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Abstract

Radau IIA methods are successful algorithms for the numerical solution of sti� di�erential

equations. This article describes RADAU, a new implementation of these methods with a

variable order strategy. The paper starts with a survey on the historical development of the

methods and the discoveries of their theoretical properties. Numerical experiments illustrate

the behaviour of the code.

The methods described in this paper emerged around 1969 as the fruit of two independent

developments, on the one side the study of sti� di�erential equations principally in the light of

multistep methods, and on the other side the theory of implicit Runge-Kutta methods. This

is outlined in the �rst two sections of this paper. Sections 3 and 4 collect properties of the

Radau IIA methods and the last two sections are devoted to their implementation and to a new

order selection strategy for implicit Runge-Kutta methods. Several numerical experiments are

presented.

1 Sti� Equations and Stability Analysis

Sti� problems are characterized by the fact that the numerical solution of slow smooth move-

ments is considerably perturbed by nearby rapid solutions. A typical example is the equation

y

0

= �50(y � cos x): (1)

Its solution curves are shown in Fig. 1. We see that the `smooth' solution close to y � cos x

is reached by all other solutions after a rapid `transient phase'. The three �gures present, in

addition, for the initial value y

0

= 0:15, the numerical solutions for the explicit Euler method

(left), the implicit midpoint rule (middle, where else?), and the implicit Euler method (right).

The chosen step size for the explicit Euler method is tightly below the stability boundary.

With larger step sizes, this method would overshoot the solution and produce serious numerical

instability. The two other methods are stable for all h, but do not possess the same smoothing

property.

First Sti� Problems. Sti� di�erential equations appeared half a century ago scattered here

and there in the literature, and some ten years later one could say, in the words of G. Dahlquist,
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2 Stiff differential equations and Radau methods
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Figure 1: Solution curves of (1) with explicit Euler, implicit midpoint rule, and implicit Euler

solution
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Figure 2: Explicit Euler (left), trapezoidal rule (middle), implicit Euler (right)

that \around 1960 : : : everyone became aware that the world was full of sti� problems" [HW96,

p. 2].

The famous paper by Crank & Nicolson [CN47] treated a heat equation problem with nonlin-

ear internal heat generation. For a numerical treatment, this problem is then reduced to a set of

ordinary di�erential equations by \replacing the space derivative". This procedure, attributed

by Crank & Nicolson to D.R.Hartree and named \method II", is today known as \method of

lines". If we omit the nonlinear term, the equation is

@�

@t

=

@

2

�

@x

2

and becomes, after partial

discretization, the system

�

0

i

=

1

�x

2

�

�

i+1

� 2�

i

+ �

i�1

�

(�

0

= �

n+1

= 0; (n + 1)�x = 1). It can be treated by the trapezoidal rule (as did Crank &

Nicolson), or with the explicit or implicit Euler method. The results are shown in Fig. 2 and

show precisely the same phenomena as for problem (1).
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The �rst appearence of the term \sti�" is in the paper by Curtiss & Hirschfelder [CH52]

on problems in chemical kinetics. Without giving a precise de�nition, they call a di�erential

equation sti�, if the implicit Euler method performs much better than the explicit Euler method.

They discuss the concept of sti�ness by considering the equation

dy

dx

= [y �G(x)]=a(x; y):

\If �x is the desired resolution of x or the interval which will be used in the numerical integration,

the equation is `sti�' if

�

�

�

a(x; y)

�x

�

�

�

� 1

and G(x) is well behaved." Equation (1) above is just a special case of such an equation. The

article by Curtiss & Hirschfelder is also famous because it introduces the backward di�erentiation

formulas (BDF). Today's readers of this classical paper are often surprised by the fact that

Curtiss & Hirschfelder were thinking of equations with positive a(x; y), thus were seeking stable

numerical solutions of unstable problems.

1 2 3 4 5

1

2

3

Figure 3: Example of Fox & Goodwin [FG49], trapezoidal rule, h = 0:2

Another early contribution to sti� di�erential equations is the article by Fox & Goodwin

[FG49]. Hidden as the last section in a paper on various methods for ODEs, the authors

consider the problem

y

0

= �10 y + 6 z; z

0

= 13:5 y � 10 z; (5 � 1)

with exact solution y(x) = 2e(e

�x

+ e

�19x

)=3; z(x) = e(e

�x

� e

�19x

), in order to explain

phenomena of \building-up errors": \For values of x greater than unity the second exponential

term is completely negligible, and it would be expected that the equation (5 � 1) could be

integrated with con�dence at a fairly large interval, say h = 0:2." Fig. 3 presents some solutions

of this equation together with a numerical solution computed by their \Method II", which is

the trapezoidal rule. We again observe precisely the same phenomena as before.

Linear Stability Analysis. The explanation of the behaviours of the errors observed above in

the neighbourhood of a smooth solution of y

0

(x) = f(x; y(x)) is done by linearization and leads

to the so-called variational equation

y

0

= Jy where J � @f=@y (2)

(Rutishauser [Ru52], Dahlquist [Da51]). Other authors [CN47, FG49] were analyzing linear

equations anyway, or Loud [Lo49] started from the beginning with a linear constant-coe�cient

case by saying that \if a numerical method is to be of value in solving general di�erential
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equations, it should be extremely reliable with the simplest types : : :." In higher dimensions,

this equation is then diagonalized and leads to

y

0

= �y; where � represents eigenvalues of J . (3)

This equation is called the \Dahlquist test equation", since Dahlquist stressed its importance

in his famous paper [Da63]. Crank & Nicolson had analyzed the errors in the Fourier modes as

\proposed to the authors by Prof. D.R. Hartree, following a suggestion by Prof. J. von Neumann".

This is equivalent to the foregoing diagonalization, since for the heat equation the Fourier base

functions sink�x coincide with the eigenvectors of J .

The above mentioned numerical methods, when applied to (3), lead to the following ampli-

�cations of the errors

y

m+1

= R(z)y

m

where z = h� (4)

and the so-called \stability function" R(z) is

R(z) = 1 + z (explicit Euler method)

R(z) =

1+z=2

1�z=2

(trapezoidal and implicit midpoit rule)

R(z) =

1

1�z

(implicit Euler method).

(5)

Instability appears if for an eigenvalue � the modulus jR(z)j > 1. This happens for the explicit

Euler method if, in the case of real eigenvalues, z = h� < �2. The other two methods do not

have such a restriction for negative �. Their di�erent smoothing properties are explained by

the fact that lim

z!1

R(z) = �1 for the trapezoidal rule, and lim

z!1

R(z) = 0 for the implicit

Euler method.

A-stability. We quote from [Da63]: \A k-step method is called A-stable, if all its solutions

tend to zero, as n ! 1, when the method is applied with �xed positive h to any di�erential

equation of the form

dx=dt = qx ;

where q is a complex constant with negative real part." This famous de�nition can also be

applied to one-step methods. The method is A-stable if the stability domain

S :=

n

z ; jR(z)j � 1

o

(6)

covers the entire left half plane C

�

.

Immediately after this de�nition Dahlquist writes \In most applications A-stability is not a

necessary property. For certain classes of di�erential equations, however, it would be desirable

to have an A-stable method : : :" and mentions applications in control engineering and chemical

engineering. Dahlquist then proves his famous order barrier (p � 2) for A-stable multistep

methods and discusses the stability for nonlinear problems. Mainly as a consequence of this

severe order barrier, the search for A-stable, high-order methods attracted many numerical

analysts during many years.

2 Early Implicit Runge-Kutta Methods

Radau Quadrature. Rodolphe Radau

1

published in 1880 an extensive memoir [R1880] on

quadrature formulas, with main emphasis, naturally, on Gauss, Lobatto, and Chebyshev meth-

ods. What we now call \Radau formulas", formulas of maximal order with one end point as a

1

born 1835 in Prussia, studied astronomy in K�onigsberg, moved 1858 to Paris, was a highly educated man

(languages, music) and became a very fertile and successful author in astronomy, physics, geodesy, meteorology,

and applied mathematics, died in 1911.
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Figure 4: Facsimile of Radau's formula of order 5 [R1880, p. 303]

prescribed node, occur very briey and incidentally, merely for the sake of completeness. See

in Fig. 4 Radau's publication of \his" formula of order 5 for the interval [�1; 1] with prescribed

node �1. The Radau methods which will be most interesting to us are those with a �xed

right endpoint. In today's notation, the formulas for the interval [0; 1] with s stages have nodes

c

i

(i = 1; : : : ; s), which are zeros of

d

s�1

dx

s�1

�

x

s�1

(x� 1)

s

�

; (7)

and the weights b

i

are determined by the quadrature conditions

s

X

i=1

b

i

c

q�1

i

=

1

q

for q = 1; : : : ; s. (8)

For more details about the old literature on Gaussian quadrature see the contribution by Runge

and Willers in the Enzyklop�adie der Math.Wiss., Bd. 2, Teil 3, erste H�alfte, pp. 49�. There,

it can be seen that not only French (Radau), but also German (Gauss, Jacobi, Christo�el,

Grunert), Dutch (Lobatto) and Russian (A. Markov) mathematicians have their heroes in this

subject.

Runge-Kutta methods. The long story of the extension of quadrature formulas to methods

which solve systems of ordinary di�erential equations

y

0

= f(x; y)

is, for example, outlined in [BW96]. This results in the formulas

Y

i

= y

0

+ h

s

X

j=1

a

ij

f(x

0

+ c

j

h; Y

j

); i = 1; : : : ; s (9)

y

1

= y

0

+ h

s

X

j=1

b

j

f(x

0

+ c

j

h; Y

j

): (10)

Whenever there are non-zero coe�cients a

ij

with i � j, the method is called implicit and relation

(9) constitutes a nonlinear system of equations for the unknowns Y

1

; : : : ; Y

s

. It is interesting to

notice, that Butcher's important publication on implicit Runge-Kutta methods [Bu64] was not

allowed to be published in a \computational" journal, unless an appendix on the solution of

these implicit equations with �xed-point iterations was added. It turned out later that, in the

case of sti� di�erential equations, Newton-type iterations are necessary (Liniger & Willoughby

[LW70], see Sect. 5 below).

The a priori unknown coe�cients a

ij

are determined by the requirement that the expansion

in powers of h of the numerical solution coincides with that of the true solution up to and

including a certain order p. This requirement turns out to be a very complicated set of algebraic

equations. The construction of higher order Runge-Kutta methods became only accessible after
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the discovery (in particular cases by A. Hu

�

ta [Hu56], and in full clarity by J. Butcher [Bu64])

of the so-called \simplifying assumptions"

C(�) :

s

X

j=1

a

ij

c

q�1

j

=

c

q

i

q

; i = 1; : : : ; s; q = 1; : : : ; � ; (11)

D(�) :

s

X

i=1

b

i

c

q�1

i

a

ij

=

b

j

q

(1� c

q

j

); j = 1; : : : ; s; q = 1; : : : ; �: (12)

With the help of these conditions, Butcher was able to construct implicit Runge-Kutta methods

of order p = 2s of arbitrarily high order (Gauss methods). They are generalisations of the

implicit midpoint rule.

Butcher's Radau Methods. Soon after this famous paper, J.C. Butcher [Bu64b] published a

paper on implicit Runge-Kutta methods based on Radau quadrature formulas. These quadra-

tures made it possible to derive Runge-Kutta processes that were not as \terribly" implicit as

the Gauss processes, because the �xed left or right node as endpoint allowed the �rst or last

stage to be explicit. Butcher named his methods which correspond to the �xed right endpoint,

with an explicit last stage, as \II-processes".

3 Radau IIA Methods for Sti� Problems

Stability Analysis for Runge-Kutta Methods. Applying a Runge-Kutta method to

Dahlquist's test equation y

0

= �y gives a numerical approximation y

1

= R(�h)y

0

, where R(z) is

a polynomial in the case of explicit one-step methods, and a rational function in general. It is

called stability function of the method. For the Runge-Kutta method (9)-(10) one obtains

R(z) = 1 + zb

T

(I � zA)

�1

1l; (13)

where b

T

= (b

1

; : : : ; b

s

); A = (a

ij

)

s

i;j=1

; 1l = (1; : : : ; 1)

T

.

The stability functions for the above mentioned Gauss methods were computed by Ehle

[Eh69], who obtained the diagonal Pad�e approximations R

ss

to the exponential function e

z

.

The general formula is R

kj

= P

kj

=Q

kj

where

P

kj

(z) = 1 +

k

j + k

z +

k(k � 1)

(j + k)(j + k � 1)

�

z

2

2!

+ : : :+

k(k � 1) : : : 1

(j + k) : : : (j + 1)

�

z

k

k!

(14)

and Q

kj

(z) = P

jk

(�z). The diagonal approximations were known to be A-stable (Birkho� &

Varga [BV65]), but possess a similar bad damping property as the implicit midpoint rule in

Figures 1, 2, and 3 above.

Still more disappointing were the resulting stability functions for Butcher's Radau II meth-

ods, which led to Pad�e approximations above the diagonal (j = k � 1). These tend to 1 for

z !1 and therefore only have a bounded stability domain.

Ehle [Eh69] (and independently Axelsson [Ax69]) thus undertook the search for other exten-

sions of the Radau formulas, which he named \Radau IIA" methods, by working with equations

(11) and (12) in such a way that the stability functions appear to be below the diagonal so that

lim

z!1

R(z) = 0. The resulting methods of orders 1, 3, and 5 are (for s = 1 the implicit Euler
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Figure 5: Stability domains for RADAU methods of orders 1,5,9,13
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p
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6

1800

�2+3
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6
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p

6
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296+169

p

6

1800

88+7

p

6
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�2�3

p

6
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1

16�

p

6

36

16+

p

6

36

1

9

16�

p

6
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p

6
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1
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(15)

with stability functions R

s�1;s

1

1� z

;

1 +

1

3

z

1�

2

3

z +

1

3

z

2

2!

;

1 +

2

5

z +

1

10

z

2

2!

1�

3

5

z +

3

10

z

2

2!

�

1

10

z

3

3!

: (16)

Their stability regions (for s = 1; 3; 5; 7 and p = 1; 5; 9; 13, respectively) are presented in Fig. 5.

For the proof of their A-stability, one �rst studies the behaviour of jR(iy)j on the imaginary axis.

The condition jR(iy)j

2

� 1 becomes E(y) := jQ(iy)j

2

� jP (iy)j

2

� 0. For methods with k < j

and order � 2s� 2 this polynomial is of the form C

2

y

2s

and stability on the imaginary axis is

clear. Next one inspects the location of the poles, which must be all in C

+

. Then, A-stability

follows from the maximum principle. Ehle (as well as Axelsson) proved this property for all s.

Ehle still proved that the whole second sub-diagonal j = k+2 was A-stable too, and stated the

conjecture that all other Pad�e approximations were not A-stable.

Two later elegant discoveries shed new light on Ehle's methods: the order stars and the

interpretation of these formulas as collocation methods.

Order Stars. The crucial idea is to replace the stability domain (6) by (see [WHN78])

A :=

n

z ; jR(z)j > je

z

j

o

(17)

which compares the stability fuction to the exponential function, i.e., to the true solution (Fig. 6).

With the help of this idea one is able to give an elegant proof for the A-stability of the Gauss

and Radau IIA methods, as well as for Ehle's conjecture.

It came as a surprise that other outstanding problems could be solved too (restricted Pad�e

approximations, multistep methods and the Daniel-Moore conjecture). For details we refer to

[HW96, Sect. IV.4 and V.4].
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RADAU1RADAU1

AA

RADAU5RADAU5

3−3

3

−3

AA

RADAU9RADAU9

5−5

5

−5

AA

RADAU13RADAU13

7−7

7

−7

Figure 6: Order stars for RADAU methods of orders 1,5,9,13

Collocation Methods. Hammer and Hollingsworth [HH55] discovered that the trapezoidal

rule can be interpreted as generated by parabolas \pieced together" in such a way that they

\agree in direction with that indicated by the di�erential equation at two points". These authors

conclude that the extension of this idea \to higher order integration methods is straightforward".

It was then the elegant paper of Wright [Wr70] (see also Guillou & Soul�e [GS69]) who identi�ed

many known classes of implicit Runge-Kutta methods as collocation methods. They are de�ned

in the following way: Search for a polynomial u(x) of degree s, whose derivative coincides at s

given points x

0

+ c

i

h (i = 1; : : : ; s) with the vector �eld of the di�erential equation, i.e.,

u(x

0

) = y

0

(initial value)

u

0

(x

0

+ c

i

h) = f(x

0

+ c

i

h; u(x

0

+ c

i

h)); i = 1; : : : ; s:

The numerical solution after one step is then given by y

1

= u(x

0

+ h). Radau IIA methods are

precisely the collocation methods with the nodes given by (7). Fig. 7 illustrates the collocation

methods of Gauss (order 4) and Radau IIA (order 3) at a nonsti� problem (above), as well as a

sti� problem (below). The fourth order method appears to be better in the nonsti� case only.

The equivalence of collocation methods with Runge-Kutta methods is established by applying

Lagrange's interpolation formula to u

0

(x

0

+ th) with u

0

(x

0

+ c

i

h) = k

i

. Then

a

ij

=

Z

c

i

0

`

j

(t) dt; b

j

=

Z

1

0

`

j

(t) dt (i; j = 1; : : : ; s) where `

j

(t) =

Y

k 6=j

(t� c

k

)

(c

j

� c

k

)

:

These coe�cients satisfy (8) and (11) for q = 1; : : : ; s.

Another interesting consequence of the collocation idea is that an approximation to the

solution is available on the whole interval [x

0

; x

0

+ h] and not only at the endpoint (\dense

output").
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Figure 7: Gauss method, s = 2 (left), Method Radau IIA, s = 2 (right)

B-stability. After the �rst success of the linear stability theory, people started to feel that the

stability analysis based on linearization of the di�erential system which leads to the variational

equation (2) and the subsequent suppression of the dependence of J on x is lacking rigour. It was

�nally Dahlquist [Da75] who found a satisfying frame for handling general nonlinear problems,

and Butcher [Bu75] who transferred these ideas to Runge-Kutta methods. The main idea is the

following: two neighbouring solutions of a nonlinear system are approaching in the Euclidean

norm if

hf(x; y)� f(x; z); y � zi � 0: (18)

The requirement for what is then called B-stability of a method is that then the same property

must also hold for two neighbouring numerical solutions

ky

1

� z

1

k � ky

0

� z

0

k:

Butcher proved, among others, that the Radau IIA methods are B-stable. An elegant derivation

of this property has been found in [Wa76] by using the collocation idea.

For further references on the subsequent very rich development of this theory we refer espe-

cially to [DV84]; see also [BW96, Sect. 7] and [HW96, Chap. IV.12]).

4 Convergence Analysis for Sti� Problems

Convergence proofs for sti� di�erential equations are much more di�cult than for nonsti� prob-

lems. The reason is that the factor exp((x

n

� x

0

)L), which is present in standard convergence
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estimates, is very large so that these estimates become useless (L is a Lipschitz constant of the

problem).

Sti� Accuracy. Prothero & Robinson [PR74] proposed the problem

y

0

= �(y � '(x)) + '

0

(x); y(x

0

) = '(x

0

); <� � 0;

which allows explicit formulas for the local and global errors and provides much new insight.

For �! �1 one can verify that the internal stages of a Runge-Kutta method (with invertible

matrix a

ij

) are very close to the exact solution Y

i

� '(x

0

+c

i

h), but the numerical approximation

y

1

may be far away (see Fig. 7, lower pictures). This suggests to consider methods, for which y

1

is already one of the internal stages, say Y

s

. This means that a

si

= b

i

(all i) and is known as

\sti� accuracy", a property that is satis�ed by Radau IIA methods.

Convergence for Singular Perturbation Problems. An important class of sti� di�erential

equations are of singular perturbation type:

y

0

= f(y; z)

"z

0

= g(y; z)

(19)

where " > 0 is small and the eigenvalues of @g=@z satisfy <� � �1 along the solution. The

problems considered by Fox & Godwin and Curtiss & Hirschfelder (1) as well as (29) and (30)

below are of this type or can be brought to this form.

A typical convergence result is the following [HLR88]: assume that the Runge-Kutta method

is A-stable, is of classical order p, has a nonsingular coe�cient matrix, statis�es jR(1)j < 1,

and has stage order q (condition C(q) of (11)). Then the global error satis�es

y

n

� y(x

n

) = O(h

p

) +O("h

q+1

); z

n

� z(x

n

) = O(h

q+1

): (20)

If in addition a

si

= b

i

for all i, we have

z

n

� z(x

n

) = O(h

p

) +O("h

q

): (21)

For the s-stage Radau IIA methods, for which p = 2s� 1 and q = s, we have (21) and the even

sharper estimate y

n

� y(x

n

) = O(h

2s�1

) +O("

2

h

s

) for the y-component.

B-Convergence. Another type of convergence results can be obtained for sti� di�erential

equations y

0

= f(x; y) satisfying a one-sided Lipschitz condition (compare with (18) above)

hf(x; y)� f(x; z); y � zi � �ky � zk

2

;

where � is of moderate size. The analysis was developed by Frank, Schneid & Ueberhuber

[FSU81, FSU85] and Dekker & Verwer [DV84]. As in the convergence results for singular

perturbation problems, the stage order q plays an important role (see also [HW96, Chap. IV.15]).

Di�erential-Algebraic Equations. In the limit "! 0, the problem (19) becomes a di�eren-

tial equation for y coupled with an algebraic relation:

y

0

= f(y; z)

0 = g(y; z):

(22)

Implicit Runge-Kutta methods can be applied directly to (22) [Pe86]. The idea is to apply

the method to (19) and to consider in the resulting formulas the limit " ! 0. Obviously, the

numerical solution of sti�y accurate methods satis�es exactly the algebraic relation of (22). In

the case that this algebraic relation can be solved for z (index 1), the investigation of convergence
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is easy, and it is an essential ingredient for the convergence results of singular perturbation

problems. If the algebraic relation cannot be solved for z (higher index), the study of the global

error is more complicated [HLR89]. Typically an order reduction takes place, and methods with

high stage order (such as Radau IIA) have favourable convergence properties.

Nonlinear Parabolic Di�erential Equations. The study of Runge-Kutta methods applied

to abstract di�erential equations in a Hilbert space (including parabolic problems) has been

initiated by Crouzeix [Cr75]. For B-stable methods energy estimates can be established which

then allow elegant stability and convergence proofs [LO95]. It is interesting to note that the

so-called \discontinuous Galerkin methods" are, after a suitable discretization of the occuring

integrals, equivalent to the Radau IIA methods [Hu72].

5 Implementation

Runge-Kutta methods have been developed for ordinary di�erential equations y

0

= f(x; y), but

they can easily be adapted to problems of the form

My

0

= f(x; y); (23)

whereM is a constant (possibly singular) matrix. If we formally replace (23) by y

0

=M

�1

f(x; y),

apply the Runge-Kutta method, and then multiply the formulas by M , we obtain the nonlinear

system

M(Y

i

� y

0

) = h

s

X

j=1

a

ij

f(x

0

+ c

j

h; Y

j

) (24)

instead of (9). For sti�y accurate methods (such as the Radau IIA methods) the numerical

solution after one step is given by y

1

= Y

s

.

Remark. More general problems than (23) can be handled by introducing new variables for the

derivatives. For example, the general implicit di�erential equation F (y

0

; y) = 0 is equivalent to

the system

�

I 0

0 0

��

u

0

v

0

�

=

�

v

F (v; u)

�

;

by using the new variables u = y and v = y

0

. The special structure of the right-hand side of

this system can be exploited when solving linear systems. This compensates the doubling of the

dimension of the system.

Solving the Nonlinear Runge-Kutta System. For nonlinear di�erential equations (23) the

system (24) has to be solved iteratively. Newton's method needs for each iteration the solution

of a linear system with matrix

0

B

B

@

M � ha

11

@f

@y

(x

0

+ c

1

h; Y

1

) : : : �ha

1s

@f

@y

(x

0

+ c

s

h; Y

s

)

.

.

.

.

.

.

�ha

s1

@f

@y

(x

0

+ c

1

h; Y

1

) : : : M � ha

ss

@f

@y

(x

0

+ c

s

h; Y

s

)

1

C

C

A

:

In order to simplify this, we replace all Jacobians

@f

@y

(x

0

+ c

i

h; Y

i

) by an approximation J �

@f

@y

(x

0

; y

0

). Then, the simpli�ed Newton iterations for (24) become, in the variables Z

i

:= Y

i

�y

0

,

(I 
M � hA
 J)�Z

k

= : : : ; Z

k+1

= Z

k

+�Z

k

: (25)
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The supervector Z collects the stage values (Z

1

; : : : ; Z

s

) and the upper index in Z

k

indicates the

iteration number. Every iteration requires s evaluations of f and the solution of a n � s-dimen-

sional linear system, where the matrix (I 
M � hA
 J) is the same for all iterations. Its LU -

decomposition would be too costly. Therefore, Butcher [Bu76] and Bickart [Bi77] independently

introduced an algorithm that exploits the special structure of the matrix I 
M � hA 
 J in

(25) and thus reduces considerably the numerical work. The idea is to premultiply (25) by

(hA)

�1


 I (assuming that A is invertible) and to transform A

�1

to a simple matrix (diagonal,

block diagonal, triangular or Jordan canonical form)

T

�1

A

�1

T = �:

With the transformed variables W

k

= (T

�1


 I)Z

k

, the iteration (25) becomes equivalent to

(h

�1

�
M � I 
 J)�W

k

= : : : ; W

k+1

=W

k

+�W

k

; (26)

and the huge linear system is split into s linear systems of dimension n (for complex eigenvalues

of A we have to deal with complex matrices).

Step Size Selection. Due to the superconvergence of the Radau IIA methods (classical order

p = 2s� 1) it is not possible to have an embedded method of order p� 1 without extra cost. By

taking a linear combination of hf(x

0

; y

0

) and the internal stage values Y

1

; : : : ; Y

s

it is however

possible to get an approximation

b

y

1

of order s. The expression err = k(M � h

0

J)

�1

(

b

y

1

� y

1

)k,

where 

0

is chosen such that the LU -factors of M �h

0

J are already available from the solution

of the nonlinear system, can be used for step size selection. The assumption err

n+1

� C

n

h

s+1

n

(error in the nth step) together with C

n+1

� C

n

leads to the standard strategy

h

new

= fac � h

n

�

1

err

n+1

�

1=(s+1)

: (27)

Here the user prescribed tolerance is incorporated in the norm (see [HW96, page 124]).

A more sophisticated step size strategy (predictive controller of Gustafsson [Gu94]) is based

on the assumption C

n+1

=C

n

� C

n

=C

n�1

. It leads to the formula

h

new

= fac � h

n

�

1

err

n+1

�

1=(s+1)

h

n

h

n�1

�

err

n

err

n+1

�

1=(s+1)

: (28)

Our experience has shown that taking for h

n+1

the minimum of the step sizes proposed by (27)

and (28) results in a robust strategy. It automatically selects the step size of (27) in regions

where the steps increase, and that of (28) where the steps decrease. In this way many step

rejections are avoided that would appear by considering the strategy (27) only.

6 New Order Selection Strategy and Numerical Results

If a class of methods with various orders is available, it is natural to search for an algorithm of

a variable order implementation. The standard strategy (as used in extrapolation codes [De83],

in BDF codes, in STRIDE [BBC80] and GAM [IM97]) is to choose the order p in such a way

that the error per unit step is minimal, i.e.,

C

(p)

=h

(p)

! min;

where C

(p)

and h

(p)

denote the cost factors and the proposed step sizes for the method of order

p. For implicit Runge-Kutta methods (such as Radau IIA) it is di�cult to estimate the cost
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10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13

10−2

10−1

no convergence in at least one stepno convergence in at least one step

bad convergence in at least one stepbad convergence in at least one step

good convergence in all stepsgood convergence in all steps

RADAU5

RADAU9

RADAU13

error

Figure 8: Convergence of �xed-order Radau IIA codes

factors (the number of Newton iterations may depend strongly on the order), and it is also

di�cult to get reliable predictions for the optimal step sizes (\: : : a disadvantage of codes based

on RK-formulas is that an order variation strategy is a hard task to handle because of the

di�culty of having a convenient representation of the local truncation errors." [IM97]).

During the preparation of the second edition of our monograph [HW96], we had written

a code RADAUP which implements the Radau IIA methods of orders 5, 9, and 13, but only

in �xed order mode. Many numerical experiments with this code have shown an interesting

phenomenon which is explained in the following example.

Example. We consider the classical problem due to Robertson [Ro66] which models a chemical

reaction (problem ROBER in [HW96]). The equations and initial values are given by

y

0

1

= � 0:04 y

1

+ 10

4

y

2

y

3

y

1

(0) = 1

y

0

2

= 0:04 y

1

� 10

4

y

2

y

3

� 3 � 10

7

y

2

2

y

2

(0) = 0

y

0

3

= 3 � 10

7

y

2

2

y

3

(0) = 0;

(29)

and the integration interval is [0; 10

11

]. We apply our �xed order code RADAUP, named as

RADAU5 for order 5, RADAU9 for order 9, and RADAU13 for order 13, with many di�erent

tolerances Rtol = 10

�2�m=4

(m = 0; 1; : : : ; 40) and Atol = 10

�6

Rtol . In Fig. 8 we plot the

computing time as a function of the global error (the maximum error at x = 1; 10; 10

2

; : : : ; 10

11

)

in a double logarithmic scale. The interesting observation is that for low tolerances the high

order methods perform much worse than as might be expected. Demanding less accuracy even

increases the computer time. This is due to the fact that for the high order methods the local

error is very small, so that the step size strategy proposes very large steps. With these large

step sizes the simpli�ed Newton method for the nonlinear Runge-Kutta system has di�culties to

converge. In Fig. 8 we have indicated by a black symbol the situations where convergence failed

in at least one step. A grey symbol stands for slow convergence. As a conclusion we can say that

high order methods perform better than low order methods as soon as the convergence of the

simpli�ed Newton iterations is su�ciently fast. For the Robertson problem this phenomenon

can be observed very clearly, and experiments with many other problems indicate that this
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10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−1010−1110−1210−13

10−2

RADAU5

RADAU9

RADAU13

RADAU
(variable order)

error

Roberston

10−3 10−4 10−5 10−6 10−7 10−8 10−910−1010−1110−12

10−1

RADAU5
RADAU9

RADAU13
RADAU
(variable order)

error

Van der Pol

Figure 9: Variable order code RADAU for Robertson's problem and for the Van der Pol oscillator

conclusion applies in general. We are thus led to the following cheap and robust order selection

strategy:

New Order Selection Strategy (orders 5,9, and 13). We let �

k

:= k�W

k

k=k�W

k�1

k

(for k � 1) be the quotient of two consecutive increments in the simpli�ed Newton iteration

(26), and denote

	

1

:= �

1

; 	

k

:=

q

�

k

��

k�1

for k � 2:

The last 	

k

in a step is called contractivity factor. We then select the orders as follows:

� start the computation with low order (say, p = 5), and don't change the order during the

�rst 10 steps;

� increase the order by 4, if the contractivity factor is � 0:002 and if p < 13;

� decrease the order by 4, if the contractivity factor is � 0:8 or no convergence occurs and

if p > 5;

� after a decrease of the order, an order increase is not allowed during 10 steps.

This order selection strategy is easy to implement and the choice of the threshold values

prevents frequent oscillations in the order selection. Our variable order code, based on the

Radau IIA methods of orders 5, 9, and 13 and on the above order selction strategy, is called

RADAU. Its performance for the Robertson problem (29) is illustrated in Fig. 9 (the black stars).

The larger symbols correspond to integer exponents in the tolerance 10

�2

; 10

�3

; : : : ; 10

�12

. We

see that for a given tolerance this code performs exactly as the best code among RADAU5,

RADAU9, RADAU13. We cannot hope for more. The number of steps taken with the di�erent

orders are given in Table 1. For low tolerances, the code does not switch to higher orders at all.

Rtol 10

�2

10

�3

10

�4

10

�5

10

�6

10

�7

10

�8

10

�9

10

�10

10

�11

10

�12

order 5 87 111 144 195 10 10 10 10 10 10 10

order 9 0 0 0 0 98 116 138 12 14 12 12

order 13 0 0 0 0 0 0 0 90 102 117 134

Table 1: Number of steps of orders 5, 9, and 13 taken by RADAU

Fort stringent tolerances, the code takes a few steps with order 5, then some steps with order 9,
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10−4 10−6 10−8 10−10 10−12 10−14

10−2

10−1

RADAU5RADAU5

RADAU9

RADAU13

RADAU
(variable order)

error

problem  B5

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−1010−11
100

101

RADAU5RADAU5 RADAU9

RADAU13

RADAU
(variable order)

error

Ring modulatorRing modulator

Figure 10: RADAU for linear problem B5 and for the ring modulator

and soon switches to the optimal order 13. Since the solution of the Robertson problem tends

to a steady state solution, the code never decreases the order again.

Further Examples. As a second example we consider Van der Pol's equation

y

0

1

= y

2

y

1

(0) = 2

"y

0

2

= (1� y

2

1

)y

2

� y

1

y

2

(0) = 0

(30)

with " = 10

�6

on the interval [0; 11] (problem VDPOL of [HW96]). Its solution tends to a limit

cycle, in which transient parts in the solution alternate with intervals where the problem is very

sti�. Fig. 9 (right picture) shows the computing times of the �xed order codes together with

those of the new code RADAU as a function of the global error (similar to the previous �gure).

For large tolerances (Rtol > 10

�5

) the code RADAU works with order 5 in the sti� regions, and

it takes order 9 in the (nonsti�) transients, where small step sizes are used. For more stringent

tolerances the order switches in a similar way between order 9 and order 13. For very stringent

tolerances (Rtol � 10

�8

) the code quickly switches to order 13 and remains at this high order

until the end of integration.

For linear di�erential equations with constant coe�cients, the simpli�ed Newton method

gives the exact solution after one iteration already. Therefore, after a short initial phase the

code RADAU will switch to the highest possible order 13. Fig. 10 (left picture) shows the results

for the famous problem \B5" of [EHL75] with eigenvalues �10� 100i, �4, �1, �0:5 and �0:1.

We have taken Atol = 10

�6

Rtol . It turns out that already for low tolerances the high order

methods are most e�cient.

As a last example we consider a more engaging problem of dimension n = 15, the ring modu-

lator. It is a model for a small circuit and has been introduced by Horneber in 1976. Promoted

by [DR89, HLR89] as a test problem for sti� integrators, it is included in the Amsterdam test

set (CWI) at http://www.cwi.nl/cwi/projects/IVPtestset.shtml. We choose the parameter value

C

S

= 2 � 10

�12

and the interval [0; 10

�3

]. The Jacobian of the problem along the solution has

complex conjugate eigenvalues (approximately �2 � 10

4

� i3 � 10

7

), so that some components of

the solution are highly oscillatory with amplitude of size 0:1 (much larger than the tolerance).

There are real positive eigenvalues of size � 10

5

(non-sti�), and also real negative eigenvalues of

size � �10

11

which make the problem very sti�. For this problem the high order methods are

very expensive at low tolerances, but are very e�cient for Rtol � 10

�5

. The variable order code

RADAU correctly selects a nearly optimal order at all tolerances (see Fig. 10, right picture).

All our codes (including RADAU) are available on the Internet at the address
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http://www.unige.ch/math/folks/hairer/

Experimentations with these codes are welcome.
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