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An efficient algorithm for solving
piecewise-smooth dynamical systems

Nicola Guglielmi · Ernst Hairer

Abstract This article considers the numerical treatment of piecewise-smooth
dynamical systems. Classical solutions as well as sliding modes up to co-
dimension-2 are treated. An algorithm is presented that, in the case of non-
uniqueness, selects a solution that is the formal limit solution of a regularized
problem. The numerical solution of a regularized differential equation, which
creates stiffness and often also high oscillations, is avoided.
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1 Introduction

Piecewise-smooth dynamical systems arise in many applications and they are
an active field of recent research. Historically, one of the first examples is
Coulomb friction in mechanical systems, where the force of friction is propor-
tional to the sign of velocity (see [5]). Many interesting applications can be
found in the monograph [6]: relay control systems, where the control variable
admits jump discontinuities; converter circuits, where switching devices lead
to a non-smooth dynamics; models in the social and financial sciences, where
continuous change can trigger discrete actions. Discontinuity points are also
created by the activation/deactivation of inequality constraints in mixed con-
strained optimization problems. See [24] for a particular application arising in
the modelling of atmospheric particles.

Nicola Guglielmi
Gran Sasso Science Institute, via Crispi 7, I-67100 L’Aquila, Italy.
E-mail: nicola.guglielmi@gssi.it

Ernst Hairer
Section de Mathématiques, Université de Genève, rue du Conseil-Général 7-9,
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For a mathematical formulation of the problem we consider discontinuity
hyper-surfaces

Σj = {y ∈ Rn |αj(y) = 0}, j = 1, . . . , d, (1.1)

where α : Rn → Rd (with d < n) is assumed to be sufficiently differentiable
and such that these hyper-surfaces intersect transversally. We denote the dis-
continuity set by Σ =

⋃d
j=1Σj . The hyper-surfaces Σj divide the phase space

Rd \Σ into 2d open regions

Rk =
{
y ∈ Rn

∣∣ kjαj(y) > 0 for j = 1, . . . , d
}
, (1.2)

where k = (k1, . . . , kd) is a multi-index with kj ∈ {−1, 1}. The discontinuous
dynamical system is then given by

ẏ = fk(y) for y ∈ Rk. (1.3)

We assume that the functions fk(y) are defined in a neighbourhood of the
closure of Rk and that they are sufficiently differentiable. In the discontinuity
set Σ the right-hand side of (1.3) is considered to be multi-valued with values
from the neighbouring domains. We are thus concerned with a differential
inclusion and we adopt a restriction of the approach by Filippov [13,14] for the
concept of solutions. Besides classical solutions, which cross the discontinuity
surfaces, there are also sliding modes evolving in the discontinuity set Σ.

Closely connected to a discontinuous dynamical system is a regularization,
where the jump discontinuities are replaced in an ε-neighbourhood by a con-
tinuous transition. In this way the differential inclusion is transferred to an
ordinary differential equation. It is natural to consider regularizations because,
as mentioned in [6, page 1], “. . . there is strictly speaking no such thing as a
piecewise-smooth dynamical system and that in reality all physical systems
are smooth”. This is precisely what happens in the analysis of gene regulatory
networks [12,26], where steep sigmoid-type nonlinearities are approximated by
step functions.

Among numerically sound approches for approximating the solution of (1.3)
let us mention the following two:

- Algorithm based on event detection. One locates accurately the time in-
stants when the solution enters a new discontinuity surface (or satisfies a
criterion for exiting a surface), one stops the integration and investigates
the possible solutions leaving the actual point, and then one continues the
integration with a new vector field. The disadvantage of this approach is
that at the actual point the discontinuous problem can have more than
one solution (sometimes even infinitely many), and it may be laborious to
follow all of them.

- Regularization. One solves numerically the regularized ordinary differential
equation, which provides a unique approximation. Here, the difficulty is the
choice of the regularization parameter ε > 0. To obtain a good approxima-
tion of the solution of (1.3) a very small ε is required. This implies that the
regularized differential equation is stiff and sometimes highly oscillatory,
so that the numerical integration may become expensive.
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Early work on solving piecewise-smooth dynamical systems that is based on
detecting, locating, and passing the discontinuity is published in [4,27,15]. For
a survey we refer to [10]. There are some recent publications (including Mat-
lab codes for solving piecewise-smooth dynamical systems), like those of [29]
and [3], that are reliable and carefully compute the switching points between
classical and Filippov solutions. All these publications are restricted to classi-
cal solutions and to sliding modes in codimension 1. Our main interest is the
situation, where codimension-2 sliding modes can occur.

In the present work we propose an algorithm that combines the advantages
of both approaches. With event detection we solve the discontinuous problem
(without any ε) but, instead of following all solutions in the case of non-
uniqueness, we propose to select the solution which can formally be interpreted
as the limit solution (for ε → 0) of a regularized differential equation. This
selection is partly done on the basis of the classification in [17].

In Section 2 we recall concepts needed for the understanding of the present
article (relation between sliding modes and differential-algebraic equations of
index 2, regularization, hidden dynamics, and scaling invariance). The struc-
ture of the algorithm for solving the discontinuous system (1.3) is given in Sec-
tion 3. The main part (Section 4) presents in an algorithmic way the switching
between different kinds of solutions at the discontinuity hyper-surfaces. This
part is independent of the regularization, in contrast to Section 5, where a
justification of the algorithm (based on the hidden dynamics) is given. The
article finishes with some comments on the implementation (Section 6) and a
conclusion (Section 7).

2 Solution concept and regularization

The definition of Filippov solutions for a discontinuous dynamical system (1.3)
is ambiguous, because in the intersection of discontinuity hyper-surfaces a con-
vex combination of the adjacent vector fields has too many degrees of freedom.
We restrict our study to special convex combinations having m parameters in
the intersection of m hyper-surfaces Σj . Such convex combinations (for m = 2)
are called “blending” in [1] and “bilinear interpolation” in [8,7], see also [9,
25]. For arbitrary m they are called “convex canopy” in [20]. We consider reg-
ularizations that are closely connected to such convex combinations, and we
call them “multi-linear interpolation”.

2.1 Solution concept – classical solutions and sliding modes

For a fixed multi-index k = (k1, . . . , kd) with kj ∈ {−1, 1} the equation (1.3)
is a regular ordinary differential equations on the open domain Rk, and the
standard theory on existence, uniqueness, and continuous dependence on pa-
rameters and initial values applies. In this case the solution of (1.3) is called
classical.
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We next extend the concept of solution to the discontinuity set Σ. For an
index vector k = (k1, . . . , kd) with kj ∈ {−1, 0, 1} (note that now kj can also
be zero) we consider the set

Rk =
{
y ∈ Rn

∣∣αj(y) = 0 if kj = 0, kjαj(y) > 0 if kj 6= 0
}
, (2.1)

and if at least one component kj = 0, thenRk ⊂
⋂
{j|kj=0}Σj ⊂ Σ. We assume

that α(y) is such that Rk is a submanifold of Rd of codimension m, where m
counts the number of elements kj being equal to zero. For k = (k1, . . . , kd) we
define Ik = {j | kj = 0}, and we let

N k =
{
` ∈ {−1, 1}d

∣∣∣ `j ∈ {−1, 1} if kj = 0, `j = kj if kj 6= 0
}

which collects the index vectors ` such that R` touches Rk. With this notation
we consider the differential-algebraic equation (DAE)

ẏ =
∑
`∈Nk

( ∏
j∈Ik

(1 + `jλj)

2

)
f`(y)

0 = αj(y), j ∈ Ik
(2.2)

with algebraic variables λj , j ∈ Ik. In the following we denote the right-hand
side of the differential equation in (2.2) by fk(y, λk), where λk is the vector
that collects λj , j ∈ Ik. Differentiating the algebraic constraint of (2.2) with
respect to time yields

0 = α′j(y)fk(y, λk), j ∈ Ik, (2.3)

which represents m nonlinear equations in m unknowns λj , j ∈ Ik. We assume
that the Implicit Function Theorem can be applied to guarantee that locally
λk can be expressed as function of y. This implies that the DAE has index 2.
The special case Ik = ∅ includes classical solutions of (1.3), because in this
case N k = {k} consists of only one element and the empty product in (2.2) is
interpreted as 1.

For λj ∈ [−1, 1] the vector field in (2.2) is a convex combination of the
vector fields f`(y) (with ` ∈ N k) which are defined on the open domains
touching Rk. The solution of (2.2) is therefore a Filippov solution.

Definition 2.1 Consider an index vector k with Ik 6= ∅ and let m = |Ik|
be the cardinality of Ik. Then, a solution (y, λk) of the differential-algebraic
equation (2.2) is called a codimension-m sliding mode in the set Rk as long
as λj ∈ [−1, 1] for j ∈ Ik.

For a consistent initial value of (2.2), i.e., y(0) ∈ Rk and λk(0) given
by (2.3), any technique for the numerical solution of DAE’s of index 2 can be
applied. Such techniques are explained in detail in the monographs [19,2].
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Definition 2.2 A piecewise-smooth, continuous function y : [0, T ] → Rn is
called a solution of the discontinuous dynamical system (1.3), if there exists
a finite partition 0 = t0 < t1 < t2 < . . . < tN = T , such that the following is
true: for every subinterval [ti, ti+1] there exists ki ∈ {−1, 0, 1}d with mi = |Iki |
such that the restriction of y(t) to this interval is a codimension-mi sliding
mode in the set Rki (a classical solution if Iki = ∅).

2.2 Regularization

−1 1

−1

1

Fig. 2.1 Transition function

We are interested in solutions of (1.3) in the
sense of Definition 2.2 that can be considered
as the formal limit of a regularized differen-
tial equation, where jump discontinuities in
the vector field are smoothed out. For this we
consider a transition function π(u), which is
assumed to be continuous, piecewise-smooth,
and satisfies π(u) = −1 for u ≤ 1 and
π(u) = 1 for u ≥ 1. We also assume that π′(u) > 0 for u ∈ (−1, 1), and
that π(u) is centrally symmetric. A typical example is π(u) = u for |u| ≤ 1
(see Figure 2.1).

For a discontinuous dynamical system (1.3) we consider the regularization

ẏ =
∑

`∈{−1,1}d

( d∏
j=1

(1 + `jπ(uj))

2

)
f`(y) (2.4)

where uj = αj(y)/ε. We denote the right-hand side of this regularized differen-
tial equation by f

(
y, π(u1), . . . , π(ud)

)
. The complete phase space (including

the discontinuity set Σ) is the union of 3d sets

Rk
ε =

{
y ∈ Rn

∣∣ |αj(y)| ≤ ε if kj = 0, kjαj(y) > ε if kj 6= 0
}
, (2.5)

where k = (k1, . . . , kd) with kj ∈ {−1, 0, 1}. For the case that all kj 6= 0, we
have that Rk

ε ⊂ Rk, and ` = k is the only vector for which the product in
(2.4) is non-zero. Therefore, on the set Rk

ε the regularization coincides with
the differential equation ẏ = fk(y) of the un-regularized problem.

For k with Ik 6= ∅ the set Rk
ε approximates Rk. On the set Rk

ε only the
vectors ` ∈ N k give rise to a non-vanishing product in (2.4). Since `jπ(uj) =
kjπ(uj) = 1 for ` ∈ N k and j 6∈ Ik, the regularized differential equation (2.4)
becomes

ẏ =
∑
`∈Nk

( ∏
j∈Ik

(1 + `jπ(uj))

2

)
f`(y) for y ∈ Rk

ε , (2.6)

which is in complete analogy to (2.2). If m denotes the cardinality of Ik,
then for m = 1 the sum in (2.6) consists of two terms (linear interpolation),
for m = 2 it consists of four terms (bilinear interpolation), and in general it
consists of 2m terms.
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2.3 Hidden dynamics

A justification of our algorithm is based on the study of the solution of the
regularized differential equation, when it is close to an intersection of dis-
continuity surfaces. In the region Rk

ε it follows from (2.6) that ui = αi(y)/ε
satisfies

ε u̇i =
∑
`∈Nk

( ∏
j∈Ik

(1 + `jπ(uj))

2

)
α′i(y)f`(y), i ∈ Ik, (2.7)

which is a singularly perturbed differential equation. Close to a point y∗ ∈ Rk

of the discontinuity manifold it can be studied by separating a transient part
from the smooth solution. For this we introduce the fast time τ = t/ε, we
denote the derivative with respect to τ by a prime, and we substitute the
constant vector y∗ for y. This yields

u′i =
∑
`∈Nk

( ∏
j∈Ik

(1 + `jπ(uj))

2

)
α′i(y

∗)f`(y∗), i ∈ Ik, (2.8)

which is a regular dynamical system for ui, i ∈ Ik. It is called hidden dynamics
(a term coined in [21]). We expect that this system credibly describes the
transient behaviour of the solution of the regularized differential equation.1

Special case of two intersecting surfaces. We assume that only two components
of k are zero, say, k1 = k2 = 0. We then have Ik = {1, 2} and N k consists of
four elements. The differential equation (2.8) of the hidden dynamics is then
given by, for i = 1, 2,

u′i=
1

4

((
1 + π(u1)

)(
1 + π(u2)

)
f1,1i +

(
1 + π(u1)

)(
1− π(u2)

)
f1,−1i

+
(
1− π(u1)

)(
1 + π(u2)

)
f−1,1i +

(
1− π(u1)

)(
1− π(u2)

)
f−1,−1i

)
,

(2.9)

where in the notation f `1,`2i = α′i(y
∗)f`(y∗) we have omitted the non relevant

indices of `. It is of interest for (u1, u2) in the unit square [−1, 1]× [−1, 1]. We
also denote de right-hand side of (2.9) by gi

(
π(u1), π(u2)

)
.

This 2-dimensional system has been discussed in detail in [17, Section 5]:
how initial values are determined by the incoming solution, how the behaviour
of the solution for τ → ∞ determines which kind of solution (classical or
sliding) will be followed by the regularized equation, how a geometric study
of the flow is possible, etc. We note that the right-hand side of (2.9) is a
quadratic polynomial in π(u1), π(u2), which vanishes on a hyperbola in the(
π(u1), π(u2)

)
-space. Throughout the present work we consider the transition

function of Figure 2.1.

1 In some situations this can be rigorously justified by the study of asymptotic expansions
in powers of ε together with an estimation of the remainder. However, already for the case
of two intersecting surfaces, this is a challenging problem and not much is known in general.
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The study of the hidden dynamics is an essential tool for designing the
algorithm proposed in the present paper. A whole monograph [22] is devoted
to this topic. Let us also mention the work [23], which concentrates on the
2-dimensional system (2.9). On the basis of singular perturbation theory it
discusses stability of sliding, and it shows that there exists at most one stable
sliding vector field.

2.4 Scaling invariance

A substitution αj(y)→ κjαj(y) with κj ≥ 1 neither changes the discontinuous
hyper-surfaces and the open regions Rk nor the solution of the discontinuous
dynamical system (1.3). However, it changes the regularization (2.4) (uj =
αj(y)/ε is replaced by κjuj) and therefore also the solution of the regularized
differential equation. Consequently, also in the hidden dynamics the expression
π(uj) is replaced by π(κjuj).

One of our aims is to design an algorithm for the numerical solution of (1.3)
that is invariant with respect to such a scaling.

3 Solving piecewise-smooth dynamical systems

Typically, a numerical algorithm for solving piecewise-smooth dynamical sys-
tems (1.3) is composed of three parts:

- Computation. Use any code that permits to solve the index-2 differential-
algebraic equation (2.2) starting at consistent initial values. Techniques and
codes are well documented in text books like [19] and [2]. In the beginning
one is usually concerned with a classical solution, for which Ik = ∅, so
that all y ∈ Rk are consistent. At a transition point ti the initial value is
determined by continuity.

- Event location. The code has to be equipped with an event location al-
gorithm that stops the integration either (i) when the solution enters a
new discontinuity surface or (ii) when one of the Lagrange multipliers λj
leaves the interval [−1, 1] or (iii) when the solution λk of the algebraic
system (2.3) ceases to exist in the unit cube or becomes unstable. Since
all λj are functions of y, each of the conditions gives raise to an algebraic
relation g

(
y(t)

)
= 0. Event detection strategies are made for finding such

points. This defines a new grid point ti. Algorithms for event location are
discussed in [28] (based on the BDF code DASSL) and in [16,24] (based
on the implicit Runge–Kutta code RADAU5).

- Switching. As soon as a new transition point ti is detected, one can check
all possible multi-indices k which, for the present solution value, give raise
to a meaningful solution in the sense of Definition 2.1. In the case of non-
uniqueness one can follow all possible solutions (which may be laborious
and inefficient) or one can select one of them – but which one? The present
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article is devoted to a theoretically founded switching criterion based par-
tially on the classification of [17]. It provides a solution that can be con-
sidered as the formal limit of a regularized problem.

The present work focuses on the switching algorithm. It is neither our intention
to give details on the numerical computation of differential-algebraic equations
of index 2 nor to discuss techniques for event location.

4 Switching algorithm

The idea is to select a solution that can be considered as the limit solution
of a regularized differential equation. For the case that a solution enters a
codimension-2 discontinuity the algorithm is based on the classification of [17].
The treatment of the more challenging situation of exiting a codimension-
2 discontinuity is new. Depending on whether, on the interval [ti−1, ti], the
solution is a classical solution or a sliding mode, the switching algorithm at ti
is discussed in the following subsections:

for a classical solution in Section 4.1;
for a codimension-1 sliding mode in Section 4.2;
for a codimension-2 sliding mode in Section 4.3.
for an accumulation of grid points and spiraling solutions in Section 4.4.

4.1 Classical solution

We consider a classical solution of the differential equation (1.3) for t ≥ ti−1
until it enters a discontinuity surface at time ti. Without loss of generality
we assume that the discontinuity surface is Σ1 = {y |α1(y) = 0}. Removing
irrelevant indices from the vector k (for notational convenience), we assume the
classical solution to be in R−1 = {y |α1(y) < 0} with vector field f−1(y). On
the opposite side of Σ1 the vector field is f1(y). We assume that the solution
enters transversally the surface Σ1, so that f−11 := α′1(y)f−1(y) > 0 at the
entry point. We then distinguish the cases, where f11 := α′1(y)f1(y) is positive
or negative (see Figure 4.1). We do not consider the non generic situation,
where this expression vanishes.

If f11 > 0, the only possible solution is classical in the region R1. If f11 < 0,
there is no classical solution leaving the solution point in Σ1. The solution in
R0 = Σ1 is defined by the DAE (2.2), i.e.,

ẏ =
(1 + λ)

2
f1(y) +

(1− λ)

2
f−1(y), α1(y) = 0. (4.1)

Differentiating the constraint with respect to time yields

α′1(y)
( (1 + λ)

2
f1(y) +

(1− λ)

2
f−1(y)

)
= 0,
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entering Σ1 as
classical solution in R−1

����
HHHj

f11 > 0 f11 < 0

?
classical
solution
in R1

?
codim-1
sliding

along R0

Fig. 4.1 Flowchart of possible switchings from a classical solution.

exiting Σ1 from
codimension-1 sliding mode

��
��

HH
Hj

f11 = 0 f−1
1 = 0

?
classical
solution
in R1

?
classical
solution
in R−1

Fig. 4.2 Flowchart of switchings from a codimension-1 sliding mode exiting Σ1.

which determines λ as function of y, namely,

λ =
α′1(y)f−1(y) + α′1(y)f1(y)

α′1(y)f−1(y)− α′1(y)f1(y)
. (4.2)

The initial value for (4.1) is defined by continuity for y, and for λ it satisfies
−1 < λ < 1, because f−11 > 0 and f11 < 0.

4.2 Codimension-1 sliding mode

Suppose that we are concerned with a codimension-1 sliding mode along Σ1

for t ≥ ti−1. The type of solution can change at some ti > ti−1, if either it exits
the discontinuity surface Σ1 or it enters an additional discontinuity surface,
say Σ2. Both situations are discussed in the next two subsections.

4.2.1 Exiting Σ1 from a codimension-1 sliding

During the codimension-1 sliding on Σ1 we have α′1(y)f−1(y) > 0 and also
α′1(y)f1(y) < 0. This implies that λ from (4.2) satisfies λ ∈ (−1, 1). The
solution exits this sliding, if λ leaves the interval [−1, 1]. This can happen
at λ = −1 (for which α′1(y)f−1(y) changes sign from positive to negative)
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or at λ = 1 (for which α′1(y)f1(y) changes sign from negative to positive).
The solution then continues as classical solution in R−1 or R1, respectively.
The switching is shown in Figure 4.2, where we abbreviate the expressions
α′1(y)f−1(y) and α′1(y)f1(y) at the exit point y by f−11 and f11 .

4.2.2 Entering the intersection Σ1 ∩Σ2

As before we disregard irrelevant indices from the index vector k, and we keep
only those corresponding to Σ1 and Σ2. We consider a codimension-1 sliding
along R0,−1 = {y |α1(y) = 0, α2(y) < 0}, and we generically assume that

f−1,−11 > 0, f1,−11 < 0, f−1,−12 > 0,

f−1,−11 f1,−12 − f1,−11 f−1,−12 > 0,
(4.3)

where we use the notation fkj = α′j(y)fk(y) for j ∈ {1, 2} and k = (k1, k2) (all
vector fields are evaluated at the entry point). The first two inequalities of (4.3)
mean that both vector fields, f−1,−1 and f1,−1, point towards R0,−1. To have
a sliding motion along R0,−1 in direction of the intersection Σ1 ∩Σ2 at least
one among f−1,−12 and f1,−12 has to be positive. Without loss of generality
we assume f−1,−12 > 0. Figure 4.3 illustrates the situations f1,−12 > 0 (left
picture) and f1,−12 < 0 (right picture). In the second case the last inequality
of (4.3) guarantees that the sliding vector field points upwards.

Σ1

Σ2

Σ1

Σ2

Fig. 4.3 Entering the codimension-2 manifold

The switching algorithm of Figure 4.4 is based on [17, Theorem 6.1], that
of Figure 4.5, which completes Figure 4.4, is based on [17, Theorem 6.2] (see
Section 5.1 for more details). The algorithm of Figure 4.5, is valid under the
additional condition

f1,−12 < 0, (4.4)

which can be assumed without loss of generality, because the case f1,−12 > 0
can be reduced to that of Figure 4.4 by symmetry considerations.

The algorithm presented in the two figures needs some more explana-
tions. In addition to classical and codimension-1 solutions we have to consider
codimension-2 solutions. They are defined by

ẏ =
1

4

(
(1 + λ1)(1 + λ2) f1,1(y) + (1 + λ1)(1− λ2) f1,−1(y) (4.5)

+(1− λ1)(1 + λ2) f−1,1(y) + (1− λ1)(1− λ2) f−1,−1(y)
)



An efficient algorithm for solving piecewise-smooth dynamical systems 11

entering Σ1 ∩Σ2 through
codimension-1 sliding along R0,−1

condition (4.3)

HHHHj

�����

f−1,1
1 f1,−1

1 − f1,11 f−1,−1
1 > 0 f−1,1

1 f1,−1
1 − f1,11 f−1,−1

1 < 0

�����
HHHHj

−1 < λ1, λ2 < 1
exist s.t. (4.6)

−1 ≤ λ1, λ2 ≤ 1
do not exist

@
@R

see Fig. 4.5

�
�	

@
@R

f1,02 (λ2) < 0 f1,02 (λ2) > 0

�
�	

@
@R

f−1,1
1 > 0 f−1,1

1 < 0

@@R��	

f−1,1
2 < 0 f−1,1

2 > 0

?
codim-2
sliding

?
codim-2
sliding

��	
codim-1
sliding

along R0,1 ?
codim-1
sliding

along R−1,0

?
classical
solution
in R−1,1

uniqueness of Filippov solution

non-uniqueness of Filippov solution

Fig. 4.4 Flowchart of switchings from a codimension-1 entering Σ1 ∩ Σ2. In the case of
multiple solutions of (4.6), λ2 is the value that is closest to −1. Here, and in the following,
the term “Filippov solution” means a solution according to Definition 2.2.

uniqueness of Filippov solution

non-uniqueness of Filippov solution

f−1,1
1 f1,−1

1 − f1,11 f−1,−1
1 < 0

����
HHHj

−1 < λ1, λ2 < 1
exist s.t. (4.6)

−1 ≤ λ1, λ2 ≤ 1
do not exist

�
�	

@
@R

f1,11 < 0 f1,11 > 0

�
�	

@
@R

f1,11 < 0 f1,11 > 0

?
codim-2
sliding

or
codim-1
sliding

along R0,1

?
codim-2
sliding

or
classical
solution
in R1,1

?
codim-1
sliding

along R1,0

?
classical
solution
in R1,1

Fig. 4.5 Flowchart of switchings from a codimension-1 entering Σ1 ∩ Σ2 (cont.). Condi-
tion (4.4) is assumed in addition to the assumption (4.3) of the flowchart of Figure 4.4.

subject to the algebraic constraints α1(y) = 0 and α2(y) = 0. The righthand-
side of (4.5) is denoted by f0,0(y, λ1, λ2). Differentiating the algebraic relations
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with respect to time yields (when multiplied by 4)

α′j(y)
(

(1 + λ1)(1 + λ2) f1,1(y) + (1 + λ1)(1− λ2) f1,−1(y) (4.6)

+(1− λ1)(1 + λ2) f−1,1(y) + (1− λ1)(1− λ2) f−1,−1(y)
)

= 0

for j ∈ {1, 2}. We also use the notation gj(y, λ1, λ2) = 0 for this equation.
For the existence of a locally unique solution (λ1, λ2) of the system (4.6), we
assume that the Implicit Function Theorem can be applied, which means that
the 2× 2 matrix

G(y, λ1, λ2) =
(
α′j(y)

∂

∂λp
f0,0(y, λ1, λ2)

)2
j,p=1

(4.7)

is invertible. For a fixed value of y the equation (4.6) represents a hyperbola
with vertical and horizontal asymptotes in the (λ1, λ2)-space. We are only
interested in values (λ1, λ2) lying in the square [−1, 1] × [−1, 1] (which we
sometimes call unit square).

When, in the algorithms of Figures 4.4 and 4.5, we write that a solution
(λ1, λ2) of (4.6) exists (or not) in the unit square, we mean only solutions
on the branch of the first hyperbola (j = 1) that crosses the bottom side
of the square. The expression f1,02 (λ2), appearing in the switching algorithm,
is defined by f1,02 (λ2) = α′2(y)f1,0(y, λ2), and f1,0(y, λ2) is the vector field
of (2.2) for k = (1, 0).

Remark 4.1 In the situation, where the algorithm of Figures 4.4 and 4.5 pro-
poses a codimension-2 sliding, the discussion of [17] shows that in the begin-
ning of the sliding the solution (λ1, λ2) of (4.6) is such that the determinant
of G(y, λ1, λ2) is positive and at least one of its diagonal elements is negative.
This is important for the strategy in Section 4.3.3.

4.3 Codimension-2 sliding mode

Suppose that there is a codimension-2 sliding mode along Σ1∩Σ2 for t ≥ ti−1.
It is characterized by the existence of

(
λ1(t), λ2(t)

)
∈ (−1, 1)2 satisfying the

polynomial system (4.6). The type of solution can change at some ti > ti−1,
if either

(a) the pair
(
λ1(t), λ2(t)

)
leaves the unit square (−1, 1)2,

(b) the solution
(
λ1(t), λ2(t)

)
of (4.6) becomes double and ceases to exist,

(c) the matrix (4.7) changes stability (see Remark 4.1),
(d) the sliding mode enters an additional discontinuity surface, say Σ3.

The algorithms for the situations (a), (b), and (c) are presented in the following
subsections, their justification is discussed in Section 5. In this paper we do
not consider the situation (d), because we are not aware of results on the
limit solution of the regularized differential equation close to a codimension-3
discontinuity surface.
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non-uniqueness

of Filippov solution

exiting from Σ1 ∩Σ2

solution (λ1, λ2) of (4.6) leaves the
unit square at λ1 = 1; condition (4.8)

�����)

PPPPPq

f1,12 − f1,−1
2 < 0 f1,12 − f1,−1

2 > 0

�
�	

@
@R

f−1,1
2 f1,−1

2 − f1,12 f−1,−1
2 > 0 f−1,1

2 f1,−1
2 − f1,12 f−1,−1

2 < 0

?
codim-1
sliding

along R1,0
?

classical
solution
in R1,−1

?
classical
solution
in R1,1

Fig. 4.6 Flowchart for exiting a codimension-2 sliding of type (a); c.f., case (A) of [18].

4.3.1 Exiting Σ1 ∩Σ2 from a codimension-2 sliding – type (a)

We assume that at t = ti the pair
(
λ1(t), λ2(t)

)
of the system (4.6) leaves the

unit square at one side (generically, we can exclude the corners). Without loss
of generality we can assume that

λ1(ti) = 1, λ̇1(ti) > 0, −1 < λ2(ti) < 1 (4.8)

hold. The proposed switching, based on [18, Theorems 2 and 3] is shown in
Figure 4.6. All vector fields are evaluated at the exit point. According to the
decision tree the solution of the discontinuous problem either continues, be-
yond the exit point, as a codimension-1 sliding mode or as a classical solution.

Note that all situations of Figure 4.6 admit further solutions (classical
or codimension-1). The proposed algorithm chooses the solution that can be
realized as the limit of a regularized differential equation.

4.3.2 Exiting Σ1 ∩Σ2 from a codimension-2 sliding – type (b)

We assume that the two (real) solutions of the system (4.6) coalesce in the
unit square and disappear at t = ti. This implies that at this time instant the
two hyperbolas in the (λ1, λ2)-space are tangential at

(
λ1(ti), λ2(ti)

)
. Without

loss of generality we assume that the hyperbolas have positive slope which,
expressed in terms of the vector fields, is (see Lemma 6.3 of [17])

f−1,11 f1,−11 − f1,11 f−1,−11 < 0, f−1,12 f1,−12 − f1,12 f−1,−12 < 0 (4.9)

(otherwise we reflect the picture at the vertical axis, i.e., change the sign of λ1).
Moreover, we assume that

the hyperbola corresponding to α2(y) lies above that of α1(y) (4.10)
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exiting from Σ1 ∩Σ2

solution (λ1, λ2) of (4.6) disappears in
unit square; conditions (4.9) and (4.10)

?

�����)

PPPPPq
∂2g1 > 0, ∂1g2 > 0 ∂2g1 < 0, ∂1g2 > 0 ∂2g1 < 0, ∂1g2 < 0

�
�	 ?

@
@R??�

�	
@
@R

f−−
1 > 0 f−−

1 < 0 f++
1 < 0

f++
1 > 0

f++
2 > 0

f++
2 < 0 f−−

2 < 0 f−−
2 > 0

?
codim-1
sliding
R0,−1

?
classical
solution
R−1,−1

?
codim-1
sliding
R1,0

?
classical
solution
R1,1

?
codim-1
sliding
R0,1

?
classical
solution
R−1,−1

?
codim-1
sliding
R−1,0

Fig. 4.7 Flowchart for exiting a codimension-2 sliding of type (b); for brevity we use the

notation f++
i and f−−

i for f1,1i and f−1,−1
i , respectively. All functions are evaluated at the

collapsing stationary point.

(otherwise we exchange α1 and α2). Denoting the left-hand expression in (4.6)
by gj(λ1, λ2) and the derivative with respect to λi by ∂i, we distinguish cases
according to the signs of ∂igj . Figure 4.7 gives a complete characterization of all
possible situations (we shall explain later in Section 5.2 that the apparantly
missing situation ∂2g1 > 0, ∂1g2 < 0 cannot arise at a vanishing stationary
point). As in previous figures the boxes in red indicate that more than one
Filippov solutions are possible. There is only one situation (blue box) with
a unique solution. In the case of non-uniqueness our algorithm selects the
solution which can be interpreted as the formal limit of the solution of a
regularized problem.

4.3.3 Exiting Σ1 ∩Σ2 from a codimension-2 sliding – type (c)

A stationary point of the hidden dynamics (2.9) (corresponding to a solution
(λ1, λ2) of (4.6)) is asymptotically stable if both eigenvalues of (4.7) have
negative real part. This is equivalent to

detG(y, λ1, λ2) > 0 and traceG(y, λ1, λ2) < 0. (4.11)

As explained in [17, Section 8] the trace of the matrix G is not scaling invariant.
It is shown that, if at least one of the diagonal elements of G is negative, there
exists a scaling that makes the stationary point asymptotically stable. The
condition for a stationary point to be asymptotically stable after a suitable
scaling of the constraints therefore becomes

detG(y, λ1, λ2) > 0 and min
i=1,2

Gi,i(y, λ1, λ2) < 0, (4.12)

where Gi,j stands for the elements of the matrix G of (4.7); see also Re-
mark 4.1. Our (scaling invariant) strategy is to exit a codimension-2 sliding,
if one of the two conditions in (4.12) becomes violated.
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(1) Assume first that at time t = ti we have detG(y∗, λ∗1, λ
∗
2) = 0 (i.e.,

detG(y, λ1, λ2) changes from positive to negative), while the second condition
of (4.12) still holds. Due to the special structure of (4.6) both of its solutions
coalesce at t = ti and, while detG(y, λ1, λ2) changes from positive to negative
for the actual solution, it changes from negative to positive for the other so-
lution. In this situation, we propose to continue with a codimension-2 sliding,
and we take for (λ1, λ2) the solution of (4.6) for which the determinant of
G(y, λ1, λ2) is positive.

(2) Assume next that the second condition of (4.12) is violated, but we
still have detG(y, λ1, λ2) > 0. Generically, one among the diagonal elements
of G is then positive and the other equals zero. Without loss of generality
we assume that at the transition point we have G1,1(y∗, λ∗1, λ

∗
2) = 0 and

G2,2(y∗, λ∗1, λ
∗
2) > 0. The condition G1,1(y∗, λ∗1, λ

∗
2) = 0 is only possible, if

the hyperbola g1(y∗, λ1, λ2) = 0 degenerates (i.e., it is the union of the hor-
izontal asymptote λ2 = λ∗2 and of the vertical asymptote). By changing the
sign of α1(y) and/or of α2(y) we can assume that

f−1,−11 < 0, f−1,11 > 0, G1,2(y∗, λ∗1, λ
∗
2) > 0. (4.13)

This means that for −1 ≤ λ1 ≤ λ∗1 the function g1(y∗, λ1, λ2) takes positive
values above the horizontal asymptote and has the vertical asymptote outside
the interval [−1, λ∗1]. We now distinguish between two situations according to
the sign of f1,11 . For f1,11 > 0 the vertical asymptote of g1(y∗, λ1, λ2) = 0 is
outside the unit square, and for f1,11 < 0 it lies between λ∗1 and +1. The type
of solutions beyond the switching point ti are shown in Figure 4.8 for the case
f1,11 > 0, and in Figure 4.9 for the case f1,11 < 0. In this figure we use the
abbreviation fa,12 = g2(λa1 , 1), where λa1 denotes the abscissa of the vertical
asymptote corresponding to g1(y∗, λ1, λ2) = 0.

4.4 Accumulation of grid points, entering Σ1 ∩Σ2 through spiraling

We consider the situation, where a solution of (1.3) enters the intersection at
y ∈ Σ1 ∩Σ2 by spiraling inwards. This can be clockwise or counterclockwise.
Assuming the second, this is the case, if the vector fields, evaluated at y, satisfy

f−1,−11 > 0, f1,−11 > 0, f1,11 < 0, f−1,11 < 0

f−1,−12 < 0, f1,−12 > 0, f1,12 > 0, f−1,12 < 0,
(4.14)

and if the contractivity condition

0 < γ < 1 with γ =
f−1,−12

f−1,−11

· f
1,−1
1

f1,−12

· f
1,1
2

f1,11

· f
−1,1
1

f−1,12

(4.15)

holds. Under these two assumptions the solution of the discontinuous sys-
tem (1.3) converges to Σ1 ∩ Σ2 in finite time. It spirals around Σ1 ∩ Σ2 and
produces an infinity of grid points that converge geometrically to the entry
point. From there on we have a codimension-2 sliding.
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exiting from Σ1 ∩Σ2

equilibrium of (2.9) changes stability

vector fields satisfy (4.13) and f1,11 > 0
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classical
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in R1,1

?
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in R−1,−1

?
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in R1,1

or
in R−1,−1

Fig. 4.8 Flowchart of possible exits from a codimension-2 sliding under the assumption
that ∂1g1(y∗, λ∗1, λ

∗
2) = 0 and ∂2g2(y∗, λ∗1, λ

∗
2) > 0. The vertical asymptote of g1 = 0 is

outside the unit square.

exiting from Σ1 ∩Σ2

equilibrium of (2.9) changes stability

vector fields satisfy (4.13) and f1,11 < 0

��
��

HH
Hj

f−1,−1
2 > 0 f−1,−1

2 < 0

�
�	
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@R

fa,12 < 0 fa,12 > 0

�
�	

@
@R

fa,12 < 0 fa,12 > 0

?
classical
solution
in R1,−1

?
codim-1
solution

along R0,1

?
classical
solution

in R−1,−1

?
classical
solution

in R−1,−1

or
codim-1

along R0,1

Fig. 4.9 Flowchart of possible exits from a codimension-2 sliding under the assumption
that ∂1g1(y∗, λ∗1, λ

∗
2) = 0 and ∂2g2(y∗, λ∗1, λ

∗
2) > 0. The vertical asymptote of g1 = 0 is

inside the unit square to the right of λ∗1.

5 Justification of the algorithm

In the situation of Sections 4.1, 4.2.1, and 4.4, we have uniqueness of the
solution (classical and sliding modes) beyond the new grid point ti, and noth-
ing has to be justified for the algorithm. This is not necessarily the case for
the situation of Sections 4.2.2 and 4.3, where the solution enters or exits a
codimension-2 hyper-surface.
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The philosophy of the presented algorithm is that in the situation of non-
uniqueness we choose a solution that can be interpreted as the limit for ε→ 0
of the solution of a regularization. The combined system (2.6)–(2.7) is a singu-
larly perturbed differential equation which is typically studied by asymptotic
expansions in powers of ε and by separating slow and fast dynamics. This,
however, is not always possible in the present context. The experiment of [18,
Section 4.2] even demonstrates the lack of an expansion in integer powers of ε.

On the other hand, close to a value y∗ in the discontinuity manifold, it
is expected that the hidden dynamics (2.8) reproduces well the bahaviour of
the solution of the discontinuous equation. For the case that αj(y) is an affine
function of y and that the vector fields are constant in a neighbourhood of y∗,
the solution of (2.8) describes the functions ui = αi(y)/ε without any error.

We thus trust the hidden dynamics and we propose to select the solution
after a switching point according to the behaviour the hidden dynamics. This
implies that we have a transition to (c.f. [17, Section 5.2])

– a classical solution, if both solution components of (2.9) are unbounded,

– a codimension-1 sliding, if one solution component is unbounded and the
other converges for τ →∞ to a value in (−1, 1),

– a codimension-2 sliding, if the pair
(
u1(τ), u2(τ)

)
converges to a point in

the unit square.

5.1 Justification of the algorithms of Sections 4.2.2 and 4.3.1

The algorithms of Figures 4.4 and 4.5 are just a transcription of Theorems 6.1
and 6.2 of [17], where the conditions are written in terms of the four vector
fields rather than in terms of the vector field of the hidden dynamics.

The assumption (4.3) is equivalent to (6.1) of [17]. By Lemma 6.3 of [17]
the condition ∂2g1(u1,0,−1) < 0 (left turning situation) in [17] is equivalent to

f−1,11 f1,−11 − f1,11 f−1,−11 > 0 (top left formula in Figure 4.4). Item (a) of The-
orem 6.1 in [17] corresponds to the existence of a solution of (4.6) in the unit
square. In the notation of the present work the expression gβ(1, u∗) of [17,

Theorem 6.1] is equal to g2(1, λ2) = f1,02 (λ2), which appears in Figure 4.4.
The situation in [17, Theorem 6.1], where the solution of the hidden dynam-
ics approaches a limit cycle around a stationary point, corresponds to high
oscillations of amplitude O(ε) in the solution of the regularized differential
equation, and to a codimension-2 sliding in the discontinuous system. Items
(b) and (c) of Theorem 6.1 in [17] correspond to the part in Figure 4.5, where
the system (4.6) does not have a solution in the unit square that lies on the
branch of the hyperbola crossing the bottom line of the square.

The algorithm of Figure 4.6 is a transcription of the statements in The-
orems 2 and 3 of [18]. We note that the expressions β′(y∗0)∂uf(y∗0 , 1, v

∗
0) and

β′(y∗0)∂vf(y∗0 , 1, v
∗
0) correspond to ∂1g2(1, λ2) and ∂2g2(1, λ2) in the notation

of the present work. Since g2(λ1, λ2) is an affine function in each of its vari-
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(a1) (a2) (b1) (b2) (b3)

(c1) (c2) (d1) (d2)

Fig. 5.1 Vector field of the hidden dynamics in the situation where both stationary points
coalesce. The first seven pictures correspond to the colored boxes of Figure 4.7 in the same
order. Red arrows represent the solution after the switching.

ables, the sign of ∂2g2(1, λ2) is the same as that of f1,11 − f1,−12 , and the sign
of ∂1g2(1, λ2) is the same as that of f−1,12 f1,−12 − f1,12 f−1,−12 .

5.2 Justification of the algorithm of Section 4.3.2

The first seven pictures of Figure 5.1 show the vector fields corresponding to
the seven situations of Figure 4.7. The hyperbolas g1 = 0 and g2 = 0 are
drawn in blue. By (4.9) both hyperbolas have positive slope and by (4.10) the
hyperbola for g2 = 0 lies above that for g1 = 0. We mark the hyperbolas with
an arrow which make them to an oriented path. To the left of the hyperbola
g1 = 0 we have by convention g1 > 0 so that the vector field points to the
right, and on the other side the vector field points to the left. Similarly, to the
left of g2 = 0 the vector field points upwards, and downwards on the other
side.

We start with the assumption ∂2g1 > 0, ∂1g2 > 0. The branches of the hy-
perbolas passing through the vanishing stationary point are directed upwards.
This can be observed in the pictures (a1) and (a2). In the picture (a1), where
f−−1 > 0, the solution starting at the vanishing stationary point leaves the unit
square at the bottom side. This gives rise to a codimension-1 sliding in R0,−1.
In this situation (again picture (a1)) there is also a classical solution leaving
the intersection into the region R−1,1, which however cannot be realized as
the limit of a regularization. If f−−1 < 0 (picture (a2)), the solution leaves the
unit square at the lower left corner, which gives rise to a classical solution in
R−1,−1. If the branch of the hyperbola g2 = 0 would leave the unit square at
the right side, there would be another classical solution in R1,1, which however
is irrelevant.

All other situations, namely (b1), (b2), (b3), (c1), (c2), can be explained
similarly by looking at the vector fields in Figure 5.1. All of them, with the
exception of (b2), admit a second (non relevant) solution by slightly modi-



An efficient algorithm for solving piecewise-smooth dynamical systems 19

Fig. 5.2 Vector field of the hidden dynamics for the situations discussed in Figure 4.8 (upper
pictures) and in Figure 4.9 (lower pictures). Twenty solutions corresponding to initial values
that are random perturbations of the equilibrium (u∗1, u

∗
2) are plotted in red.

fying the hyperbolas. For example, in the situation (b1) one can change the
hyperbola g1 = 0 such that it enters at the left side and such that its second
branch surrounds the lower right corner. Consequently, there is also a classical
solution in R1,−1. Slight modifications of the hyperbolas permit to produce a
classical solution in R−1,1 for (b3), a classical solution in R1,1 for (c1), and a
classical solution in R1,−1 for (c2).

The last two pictures of Figure 5.1 treat the situation ∂2g1 > 0, ∂1g2 < 0.
The picture (d1) gives the impression that more than one solution, starting
at the vanishing stationary point, are possible. However, when looking at the
situation just before the stationary points vanish (picture (d2)), one sees that
both stationary points are unstable and that there is no bounded limit cycle
in the unit square. Therefore, this situation cannot occur at the end of a
codimension-2 sliding.

5.3 Justification of the algorithm of Section 4.3.3

In the situation of the first three pictures of Figures 4.8 and 4.9 there is
exactly one solution exiting the codimension-2 hyper-surface. Let us never-
theless briefly discuss the hidden dynamics in these situations. The condition
G1,1(y∗, λ∗1, λ

∗
2) = 0, which in terms of (2.9) reads ∂1g1(u∗1, u

∗
2) = 0, implies

that the hyperbola g1(u1, u2) = 0 is degenerate. It is the union of the horizon-
tal and vertical asymptote. The assumption (4.13) implies that at the left side
of the unit square and in a neighbourhood of the stationary point (u∗1, u

∗
2) the

hyperbola g1(u1, u2) = 0 is oriented to the right. The positivity of detG and
of G2,2 imply that the hyperbola g2(u1, u2) = 0 crosses the stationary point
(u∗1, u

∗
2) from bottom left to top right.
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The additional assumption f1,11 > 0 in Figure 4.8 implies that the vertical
asymptote of g1(u1, u2) = 0 is outside the unit square. The upper pictures of
Figure 5.2 illustrate the four situations of Figure 4.8. The vector field of the
hidden dynamics is shown on the unit square and on a neighbourhood of it.
The oriented hyperbolas are indicated in blue, and 20 solutions with randomly
chosen initial values 10−6-close to the stationary point are plotted in red. An
inspection of the vector field shows that the solutions spiral outwards in the
first picture. Apparently, there is an infinity of solutions starting at t = ti at
the point y∗. In the second and third situations the solutions all tend to a
classical solution in R1,1 and R−1,−1, respectively.

Fig. 5.3 Basin of attraction for
the two classical solutions

The fourth picture indicates the existence
of two classical solutions, one in R1,1 and the
other in R−1,−1. Figure 5.3 shows the basin
of attraction of the two solutions. For any ini-
tial value in the grey region the solution con-
verges to the classical solution in R−1,−1, and
for initial values in the white region it con-
verges to R1,1. This clearly shows that there
is non-uniqueness of the solution of the dis-
continuous problem.

The assumption f1,11 < 0 in Fig-
ure 4.9 implies that the vertical asymptote of
g1(u1, u2) = 0 is inside the unit square. The
lower pictures of Figure 5.2 illustrate the four situations of Figure 4.9. The
second, third, and fourth pictures are similar as before with the exception
that the classical solution in R1,1 is now a codimension-1 sliding along R0,1.
This is because the solution of the hidden dynamics cannot cross the vertical
asymptote.

An explanation for the first picture of the lower row in Figure 5.2 is more
tricky. The solution spirals outwards around the stationary point, but remains
to the left of the asymptote. On the other hand, the only stable solution
leaving the square is classical in the region R1,−1, which is to the right of the
asymptote. How can we reach this solution? The reason is that G1,1(y, λ1, λ2)
is negative before t = ti, but positive after it. Hence, immediately after t = ti
the hyperbola g1(u1, u2) = 0 is not degenerate and the vertical asymptote is
no longer a separation of solutions of the hidden dynamics. After a few spirals
around the stationary point, the solution can escape to the right and follow
the classical solution in R1,−1.

6 Some details for an implementation

Every code for solving ordinary differential equations having an option for
event location is suitable for using the algorithm of the present work.

Solving the algebraic system. The most convenient way of computing the sliding
modes is to solve the algebraic system (2.3) with respect to the λj , and to insert



An efficient algorithm for solving piecewise-smooth dynamical systems 21

the result into (2.2), which then gives an ordinary differential equation. For
codimension-1 an explicit formula for λ1 is given by (4.2). For codimension-2
the system (4.6) presents two quadratic equations for λ1 and λ2. A suitable
linear combination permits to eliminate the product λ1λ2 and gives a linear
relation between λ1 and λ2. Inserted into the original equation this yields a
quadratic equation in one variable. We thus get two solutions of the system.
One has to choose the solution for which the determinant of the matrix (4.7)
is positive.

Spiraling solutions. When the solution spirals inwards to (or outwards from)
a codimension-2 discontinuity hyper-surface we are concerned with an infinity
of accumulating transition points. In practice this can be treated as follows
(see [17, Section 7]).

Assume that we have detected a point y0 for which α2(y0) = 0 and α1(y0) =
−δ with 0 < δ � 1 very small. Assume further that, close to Σ1 ∩ Σ2, the
four vector fields are constant and satisfy (4.14) and (4.15). After a lap around
Σ1 ∩Σ2 the solution is, up to first order in δ,

y1 = y0 + t01 f
−1,−1 + t02 f

1,−1 + t03 f
1,1 + t04 f

−1,1 (6.1)

where

y10 = y0 + t01 f
−1,−1, t01 = δ/f−1,−11 , α1(y10) = 0, α2(y10) = t01f

−1,−1
2

y20 = y10 + t02 f
1,−1, t02 = −t01f

−1,−1
2 /f1,−12 , α1(y20) = t02f

1,−1
1 , α2(y20) = 0

y30 = y20 + t03 f
1,1, t03 = −t02f

1,−1
1 /f1,11 , α1(y30) = 0, α2(y30) = t03f

−1,−1
2

y40 = y30 + t04 f
−1,1, t04 = −t03f

1,1
2 /f−1,12 , α1(y40) = t04f

−1,1
1 , α2(y40) = 0

and y1 = y40 . We note that α2(y1) = 0,

α1(y1) = −γ δ, γ =
f−1,11

f−1,12

· f
1,1
2

f1,11

· f
1,−1
1

f1,−12

· f
−1,−1
2

f−1,−11

(6.2)

and the advanced time t0 = t01 + t02 + t03 + t04 satisfies

t0 = κ δ, κ =
1

f−1,−11

(
1− f−1,−12

f1,−12

(
1− f1,−11

f1,11

(
1− f1,12

f1,−12

)))
. (6.3)

We are now in exactly the same situation as before with the exception that
δ is replaced by γ δ (note that γ < 1). We denote by y2, y3, . . . the solution
approximations after the next rounds and by t1, t2, . . . the time needed to
advance the round. In every round we get an additional factor γ. This shows
a geometric decay for α1(yj) → 0, and the total time until convergence is
t0 + t1 + t2 + . . . = κδ(1 + γ + γ2 + . . .) = κδ/(1− γ).

Based on this analysis we propose the following algorithm: as soon as we
detect the situation of Section 4.4 we stop the integration at a point y0, where
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α1(y0) = −δ with 0 < δ � 1, and α2(y0) = 0. We then advance the current
time by κδ/(1−γ) to get t∗, and we take as solution approximation the vector

y∗ = y0 + t∗1 f
−1,−1 + t∗2 f

1,−1 + t∗3 f
1,1 + t∗4 f

−1,1, (6.4)

where t∗j = t0j/(1 − γ). A projection of y∗ onto Σ1 ∩ Σ2 is recommended.

With this first order analysis we get an error proportional to δ2. It is therefore
reasonable to choose δ =

√
tol , where tol is the accuracy required in the

integration of the differential equations.
The situation where the solution spirals outwards from a codimension-2

sliding (Figure 4.8) can be treated similarly. Here, we have α1(y0) = 0 and
α2(y0) = 0, and without loss of generality we assume (4.14), but this time we
have γ > 1. We consider

y∗ = y0 + t01 f
−1,−1 + t02 f

1,−1 + t03 f
1,1 + t04 f

−1,1, (6.5)

which is formally the same as (6.4), but now y0 ∈ Σ1 ∩Σ2, y∗ is the solution
approximation after time κδ, and the vector field spirals outwards. Up to first
order in δ (assuming α1(y) and α2(y) to be affine functions) this approxima-
tion satisfies α2(y∗) = 0 and α1(y∗) = −δ(γ − 1), and can be interpreted as
a solution with negative time starting at y∗ and ending up (after infinitely
many rounds) at y0. With the value y∗ from (6.5) we can then continue the
integration of the outwards spiraling solution. Since δ > 0 is a free parameter,
we get in this way a one-parameter family of solution approximations.

Remark 6.1 The switching between codimension-2 sliding and (outwards) spi-
raling solution is related to the bilinear interpolation (2.2) through the con-
dition (4.12). A similar switching has been studied in [11], where instead of
bilinear interpolation the author considers moments sliding vector fields, which
constitutes of a different kind of Filippov vector fields.

7 Conclusion

We have presented an algorithm for the numerical treatment of discontinu-
ous dynamical systems. It considers all generic situations up to codimension
two. The main focus is on the switching between different types of solutions
(classical and sliding in codimension 1 and 2).

In the case of non-uniqueness of Filippov solutions the algorithm selects
the solution that can be interpreted as the limit solution of a regularized differ-
ential equation. When exiting a codimension-2 discontinuity hyper-surface, we
use a scaling-invariant criterion, which makes the exit point from a codimension-
2 sliding unique. In most situations this provides a unique switching. There
are three exceptions.

– Entering the intersection Σ1 ∩Σ2. In the left two situations of Figure 4.5
we have non-uniqueness and the limit solution of a regularization depends
on the scaling (see Example 3 of [17]). Putting more weight to one of the
constraints permits to select a specific solution.
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– Exiting the intersection Σ1∩Σ2. In the right pictures of Figure 5.2 we also
have non-uniqueness. This is independent of the scaling, because in any
case the basin of attraction of both solutions are non empty (Figure 5.3).

– Exiting Σ1 ∩Σ2 through spiraling. In the upper left picture of Figure 5.2
the solution exits a co-dimension-2 sliding through spiraling. As a conse-
quence of our scaling-invariant criterion (4.12) we have a one-parameter
family of exiting solutions. With the usual criterion (4.11), we would have
a two-parameter family of exiting solution, because the exit point is not
unique.
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