1 ∩M2,
where M2 = {y;α2(y) = 0}. The study of all possible solutions and
their regularization is the main topic of the present work.

In Section 2 we give a rigorous definition of generalized (classical
and weak) solutions relating them to differential-algebraic systems
of index 2. Weak solutions can be interpreted as so-called Utkin so-
lutions. It is shown that for the linear case they are equivalent to
Filippov solutions. In Section 3 we discuss a regularization via a sin-
gularly perturbed delay differential equation. We recall some results
of [7] that concern the codimension-1 case, and we extend them to
the codimension-2 situation. In particular we present a 4-dimensional
dynamical system for which, near a breaking point inM1 ∩M2, the
stationary points characterize the kind of solution (classical or weak)
that is approximated by the regularization. In most situations the
solution of the regularized problem is smooth after a short transient
phase at breaking points, and codes for non-neutral stiff delay differ-
ential equations (such as Radar5 of [5]) can be applied to obtain an
accurate approximation of the original problem in an efficient way.
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However, it may happen that the regularized solution has high fre-
quency oscillations, so that a numerical solution becomes inefficient.
In Section 4 we propose a stabilizing regularization which, in many
situations, eliminates the high oscillations. Some technical proofs are
collected in an appendix (Section 5), and numerical experiments il-
lustrate and verify our theoretical investigation.

2 Differential-algebraic systems of index 2

We concentrate on the case m = 2 of two delays, and we give a
precise meaning to what we call a classical or a weak solution of (1).
Whenever αj(y(t)) 6= 0 for all j (more precisely, αj(y(t)) 6= tk, where
the derivative of y(t) has a jump discontinuity at tk), the problem (1)
is well-posed and a locally unique solution exists by the method of
steps. We call it classical solution.

Due to the jump discontinuity at 0 (or at tk) the vector field
of (1) is not well-defined if αj(y(t)) = 0 for some j. In this case it is
common to consider the right-hand side as a multi-valued function,
where ẏ(0) can take any value of the segment connecting ẏ−0 with ẏ+0 ,
see the approach of Utkin [10]. Depending on whether one or two lag
terms equal zero, we distinguish the following situations.

Codimension-1 weak solution. As long as α2(y(t)) 6= 0 (more pre-
cisely, if α2(y(t)) does not take a value, where ẏ(t) has a jump dis-
continuity) we consider the differential-algebraic system

ẏ(t) = f(y(t), ẏ+0 + θ1(t)(ẏ
−
0 − ẏ

+
0 ), ẏ(α2(y(t))))

0 = α1(y(t))
(4)

Differentiation of the algebraic relation with respect to time yields

α′1(y)f(y, ẏ+0 + θ1(ẏ
−
0 − ẏ

+
0 ), ẏ(α2(y))) = 0

along the solution. We assume that this scalar equation permits to
express θ1 as a function of y. Inserted into (4) a solution can be
obtained provided that the initial value satisfies the algebraic relation.

A second type of codimension-1 solutions is obtained from the
differential-algebraic system

ẏ(t) = f(y(t), ẏ(α1(y(t))), ẏ+0 + θ2(t)(ẏ
−
0 − ẏ

+
0 ))

0 = α2(y(t))
(5)

where the roles of α1(y) and α2(y) are exchanged.
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Codimension-2 weak solution. On intervals, where both lag terms
vanish, we consider the system

ẏ(t) = f(y(t), ẏ+0 + θ1(t)(ẏ
−
0 − ẏ

+
0 ), ẏ+0 + θ2(t)(ẏ

−
0 − ẏ

+
0 ))

0 = α1(y(t))

0 = α2(y(t)).

(6)

In this case we obtain the necessary conditions

α′1(y)f(y, ẏ+0 + θ1(ẏ
−
0 − ẏ

+
0 ), ẏ+0 + θ2(ẏ

−
0 − ẏ

+
0 )) = 0

α′2(y)f(y, ẏ+0 + θ1(ẏ
−
0 − ẏ

+
0 ), ẏ+0 + θ2(ẏ

−
0 − ẏ

+
0 )) = 0.

We assume that this system determines (locally uniquely) θ1 and
θ2 as a function of y, so that (6) becomes an ordinary differential
equation for y(t) provided the two algebraic relations are satisfied by
the initial values.

Definition 1 A continuous function y(t) is a generalized solution of
the neutral delay differential equation (1), if there exists a sequence
0 = t0 < t1 < t2 < . . ., such that the restriction of y(t) to the
intervals [tk−1, tk] is differentiable (admitting one-sided derivatives
at the endpoints), and one of the following situations occurs in the
open interval (tk−1, tk):

(a) α1(y(t)) 6= tj , α2(y(t)) 6= tj for j < k, and (1) is satisfied;
(b1) α2(y(t)) 6= tj for j < k, and (4) holds with 0 < θ1(t) < 1;
(b2) α1(y(t)) 6= tj for j < k, and (5) holds with 0 < θ2(t) < 1;
(c) equation (6) holds with 0 < θ1(t) < 1 and 0 < θ2(t) < 1.

The time instant tk is called breaking point, if the length of the subin-
terval [tk−1, tk] is maximal.

The first interval (0, t1) is always of type (a) because αj(y(0)) < 0
for all j. At the first breaking point t1 we have αj(y(t1)) = 0 for at
least one subscript j. If after t1 we have a sliding mode, i.e., a situation
of type (b1) or (b2), it often happens that we have αj(y(t2)) = 0 for
both j in the following breaking point. This is the situation that
interests us most.

More generally, let us assume that at some breaking point t∗ = tk
we have simultaneously α1(y

∗) = 0 and α2(y
∗) = 0 for y∗ = y(t∗).

For 0 ≤ θ1, θ2 ≤ 1 we then consider the scalar functions

gj(θ1, θ2) = α′j(y
∗)f(y∗, ẏ+0 + θ1(ẏ

−
0 − ẏ

+
0 ), ẏ+0 + θ2(ẏ

−
0 − ẏ

+
0 )). (7)
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These functions determine the kind of solution beyond the breaking
point t∗. We can have the following generic1 situations:

Existence of classical solutions:

(a1) if g1(0, 0) > 0, g2(0, 0) > 0, there exists a solution in the region
{y ; α1(y) > 0, α2(y) > 0};

(a2) if g1(0, 1) > 0, g2(0, 1) < 0, there exists a solution in the region
{y ; α1(y) > 0, α2(y) < 0};

(a3) if g1(1, 0) < 0, g2(1, 0) > 0, there exists a solution in the region
{y ; α1(y) < 0, α2(y) > 0};

(a4) if g1(1, 1) < 0, g2(1, 1) < 0, there exists a solution in the region
{y ; α1(y) < 0, α2(y) < 0};

Existence of codimension-1 weak solutions:

(b1) if there is a θ1 ∈ (0, 1) with g1(θ1, 0) = 0, ∂1g1(θ1, 0) 6= 0, and
g2(θ1, 0) > 0, a solution of (4) exists in {y ; α1(y) = 0, α2(y) > 0};

(b2) if there is a θ2 ∈ (0, 1) with g2(0, θ2) = 0, ∂2g2(0, θ2) 6= 0, and
g1(0, θ2) > 0, a solution of (5) exists in {y ; α1(y) > 0, α2(y) = 0};

(b3) if there is a θ1 ∈ (0, 1) with g1(θ1, 1) = 0, ∂1g1(θ1, 1) 6= 0, and
g2(θ1, 1) < 0, a solution of (4) exists in {y ; α1(y) = 0, α2(y) < 0};

(b4) if there is a θ2 ∈ (0, 1) with g2(1, θ2) = 0, ∂2g2(1, θ2) 6= 0, and
g1(1, θ2) < 0, a solution of (5) exists in {y ; α1(y) < 0, α2(y) = 0};

Existence of codimension-2 weak solutions:

(c1) if there exist θ1, θ2 ∈ (0, 1) with g1(θ1, θ2) = 0, g2(θ1, θ2) = 0,

and invertible (∂jgi(θ1, θ2))
2
i,j=1, there is a solution of (6) in the

codimension-2 manifold {y ; α1(y) = 0, α2(y) = 0}.
In the situations (a1)-(a4) we have a solution of (1) in the classi-
cal sense. The sign conditions guarantee that the vector field points
into the correct orthant. Under the assumption (b1) a locally unique
solution of (4) exists. Consistent initial values are y(t∗) = y∗ and
θ1(t

∗) = θ1, and the condition on the derivative permits an appli-
cation of the implicit function theorem, so that θ1 can be expressed
in terms of y by the differentiated algebraic relation. The situations
(b2)-(b4) have a similar interpretation. The condition (c1) is such
that (6) possesses a locally unique solution.

The solution beyond the breaking point t∗ need not be unique. It
is for example possible to have a bifurcation into more than one clas-
sical solutions. Also the co-existence of classical and weak solutions
is possible (see Example 3).

1 With the word “generic” we mean that both, g1(θ1, θ2) and g2(θ1, θ2) are non-
zero at the corners of the unit square, and that g1(θ1, θ2) = g2(θ1, θ2) = 0 can
occur only inside the unit square.
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Fig. 1. Various regimes of the generalized solution of problem (8).

Example 1 Consider the system of neutral delay differential equations
(for t ≥ t0 = 0)

ẏ1(t) = c1y3(t) + a11 ẏ1(y1(t)− r1) + a12 ẏ2(y2(t)− r2)
ẏ2(t) = c2y3(t) + a21 ẏ1(y1(t)− r1) + a22 ẏ2(y2(t)− r2)
ẏ3(t) = c3y3(t) + a31 ẏ1(y1(t)− r1) + a32 ẏ2(y2(t)− r2)

(8)

where ci, rj and aij (i = 1, 2, 3, j = 1, 2) are given constants and
the initial conditions are y1(t) = y3(t) = 1 and y2(t) = 0 for t ≤ 0.
For the parameters we choose the values c1 = 1, c2 = 1, c3 = 0,
r1 = 2, r2 = 1 + 6 (1 − e−1/2) ≈ 3.36, and a11 = −4, a12 = −2, a21 =
2, a22 = −4, a31 = −1, a32 = 2.

The generalized solution is plotted in Figure 1 and is analyzed step
by step. We observe that classical, codimension-1 and codimension-2
weak solution regimes alternate in a quite generic way.

Interval [0, t1] with t1 = 1. We have an ordinary differential equa-
tion with (classical) solution given by y1(t) = 1 + t, y2(t) = t,
y3(t) = 1. The time instant t1 is a breaking point (y1(t1) = 2) and
one can check that a classical solution ceases to exist.

Interval [t1, t2] with t2 = 3. We have a codimension-1 weak solu-
tion in the manifold {y ; y1 = r1}. We replace the term ẏ1(y1(t)− r1)
by the new variable 1 − θ1(t) and solve the system (4). This yields
θ1(t) = 1 − 1

4 y3(t) and the solution y1(t) = 2, y2(t) = 1 + 6(1 −
exp(−1

4(t − 1))), and y3(t) = exp(−1
4(t − 1)). A new breaking point

t2 appears when y2(t2) = r2.

Interval [t2, t3] with t3 = 4 + 2 ln(10/3) ≈ 6.41. We have a codi-
mension-2 weak solution in the manifold {y ; y1 = r1, y2 = r2}. We
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replace ẏ1(y1(t)− r1) by 1− θ1(t) and ẏ2(y2(t)− r2) by 1− θ2(t) and
consider the system (6). This gives the conditions θ1(t) = 1− 1

10 y3(t),

θ2(t) = 1− 3
10 y3(t) for the new variables. The solution is then seen to

be y1(t) = r1 = 2, y2(t) = r2 = 1 + 6(1− e−1/2), and y3(t) = e(t−4)/2.
This solution persists till t3 when θ2(t3) = 0 so that it switches to a
codimension-1 weak regime.

Interval [t3, t4] with t4 ≈ 7.34. We have a solution in the codimen-
sion-1 manifold {y ; y1 = r1}. We have θ1(t) = 1

4(6 − y3(t)) and the

differential equations ẏ2(t) = 3
2 y3(t)− 5, ẏ3(t) = −1

4 y3(t) + 5
2 , whose

analytic solutions are not reported for brevity. At t4 we have y2(t4) =
t1+r2 so that a further breaking point appears and the solution enters
into the codimension-2 manifold {y ; y1 = r1, y2 = t1 + r2}, which is
different from the one encountered on the interval [t2, t3].

Interval [t4, t5] with t5 ≈ 7.75. We have again a codimension-2
sliding mode. The component y3(t) increases and at t5 the solution
leaves the manifold {y ; y2 = t1 + r2}.

Interval [t5, t6] with t6 ≈ 8.12. We have a sliding mode in the
manifold {y ; y1 = r1}. The continued increase of y3(t) implies at t6
the condition θ1(t6) = 0, so that the solution leaves the manifold and
enters into a classical regime.

2.1 Connection with Filippov solutions

There is an alternative for defining weak solutions. For the codimension-
2 case we consider the four vector fields

f++(y) = f(y, ẏ+0 , ẏ
+
0 ), f+−(y) = f(y, ẏ+0 , ẏ

−
0 ),

f−+(y) = f(y, ẏ−0 , ẏ
+
0 ), f−−(y) = f(y, ẏ−0 , ẏ

−
0 )

in the manifold defined by α1(y) = 0 and α2(y) = 0. They are the
limit of the vector field in (1) for α1(y)→ 0 and α2(y)→ 0, depending
from which side the limit is taken (for example, f++(y) is obtained
when only values with α1(y) > 0 and α2(y) > 0 are considered).

The approach of Filippov [4] for weak codimension-2 solutions of
(1) consists in searching a function y(t) having its derivative in the
convex combination of the four vector fields, i.e.,

ẏ = λ1f
++(y) + λ2f

+−(y) + λ3f
−+(y) + λ4f

−−(y), (9)

where λ1+λ2+λ3+λ4 = 1 and λj ≥ 0 for all j. There is an ambiguity,
because three parameters among the λj have to be determined to
satisfy the two conditions α′1(y)ẏ = 0 and α′2(y)ẏ = 0, and much
research is devoted to this question, see [2,1].
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In the case where f(y, z1, z2) = a(y) +A1(y)z1 +A2(y)z2 is linear
in (z1, z2) (with a vector function a(y) and matrix functions Aj(y)),
the differential equation (6) can be rewritten as

ẏ = (1− θ1)(1− θ2)f++(y) + (1− θ1)θ2f+−(y)

+ θ1(1− θ2)f−+(y) + θ1θ2f
−−(y),

(10)

and it is seen to be a special case of (9). Among all Filippov solutions
this choice has been advocated in [3]. We remark that for the linear
case, for which the identity

f++(y)− f+−(y)− f−+(y) + f−−(y) = 0

holds, every Filippov vector field can be written in the form (10).

3 Regularized problem

A common approach for solving numerically neutral delay differential
equations is by regularization. There are several possibilities, but we
focus our attention on the regularization via the singularly perturbed
(non-neutral) delay equation

ẏ(t) = z(t)

ε ż(t) = f(y(t), z(α1(y(t))), z(α2(y(t)))) − z(t)
(11)

with y(t) = ϕ(t) and z(t) = ϕ̇(t) for t ≤ 0. Here, ε > 0 is a small
positive parameter. We note that for ε = 0, the problem (11) reduces
to (1) with m = 2. Standard codes for stiff, state-dependent delay
equations (like Radar5 of [5]) can be applied to solve this problem
for ε > 0. For example, solving the regularization of equation (8) with
ε = 10−3 by the code Radar5 yields an excellent approximation
of the solution of Figure 1 without the need of switching between
different differential and differential-algebraic equations.

The solution of (11) is unique also beyond breaking points, and
the functions y(t) and z(t) are everywhere continuous. It is therefore
of interest to study if, for ε → 0, the solution of (11) approximates
a solution of (1) and, in the case of non-uniqueness of the solution
of (1), which of the solutions will be approximated by (11). These
questions have been addressed in [7] for the case of one delay and
for codimension-1 weak solutions. Our aim is to get insight into the
more complicated case of codimension-2 weak solutions.

Until the first breaking point, where αj(y(t)) < 0 for j = 1, 2, so
that z(αj(y(t))) is replaced by ϕ̇(αj(y(t))), we are concerned with a
singularly perturbed ordinary differential equation. It is well-known
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(see for example, [9] or [8, Section VI.3]) that the solution of (11) can
be split into a smooth and a transient part (outer and inner solution)
and that, due to the special dependence on z(t), it is of the form (for
t ≥ 0)

y(t) = y0(t) + εy1(t)− ε(ẏ−0 − ẏ
+
0 ) e−t/ε +O(ε2)

z(t) = z0(t) + (ẏ−0 − ẏ
+
0 ) e−t/ε +O(ε),

(12)

where y0(t) is the solution of (3), z0(t) = ẏ0(t) with z0(0) = ẏ+0 , and
y1(t) is a smooth function satisfying y1(0) = ẏ−0 − ẏ

+
0 .

3.1 Approximation of weak solutions in codimension one

We distinguish the situations, where the solution enters transversally
the manifold {y ; α1(y) = 0} from below (that is from the region
{y ; α1(y) < 0}) and where it enters from above. The first situation
has been studied in [7] and we briefly present the results that are
important for the present work. We then give a formal derivation of
the possible behaviors in the second situation without giving rigorous
error estimates.

From below. Let t1 be a breaking point of (1), for which α1(y0(t1)) =
0 and α2(y0(t1)) < 0. If α′1(y0(t1))ẏ0(t1) > 0, the implicit function
theorem guarantees the existence of a breaking point t1(ε) of (11),
which depends smoothly on ε. For the solution y(t) of (11) we thus
have α1(y(t1(ε))) = 0 and α2(y(t1(ε))) ≤ c < 0 (with c independent
of ε). We denote t∗ = t1(ε) and notice that the transient layer in (12)
is negligible at t = t∗. This implies that y(t∗) = y∗ + εv∗ + O(ε2)
and z(t∗) = z∗+O(ε) with ε-independent vectors y∗, v∗, and z∗. The
condition 0 = α1(y(t1(ε))) = α1(y

∗ + εv∗ +O(ε2)) thus yields

α1(y
∗) = 0, α′1(y

∗) v∗ = 0. (13)

Since there is a jump discontinuity at t1 in z0(t) = ẏ0(t), but none
in the solution (y(t), z(t)) of (11), we must have a transient part
also right after t1(ε). This motivates the ansatz, for t ≥ t1(ε) and
τ = (t− t1(ε))/ε,

y(t) = y0(t) + εy1(t) + ε η̃(τ) +O(ε2)

z(t) = z0(t) + ζ̃(τ) +O(ε),
(14)

where y0(t) is a solution of (3), z0(t) = ẏ0(t), and η̃(τ), ζ̃(τ) are
functions that converge exponentially fast to zero for τ → ∞. To
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achieve uniqueness of the coefficient functions we assume that they
are of the form yj(t) = ỹj(t − t1(ε)), z0(t) = z̃0(t − t1(ε)) with ε-

independent functions ỹj(s), z̃0(s), and η̃(τ), ζ̃(τ). By continuity at
t∗, the coefficient functions of (14) must therefore satisfy y0(t

∗) = y∗,
y1(t

∗) + η̃(0) = v∗, and z0(t
∗) + ζ̃(0) = z∗.

To obtain the equations that define η̃(τ) and ζ̃(τ), we insert the
ansatz (14) into (11), we replace t by t∗ + ετ , and we consider the
ε-independent part. Using dτ

dt = 1
ε , the first relation of (13), and

α1(y(t))

ε
= α′1(y

∗)
(
z0(t

∗) τ + y1(t
∗) + η̃(τ)

)
+O(ε),

yield the differential equations η̃′(τ) = ζ̃(τ) and

ζ̃ ′(τ) = f
(
y∗, ẏ+0 + (ẏ−0 − ẏ

+
0 ) e−α

′
1(y
∗)(z0(t∗) τ+y1(t∗)+η̃(τ)), ϕ̇(α2(y

∗))
)

− (z0(t
∗) + ζ̃(τ)).

For the functions

η(τ) = α′1(y
∗)(z0(t

∗) τ + y1(t
∗) + η̃(τ)),

ζ(τ) = α′1(y
∗)(z0(t

∗) + ζ̃(τ)),
(15)

we thus obtain the two-dimensional dynamical system

η′ = ζ, η(0) = 0,

ζ ′ = − ζ + g(e−η), ζ(0) = α′1(y
∗)z∗,

(16)

where

g(θ) = α′1(y
∗)f
(
y∗, ẏ+0 + θ (ẏ−0 − ẏ

+
0 ), ϕ̇(α2(y

∗))
)

for 0 ≤ θ ≤ 1,

and g(θ) = g(1) for θ ≥ 1. The initial condition η(0) = 0 follows
from (13), and ζ(0) = α′1(y

∗)z∗ = g(1) > 0 is a consequence of the
assumption that the solution of (11) enters transversally the manifold
α1(y) = 0, i.e., d

dtα1(y(t))|t=t∗− > 0 (the subscript of t∗ indicates the

left derivative of the function).
Up to now we do not know whether the smooth part of the solution

(14) corresponds to a classical or to a weak solution. One of the main
results of [7] tells us that one of the following two situations occurs:

(a) if the solution of (16) converges to a stationary point (η, ζ) =
(c, 0) (that is g(e−c) = 0), then the solution (14) of (11) approxi-
mates a codimension-1 weak solution of (4) with θ1(t1) = e−c.

(b) if the solution of (16) behaves like (η, ζ) ≈ (cτ, c) for τ →∞ with
c = g(0) > 0, then the solution of (11) approximates a classical
solution of (1).
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From above. If, at some further breaking point (we denote it again t1)
the solution of (1) enters the manifold from the opposite side, the sit-
uation is slightly different. The argument in ẏ(α1(y(t))) approaches 0
from the right, so that the solution of the regularized problem (11)
has a transient layer already when approaching the manifold. We
again make an ansatz (14), but this time we consider positive and
negative values of τ . Since z0(t) and y1(t) have jump discontinuities
at t = t∗, the same will happen for ζ̃(τ) and η̃(τ) at τ = 0. We also
introduce functions η(τ) and ζ(τ) as in (15), where the left and right
limits have to be taken for z0(t

∗) and y1(t
∗), depending on whether

τ < 0 or τ > 0. These functions are smooth (also for τ = 0) and they
satisfy the differential equation (16).

Until now, we have not yet defined t∗, y∗, and we have not yet fixed
initial values for (16). If the solution of (11) crosses transversally the
manifold, there exists a t1(ε) close to t1 such that α1(y(t1(ε))) = 0.
We then put t∗ = t1(ε) and y∗ = y0(t

∗). It may also happen that the
solution of (11) stays away from the manifold in a O(1)-neighborhood
of t1. In this case we put t∗ = t1 and y∗ = y0(t

∗).
In the “from below” case we have seen that the solution of (16)

behaves like (η, ζ) ≈ (cτ, c) for τ → ∞ with c = g(0), if a classical
solution is approximated by (11). Reversing time, the same reasoning
of [7] shows that in the “from above” case the solution of (16) behaves
like

η(τ) ≈ cτ, ζ(τ) = c for τ → −∞, (17)

where c = g(0) < 0. This condition uniquely determines the solution
of (16) up to a time shift. If t∗ is such that α1(y(t∗)) = 0, then
this shift is fixed by the condition η(0) = 0. This time shift does
not influence the qualitative behavior of the solution. Similar to the
previoius case exactly one of the following two situations occurs:

(a) if the solution of (16) converges to a stationary point (η, ζ) =
(c, 0) (that is g(e−c) = 0), then the solution (14) of (11) approxi-
mates a codimension-1 weak solution of (4) with θ1(t1) = e−c.

(b) if the solution of (16) behaves like (η, ζ) ≈ (cτ, c) for τ →∞ with
c = g(1) < 0, then the solution of (11) approximates a classical
solution of (1) in the region {y ; α1(y) < 0}.

Let us remark that in the “from below” situation the initial val-
ues of the dynamical system (16) could be replaced by (17) with
c = g(1) > 0. Since g(θ) = g(1) for θ ≥ 1, these initial values and
the choice of the time shift imply that ζ(τ) = g(1) for τ ≤ 0 and
η(0) = 0. Consequently, the initial values (17) can be used in both
situations.
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3.2 Approximation of weak solutions in codimension two

At some other breaking point of (1), say t2, it may happen that
the generalized solution (y0(t), z0(t)) of (1) enters (transversally) a
codimension-2 manifold at t2, so that simultaneously α1(y0(t2)) = 0
and α2(y0(t2)) = 0.

A special situation. Assume for the moment that we are in a sliding
mode in {y ; α2(y) = 0, α1(y) < 0} just before t2, and that there
exists a breaking point t2(ε) of (11), for which α1(y(t2(ε))) = 0. From
the analysis over the interval [t1(ε), t2(ε)] (Section 3.1), we obtain
with t∗ = t2(ε) that y(t∗) = y∗ + εv∗ +O(ε2) and z(t∗) = z∗ +O(ε)
with ε-independent vectors y∗, v∗, and z∗. They satisfy

α1(y
∗) = 0, α2(y

∗) = 0, α′1(y
∗) v∗ = 0. (18)

Due to the discontinuity at t2 of the derivative of the solution
of (1), the solution of (11) will have a transient layer also at this
breaking point. Similar as in the previous section we consider the
ansatz, for t ≥ t2(ε) and τ = (t− t2(ε))/ε,

y(t) = y0(t) + εy1(t) + ε η̃(τ) +O(ε2)

z(t) = z0(t) + ζ̃(τ) +O(ε),
(19)

where y0(t) is a solution of (1) in the sense of Definition 1, z0(t) =
ẏ0(t), and η̃(τ), ζ̃(τ) are functions that (ideally) converge exponen-
tially fast to zero for τ → ∞. To achieve uniqueness of the expan-
sion we assume that yj(t) = ỹj(t − t∗), z0(t) = z̃0(t − t∗) with ε-
independent functions ỹj(s) and z̃0(s). By continuity at t∗, the coef-
ficient functions of (19) must satisfy y0(t

∗) = y∗, y1(t
∗) + η̃0(0) = v∗,

z0(t
∗) + ζ̃0(0) = z∗.

The smooth functions y0(t) and z0(t) satisfy the problem (1) for
t ≥ t2(ε). As discussed in Section 2, these functions need not be
unique and it is of interest to study which solution is approximated by
the regularization (11). An analysis, identical to that of Section 3.1,
motivates to consider the scalar functions

ηj(τ) = α′j(y
∗)(z0(t

∗) τ + y1(t
∗) + η̃(τ)),

ζj(τ) = α′j(y
∗)(z0(t

∗) + ζ̃(τ)).
(20)
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To obtain a small defect, when (19) is inserted into (11), these func-
tions have to satisfy the four-dimensional dynamical system

η′1 = ζ1, η1(0) = α′1(y
∗) v∗,

η′2 = ζ2, η2(0) = α′2(y
∗) v∗,

ζ ′1 = − ζ1 + g1(e
−η1 , e−η2), ζ1(0) = α′1(y

∗) z∗,

ζ ′2 = − ζ2 + g2(e
−η1 , e−η2), ζ2(0) = α′2(y

∗) z∗,

(21)

where, on the square 0 ≤ θ1, θ2 ≤ 1,

gj(θ1, θ2) = α′j(y
∗)f
(
y∗, ẏ+0 + θ1(ẏ

−
0 − ẏ

+
0 ), ẏ+0 + θ2(ẏ

−
0 − ẏ

+
0 )
)
,

and gj(θ1, θ2) = gj(min(1, θ1),min(1, θ2)) for other values of θj ≥ 0.
We have encountered these functions already in Section 2, where the
different kinds of solutions of (1) have been discussed. The extension
outside the unit square is due to the fact that only for 0 < θj <
1 the multi-valued expression ẏ(0) has to be replaced by a convex
combination of the right- and left-side derivatives, and for θj > 1
(i.e., ηj < 0 and αj(y(t)) < 0) we are in the classical regime, where
the left-side derivative has to be considered.

Since the breaking point is given by α1(y(t2(ε))) = 0, it follows
from (18) that η1(0) = 0. Our assumption that we enter through a
sliding in {y ; α2(y) = 0} implies that η2(0) > 0 and that θ∗2 = e−η2(0)

is the value θ2(t
∗) of the solution of (5). We have g2(1, θ

∗
2) = 0. The

initial values for the ζ components are ζj(0) = gj(1, θ
∗
2).

To analyze the behavior of the solutions of (21) it is convenient to
introduce the functions θj(τ) = e−ηj(τ), which are closely connected
to the variables of the differential-algebraic equations of Section 2.
The system (21) thus becomes

θ′1 = −θ1 ζ1, θ1(0) = θ∗1,

θ′2 = −θ2 ζ2, θ2(0) = θ∗2,

ζ ′1 = − ζ1 + g1(θ1, θ2), ζ1(0) = g1(θ
∗
1, θ
∗
2),

ζ ′2 = − ζ2 + g2(θ1, θ2), ζ2(0) = g2(θ
∗
1, θ
∗
2),

(22)

where θ∗j = e−η
∗
j with η∗j = α′j(y

∗) v∗.

The general situation. If the solution enters the codimension-2 man-
ifold through the sliding in {y ; α1 = 0, α2 < 0}, we have θ∗2 = 1 and
θ∗1 is some value between 0 and 1. In the exceptional case, where it en-
ters as classical solution in {y ; α1 < 0, α2 < 0} we have θ∗1 = θ∗2 = 1,
and the system (22) with initial values for τ = 0 is still relevant.
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Before we consider further situations we notice that, for the spe-
cial situation discussed before, the initial values in (22) can also be
replaced by

θ1(τ) ≈ e−c1τ , θ2(τ) = θ∗2, ζ1(τ) = c1, ζ2(τ) = 0 for τ → −∞,

where c1 = g1(1, θ
∗
2). Indeed, with a correct definition of the time

shift, we have ζ2(τ) = 0, θ2(τ) = θ∗2 (because of g2(1, θ
∗
2) = 0), and

ζ1(τ) = g1(1, θ
∗
2) for all τ ≤ 0, and also θ1(0) = 1.

From the discussion of the “from above” case in Section 3.1 it is
clear that in the general case we have to consider initial values at −∞.
They are

θj(τ) = θ∗j if sliding along αj(y) = 0

θj(τ) ≈ e−cjτ if no sliding along αj(y) = 0
for τ → −∞.

In the first case the values of θ∗1 and θ∗2 are obtained from the solution
at t2 of the differential-algebraic system (4) and (5), respectively. For
the second case we put θ∗j = 0 if the solution enters from above
(αj(y) > 0) and θ∗j = 1 if it enters from below (αj(y) < 0). The value
of cj is cj = gj(θ

∗
1, θ
∗
2)

We notice that the pair (θ∗1, θ
∗
2) lies on the border of the unit

square. It informs us from where the solution (y0(t), z0(t)) of (1)
enters the codimension-2 manifold at t = t2. In the exceptional case,
where (θ∗1, θ

∗
2) is a corner of the square, it enters as a classical solution,

otherwise through a codimension-1 sliding.

Properties of the flow of (22)

(F1) The solution stays in the region θ1 > 0, θ2 > 0 for all τ ≥ 0.
(F2) Above the surface ζ1 = g1(θ1, θ2) the flow is directed down-

wards, i.e., ζ1(τ) is monotonically decreasing; below this surface
it is directed upwards; an analogous property holds true for ζ2(τ).
This implies that the functions ζ1(τ) and ζ2(τ) are bounded as
follows:

min
0≤θ1,θ2≤1

gj(θ1, θ2) ≤ ζj(τ) ≤ max
0≤θ1,θ2≤1

gj(θ1, θ2).

(F3) In the region ζ1 > 0 the solution component θ1(τ) is mono-
tonically decreasing; it is monotonically increasing in the region
ζ1 < 0; an analogous property holds for θ2(τ). This, however, does
not imply the boundedness of the functions θ1(τ) and θ2(τ).
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(F4) For large values of θj we consider the transformation νj = 1/θj .
The differential equation for θj in (22) thus turns into ν ′j = νjζj .
For example, in the region θ2 > 1, where gj(θ1, θ2) = gj(θ1, 1), the
differential equation (22) becomes

θ′1 = −θ1 ζ1, ζ ′1 = − ζ1 + g1(θ1, 1),

ν ′2 = ν2 ζ2, ζ ′2 = − ζ2 + g2(θ1, 1).
(23)

We say that (θ1, θ2 =∞, ζ1 = g1(θ1, 1), ζ2 = g2(θ1, 1)) is a station-
ary point of (22), if (θ1, ν2 = 0, ζ1 = g1(θ1, 1), ζ2 = g2(θ1, 1)) is a
stationary point of (23). A similar modification has to be done in
the region θ1 > 1 and in the intersection of both regions.

Stationary points of (22)

(A1) θ1 = 0, θ2 = 0, ζ1 = g1(0, 0), ζ2 = g2(0, 0),
(A2) θ1 = 0, θ2 =∞, ζ1 = g1(0, 1), ζ2 = g2(0, 1),
(A3) θ1 =∞, θ2 = 0, ζ1 = g1(1, 0), ζ2 = g2(1, 0),
(A4) θ1 =∞, θ2 =∞, ζ1 = g1(1, 1), ζ2 = g2(1, 1),
(B1) θ2 = 0, ζ1 = 0, θ1 satisfies g1(θ1, 0) = 0, and ζ2 = g2(θ1, 0),
(B2) θ1 = 0, ζ2 = 0, θ2 satisfies g2(0, θ2) = 0, and ζ1 = g1(0, θ2),
(B3) θ2 =∞, ζ1 = 0, θ1 satisfies g1(θ1, 1) = 0, and ζ2 = g2(θ1, 1),
(B4) θ1 =∞, ζ2 = 0, θ2 satisfies g2(1, θ2) = 0, and ζ1 = g1(1, θ2),
(C1) ζ1 = 0, ζ2 = 0, θ1, θ2 satisfy g1(θ1, θ2) = 0, g2(θ1, θ2) = 0.

The following theorem shows how the solution of the 4-dimen-
sional dynamical system (22) characterizes which generalized solution
of (1) is approximated by the solution of (11) when ε → 0. We still
consider only generic situations as defined in the footnote of Section 2.

Theorem 1 If the solution of (22) converges to one of the stationary
points (A1)-(A4), then the regularized solution of (11) approximates
the corresponding classical solution among (a1)-(a4) of Section 2.

If it converges to one of the stationary points (B1)-(B4), then the
regularized solution of (11) approximates the corresponding codimen-
sion-1 weak solution among (b1)-(b4) of Section 2.

If is converges to the stationary point (C1), then the regularized
solution of (11) approximates a codimension-2 weak solution (c1).

Proof Consider the solution of (11) for t ≥ t2(ε), represented by
the truncated asymptotic expansion (19). After a transient phase of
length O(ε) the solution of the dynamical system (22) will be close to
a stationary point. We give here a formal discussion for the different
cases. Rigorous error estimates can be obtained in the same way as
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for the codimension-1 situation, which has been treated in detail in
the article [7].

For the case (A2) we have θ1(τ)→ 0 and θ2(τ)→ +∞ for τ →∞,
so that η1(τ) → +∞ and η2(τ) → −∞. Since the function η̃(τ)
of (19) is assumed to converge to zero, it follows from (20) that
α′1(y

∗) z0(t
∗) > 0 and α′2(y

∗) z0(t
∗) < 0. Because of z0(t) = ẏ0(t),

this implies that the solution y0(t) of (1) enters the region R+− =
{y ; α1(y) > 0, α2(y) < 0}, and the solution of (11) approximates the
classical solution of type (a2), see Section 2. The cases (A1), (A3),
and (A4) are treated in the same way.

For the case (B1) we have θ2(τ) → 0 and θ1(τ) → e−c < 1, so
that η2(τ)→ +∞ and η1(τ)→ c > 0. This time, it follows from (20)
that α′2(y

∗) z0(t
∗) > 0 and α′1(y

∗) z0(t
∗) = 0. Moreover, the relation

g1(e
−c, 0) = 0 implies that y0(t) is a solution of (4) with θ1(t

∗) =
e−c. Consequently, the solution of (11) approximates a codimension-1
weak solution of type (b1). The cases (B2)-(B4) and (C1) are treated
similarly. ut

3.3 Extension to weak solutions in manifolds of higher codimension

All that is said until now permits a straight-forward extension to
the situation of more than two delayed arguments, which then can
lead to weak solutions in manifolds of codimension higher than 2.
The definition of weak solutions is again via systems of differental-
algebraic delay equations.

For the study of the solution of the regularized problem (11), ex-
tended to the case m > 2, we again use the technique of asymptotic
expansions. If at some breaking point tr the solution enters transver-
sally a codimension-r manifold (with r ≥ 3), then the above analy-
sis will lead to a 2r-dimensional dynamical system for the variables
θj , ζj , j = 1, . . . , r. Its stationary points can readily be computed, and
an extension of the statement of Theorem 1 is still true. The study of
asymptotic stability of the stationary solutions is more involved when
r becomes large. The following investigation is therefore restricted to
the case r ≤ 2.

3.4 Stability analysis of stationary points of (22)

The Jacobian matrix of the vector field in (22) is given by
−ζ1 0 −θ1 0

0 −ζ2 0 −θ2
∂1g1(θ1, θ2) ∂2g1(θ1, θ2) −1 0
∂1g2(θ1, θ2) ∂2g2(θ1, θ2) 0 −1

 . (24)



Regularization of neutral delay differential equations with several delays 17

If the equation θ′j = −θjζj is replaced by ν ′j = νjζj for an investigation
close to θj = ∞ (see (F4)), then the corresponding row has to be
modified: −ζj has to be replaced by ζj , and −θj by νj . For example,
in the region θ2 > 1, where instead of (22) the transformed differential
equation (23) has to be considered, the Jacobian matrix is

−ζ1 0 −θ1 0
0 ζ2 0 ν2

∂1g1(θ1, 1) 0 −1 0
∂1g2(θ1, 1) 0 0 −1

 . (25)

A similar modification is necessary in the region θ1 > 1 and in the
intersection of both regions.

Asymptotic stability of stationary points (A1)-(C1) of (22). The eigen-
values of the Jacobian are

(A1) −1, −1, −g1(0, 0), −g2(0, 0);
they are negative if g1(0, 0) > 0 and g2(0, 0) > 0;

(A2) −1, −1, −g1(0, 1), g2(0, 1);
they are negative if g1(0, 1) > 0 and g2(0, 1) < 0;

(A3) −1, −1, g1(1, 0), −g2(1, 0);
they are negative if g1(1, 0) < 0 and g2(1, 0) > 0;

(A4) −1, −1, g1(1, 1), g2(1, 1);
they are negative if g1(1, 1) < 0 and g2(1, 1) < 0;

(B1) −1,−g2(θ1, 0), and the roots of the equation λ2+λ+θ1 ∂1g1(θ1, 0);
they have negative real part if g2(θ1, 0) > 0 and ∂1g1(θ1, 0) > 0;

(B2) −1,−g1(0, θ2), and the roots of the equation λ2+λ+θ2 ∂2g2(0, θ2);
they have negative real part if g1(0, θ2) > 0 and ∂2g2(0, θ2) > 0;

(B3) −1, g2(θ1, 1), and the roots of the equation λ2+λ+θ1 ∂1g1(θ1, 1);
they have negative real part if g2(θ1, 1) < 0 and ∂1g1(θ1, 1) > 0.

(B4) −1, g1(1, θ2), and the roots of the equation λ2+λ+θ2 ∂2g2(1, θ2);
they have negative real part if g1(1, θ2) < 0 and ∂2g2(1, θ2) > 0;

(C1) With the matrices

Θ =

(
θ1 0
0 θ2

)
, G =

(
∂1g1(θ1, θ2) ∂2g1(θ1, θ2)
∂1g2(θ1, θ2) ∂2g2(θ1, θ2)

)
(26)

the characteristic equation for the matrix (24) becomes

det(ΘG− µ I) = 0, µ = −λ(1 + λ). (27)

This shows that the eigenvalues λ of (24) are in the negative half-
plane if and only if the eigenvalues µ of ΘG lie in the parabolic
region

{µ ; −<µ+ (=µ)2 < 0}. (28)
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This condition is satisfied if and only if

det(ΘG) > 0, trace(ΘG) > 0,

det(ΘG) <
trace(ΘG)

2

(
1 +

trace(ΘG)

2

)
.

(29)

Even in the linear case, where f(y, z1, z2) = a(y) + A1(y)z1 +
A2(y)z2, it may happen that all stationary points are unstable. This
is undesirable for numerical reasons, because the solution y(t) of the
regularized problem will have high frequency oscillations of size O(ε).

However, we shall prove that in the case, where all stationary
points (A1)-(A4) and (B1)-(B4) are unstable, we have det(ΘG) > 0,
and we give sufficient conditions that also trace(ΘG) > 0. In Section 4
below we shall present a stabilization technique for the case that only
the last condition of (29) is violated.

Proposition 1 Consider the situation, where a unique stationary
point of type (C1) exists, and where g(θ1, θ2) is an affine map on the
square 0 ≤ θ1, θ2 ≤ 1. Assume that all equilibria of types (A1)-(A4)
and (B1)-(B4) are unstable solutions of the system (22). Then, the
matrix G of (26) satisfies detG > 0.

The manifolds, given by α1(y) = 0 and α2(y) = 0, divide the space
into four orthants. We denote R++ = {y ; α1(y) > 0, α2(y) > 0}, and
simlarly R−+,R−−,R+− for other choices of the signs.

Proposition 2 Let the assumptions of Proposition 1 hold. Assume
further that there exist two neighboring orthants such that in each
of them there is a solution of (1), which enters the codimension-2
manifold without any codimension-1 sliding phase. Then, the matrix
G of (26) has positive diagonal elements and we have trace(ΘG) > 0.

The proofs of these two propositions, which are technical, are post-
poned to Section 5.

Example 2 Consider the system of neutral delay equations

ẏ1(t) = c1 + a11 ẏ1(y1(t)− 1) + a12 ẏ2(y2(t)− 1),

ẏ2(t) = c2 + a21 ẏ1(y1(t)− 1) + a22 ẏ2(y2(t)− 1),
(30)

which is the same as (8) with c3 = a31 = a32 = 0, and r1 = r2 =
1. We assume constant initial functions y1(t) = ϕ1, y2(t) = ϕ2 for
t ≤ 0. For the parameters we choose the three sets of values, given
in Table 1. The solution is y1(t) = ϕ1 + c1 t, y2(t) = ϕ2 + c2 t until
the first breaking point, which is at t1 = (1 − ϕ2)/c2 for the chosen
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problem c1 c2 a11 a12 a21 a22 ϕ1 ϕ2 θ1 θ2

(P1) 1/2 1/2 −4 2 −2 −4 0 1/2 7/10 9/10

(P2) 2 2 −4 2 −2 −4 0 1/2 7/10 9/10

(P3) 2 1/4 1 −24 1/4 −4 0 9/10 1/2 1/2

Table 1. Parameters for the delay equation of Example 2.

parameters. After this point we have a codimension-1 sliding in the
manifold {y ; y2 = 1} until the second breaking point, which is at
t2 = t1 + (1− y1(t1))/γ with γ = (c1a22− c2a12)/a22. We then have a
codimenion-2 sliding in the manifold {y ; y1 = 1, y2 = 1} for all three
cases.

For the study of the regularization we compute the functions

g1(θ1, θ2) = c1 + a11c1(1− θ1) + a12c2(1− θ2),
g2(θ1, θ2) = c2 + a21c1(1− θ1) + a22c2(1− θ2).

One can check that for all three problems none of the stationary
points of cases (A1)-(A4) and (B1)-(B4) in the previous stability
analysis is stable. The stationary point (C1) is obtained as the solu-
tion of g1(θ1, θ2) = g2(θ1, θ2) = 0. It is given by

θ1 = 1 +
c2(c1a22 − c2a12)

detG
,

θ2 = 1 +
c1(c2a11 − c1a21)

detG
,

G = −
(
a11c1 a12c2
a21c1 a22c2

)
,

and it is indicated as a small circle in Figure 2. The initial value for
the system (22) is indicated as a black dot (it corresponds to the
values θ∗1 = 1 and θ∗2 = 0.75).

For problem (P1) the eigenvalues of the matrix ΘG are µ12 =
(16 ± i

√
59)/10. They lie in the parabolic region (28) which implies

that the stationary point (C1) of (22) is asymptotically stable. This
corresponds to the left pictures in Figure 2, where the projection of
the solution of (22) onto the (η1, ζ1) and (η2, ζ2) planes (note that
θj = e−ηj ) are drawn.

For problem (P2) the eigenvalues of ΘG are µ12 = 2(16± i
√

59)/5.
We have det(ΘG) > 0 and trace(ΘG) > 0, but the eigenvalues lie
outside the parabolic region (28). The stationary point (C1) is thus
unstable, which can be observed in the middle pictures of Figure 2.

For problem (P3) we have det(ΘG) > 0 (by Proposition 1), but
for this choice of parameters trace(ΘG) < 0. The stationary point
(C1) is unstable as can be seen in the right pictures of Figure 2.
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Fig. 2. Solution of (22) for problems (P1), (P2), (P3) of Example 2

Since the solution of the regularized problem beyond the second
breaking point t2(ε) ≈ t2 +O(ε) satisfies (19), the above figures give
a good impression of the solution. In particular, for problem (P1)
the solution has two additional breaking points (where the function
η2(τ) crosses the vertical axis) in the left lower picture of Figure 2,
then it converges rapidly to a stationary solution. For problems (P2)
and (P3) the behavior is completely different. The solution oscillates
around an unstable stationary point, and it has many breaking points
for which the distance between two of them is of size O(ε).

Example 3 We consider again the neutral delay equation (30), but
this time with parameters ϕ1 = 0, ϕ2 = 1/2, c1 = 1/2, c2 = 1/2,
a12 = −2, a21 = 3, a22 = −3, and a11 is for the moment not speci-
fied. As in Example 2 the solution enters the codimension-2 manifold
through a sliding along M2 = {y ; α2(y) = 0} (see right picture of
Figure 3). The interest of this example is that for certain parameters
the solution then bifurcates into three solutions. We have

– a classical solution of type (a1) if a11 > 1,
– a codimension-1 weak solution of type (b1) if 1 < a11 < 3/2,
– a codimension-2 weak solution (c1) if a11 < 3/2.

The dynamical system (22) determines which of these solutions is ap-
proximated by the regularized equation (11). The stationary point,
which corresponds to (a1), is asymptotically stable. The one corre-
sponding to (b1) is unstable because ∂1g1(θ1, 0) < 0 for a11 > 0. For
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Fig. 3. Problem of Example 3: solution of (22) (left and middle), solutions in the
(y1, y2)-space together with the vector fields in the four orthants (right).

the stationary point corresponding to (c1) we have det(ΘG) > 0 for
a11 < 2 and trace(ΘG) > 0 for a11 < (11−

√
13)/6 ≈ 1.23. The third

condition of (29) is not satisfied for a11 ∈ (1, 3/2). In Figure 3 the
stationary points for (a1), (b1), and (c1) are represented by a circle,
a triangle, and a square, respectively.

One could expect that the solution of (11) approximates the clas-
sical solution (a1). However, it turns out that for values of a11 that
are close to 1 (see the left pictures of Figure 3) the solution of
(22) approaches a limit cycle turning around the stationary point
for (c1). This implies that the solution of (11) oscillates around the
codimension-2 weak solution with a period of size O(ε). Only for
values of a11 close to 1.5 (see the middle pictures of Figure 3), the
solution of (22) converges to the stationary point corresponding to
(a1), so that the classical solution is approximated by (11).

4 Stabilizing regularization

For problem (P1) of Example 2, where the transient components are
rapidly damped out, we are concerned with a smooth solution soon
after the first breaking point. The regularized problem (11) can there-
fore be solved very efficiently with stiff integrators such as Radar5
(see [5,6]).

However, for problem (P2), the solution is highly oscillatory (fre-
quency proportional to ε−1) with amplitude of size O(ε) for the y-
component and of size O(1) for the z-component. It has many break-
ing points in distances of the order of ε. Every numerical integrator
will take step sizes proportional to ε, and it is extremely expensive to
obtain an accurate approximation of (1) with the help of (11). Taking
a smaller ε does not improve the situation, because the solution of



22 N. Guglielmi, E. Hairer

the system (22) is independent of ε. As a remedy we propose the fol-
lowing algorithm, if there are undamped oscillations after a breaking
point t2(ε) of (11).

Algorithm 1 (stabilizing regularization) Integrate the regular-
ized system (11) with a fixed small ε > 0 until the breaking point
t2(ε), and then replace ε with κε, where κ < 1 is suitably chosen.

The solution, obtained with this algorithm, can also be written
in the form (19), and the same analysis can be performed as in Sec-
tion 3.2. Here, the transient functions η̃(τ) and ζ̃(τ) are obtained
from the dynamical system, where the only difference to (21) is that
the factor κ has to be added in front of ζ ′1 and ζ ′2. With the variables
θj = e−ηj this system becomes

θ′1 = −θ1 ζ1, θ1(0) = θ∗1,

θ′2 = −θ2 ζ2, θ2(0) = θ∗2,

κ ζ ′1 = − ζ1 + g1(θ1, θ2), ζ1(0) = g1(θ
∗
1, θ
∗
2),

κ ζ ′2 = − ζ2 + g2(θ1, θ2), ζ2(0) = g2(θ
∗
1, θ
∗
2),

(31)

with the same initial values as in (22). Stationary points are not
changed. For a stability analysis we have to consider the matrix,
where the 3rd and 4th rows of (24) are divided by κ. This leads to
a characteristic equation of the form (27) with µ replaced by µ =
−λ(1 + κλ). Consequently, the parabilic region (28) is enlarged to

{µ ; −<µ+ κ (=µ)2 < 0}, (32)

and the stationary point (C1) is asymptotically stable if the eigen-
values µ of ΘG are in (32). We thus have proved the following result.

Proposition 3 Assume that the problem (1) admits a stationary
point (C1), for which the first two conditions of (29) are satisfied,
but the third one is not. Then there exists 0 < κ∗ < 1 such that for
all 0 < κ < κ∗ the stationary point (C1) is an asymptotically stable
solution of (31). ut

In the situation of problem (P2) of Example 2, we put κ = 1/3.
The solution of the system (31) is plotted in Figure 4. In contrast
to the situation in Figure 2 (look at the pictures corresponding to
(P2)), the solution converges rapidly to the stationary point (C1),
which implies a fast damping of transient components and an im-
mense reduction of breaking points. Figure 5 shows the solution after
the breaking point t2(ε). The left picture is without stabilization. We
have high oscillations and many breaking points, which is in perfect
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Fig. 4. Solution of the system (31) for problem (P2) of Example 2 with κ = 1/3.

.42 .43 .44

.999

1.000

1.001

.42 .43 .44

y1(t)

y2(t)

y1(t)

y2(t)

Fig. 5. Solution of the regularization of problem (P2) of Example 2 on the interval
0.4130 ≤ t ≤ 0.4499; regularization parameter is ε = 10−3; without stabilization
(left picture), with stabilization parameter κ = 1/3 (right picture).

agreement with the pictures (in the middle) of Figure 2. The right
picture of Figure 5 shows the result of Algorithm 1 with stabilization
parameter κ = 1/3. Again a perfect agreement can be seen with the
prediction of Figure 4. Whereas the breaking point t2(ε) is given by
y1(t2(ε)) = 0, we see that the other component y2(t) gives rise to 4
additional breaking points that are O(ε)-close to t2(ε). This corre-
sponds to the four time instants, where the curve in the right picture
of Figure 4 crosses the imaginary axis.

Problem (P3) of Example 2 has been chosen such that all sta-
tionary points (A1)-(A4) and (B1)-(B4) are unstable, and that the
condition trace(ΘG) > 0 of (29) for the stability of (C1) is violated.
The parameter κ in Algorithm 1 does not influence this condition.
Therefore, it cannot have a stabilizing effect for this problem.

5 Appendix: proof of Propositions 1 and 2

Proposition 3 is a motivation for studying situations, where the first
two conditions of (29) are satisfied, so that Algorithm 1 can be suc-
cessfully applied.

Proof of Proposition 1. We assume that gj(θ1, θ2) are affine functions
for j = 1, 2, and that the two lines gj(θ1, θ2) = 0 intersect at some



24 N. Guglielmi, E. Hairer

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

θ∗1

−

− +

+

θ∗1

−

+ +

+

θ∗2
−

+ +

−
θ∗2

+

+ +

−

Fig. 6. Sign patterns of g1(θ1, θ2) at the corners of the unit square together with
the lines g1(θ1, θ2) = 0 (black) and g2(θ1, θ2) = 0 (grey).

point (θ1, θ2) ∈ (0, 1) × (0, 1). In a graphical representation we use
the convention that an arrow along the line gj(θ1, θ2) = 0 is such
that gj(θ1, θ2) > 0 on the left hand side and gj(θ1, θ2) < 0 on the
right-hand side. In Figure 6 the black arrow represents g1(θ1, θ2) = 0,
and the grey arrow represents g2(θ1, θ2) = 0.

The gradient of gj(θ1, θ2) is obtained by a rotation of 90◦ (in
the positive sense) of the arrow representing gj(θ1, θ2) = 0. Since
the row vectors of the matrix G are the gradients of the functions
gj(θ1, θ2), the condition detG > 0 is satisfied if and only if the arrow
for g2(θ1, θ2) = 0 points into the region g1(θ1, θ2) > 0.

For the proof of Proposition 1 we consider all possible sign-patterns
of (g1(θ1, θ2), g2(θ1, θ2)) at the corners of the unit square. Theoret-
ically we have 44 = 256 of such patterns, if we do not exclude
patterns for which an intersection inside the square does not exist.
This number can be drastically reduced by exploiting symmetries
in the problem. We consider involutions that transform the mapping
(g1(θ1, θ2), g2(θ1, θ2)) into one of the following mappings (or into com-
positions of them):

−g1(1− θ1, θ2)
g2(1− θ1, θ2),

g1(θ1, 1− θ2)
−g2(θ1, 1− θ2),

g2(θ2, θ1)
g1(θ2, θ1).

(33)

These involutions have the property that, whenever all equilibria of
types (A1)-(A4) and (B1)-(B4) are unstable solutions of the sys-
tem (22) for (g1(θ1, θ2), g2(θ1, θ2)), the same is true for the trans-
formed mappings. Moreover, they leave the sign of detG invariant.
These involutions thus introduce equivalence classes, and it is suffi-
cient to prove the statement of Proposition 1 only for one represen-
tative out of each equivalence class.

As a consequence, the number of signs “+” for the function g1 at
the four corners of the unit square can be restricted to 2 and 3 (4 is
not possible because of the existence of a stationary point (C1) and 1
is equivalent to 3 by means of the first mapping in (33)). Similarly,
by the second mapping in (33)), the number of signs “+” for the



Regularization of neutral delay differential equations with several delays 25

function g2 at the four corners can also be restricted to 2 and 3. The
instability of the stationary point (A4) implies that either g1(1, 1) > 0
or g2(1, 1) > 0. As a consequence of the third symmetry in (33) we
can further assume that g1(1, 1) > 0. There remain four cases to be
analyzed (see Figure 6). We indicate every case by a 4-tuple sp of
signs of g1(θ1, θ2) at the four corners (0, 0), (0, 1), (1, 1), (1, 0).

sp = (−,±,+,+): There exists θ∗1 ∈ (0, 1) such that g1(θ
∗
1, 0) =

0 (the first two cases of Figure 6). The assumed instability of the
stationary point (B1) implies that g2(θ

∗
1, 0) < 0. Consequently, the

arrow for g2(θ1, θ2) = 0 points into the region g1(θ1, θ2) > 0 and we
have detG > 0.

sp = (±; +; +; −): By the assumed instability of (A3) we have
g2(1, 0) < 0. If the arrow for g2(θ1, θ2) = 0 would point into the
region g1(θ1, θ2) < 0, then there exists θ∗2 such that g2(1, θ

∗
2) = 0 and

g1(1, θ
∗
2) < 0 (third and fourth pictures of Figure 6). This contradicts

the instability of (B4) and proves detG > 0. ut

In the above proof we did not exploit the fact that gj(θ1, θ2) are
affine functions. If gj(θ1, θ2) 6= 0 on the corners of the unit square, if
the curves defined by gj(θ1, θ2) = 0 intersect the border of the unit
square at exactly two points and at most once at every edge, and if
there is exactly one stationary point of type (C1) at which the matrix
G is invertible, then all arguments of the above proof can be applied
to the nonlinear situation and Proposition 1 still holds.

Proof of Proposition 2. The property that the diagonal elements of
the matrix G are positive is invariant with respect to the transforma-
tions given by (33). It is therefore sufficient to prove the statement
for the four cases considered in the proof of Proposition 1.

Let us first study under which condition a classical solution of (1)
can enter the codimension-2 manifold without any codimension-1 slid-
ing. By reversing time in the discussion of the existence of classical
solutions after a breaking point in a codimension-2 manifold (see (a1)-
(a4) of Section 2), we find that a solution can enter the codimension-2
manifold within an orthant (without codimension-1 sliding) only if

g1(0, 0) < 0, g2(0, 0) < 0 for entering within R++,
g1(0, 1) < 0, g2(0, 1) > 0 for entering within R+−,
g1(1, 1) > 0, g2(1, 1) > 0 for entering within R−−,
g1(1, 0) > 0, g2(1, 0) < 0 for entering within R−+.

(34)

We now distinguish the four situations of Figure 6.
sp = (−,−,+,+): The signs of g1(0, 0) and g1(1, 0) imply that

∂1g1 > 0. If condition (34) holds either for the neighboring orthants
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R++,R+− or for R−−,R−+, then the sign pattern implies ∂2g2 > 0.
If it holds for R+−,R−−, then g2(θ

∗
1, 1) > 0 for θ∗1 of the proof of

Proposition 1 and we also have ∂2g2 > 0. For the remaining case
R−+,R++ we consider the point where g1(θ

∗∗
1 , 1) = 0 and g2(θ

∗∗
1 , 1) >

0 and conclude ∂2g2 > 0 also in this case.
sp = (−,+,+,+): As before we have ∂1g1 > 0. In this case

the condition (34) is violated for R+−. From the assumed instabil-
ity of (A2) we have g2(0, 1) > 0. If the condition (34) is satisfied
for R−+,R++, we have g2(0, 1) − g2(0, 0) > 0. If it is satisfied for
R−−,R−+ have g2(1, 1)− g2(1, 0) > 0. We thus have ∂2g2 > 0 in all
situations.

sp = (±,+,+,−): In these two cases the condition (34) is vio-
lated for R+− as well as for R−+. There are no neighboring orthants
satisfying (34), so that nothing has to be proved. ut
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