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Abstract

The conjectures in the title deal with the zeros xj , j = 1, 2, . . . , n,
of an orthogonal polynomial of degree n > 1 relative to a nonnegative
weight function w on an interval [a, b] and with the respective elemen-

tary Lagrange interpolation polynomials `
(n)
k of degree n − 1 taking

on the value 1 at the zero xk and the value 0 at all the other zeros xj .

They involve matrices of order n whose elements are integrals of `
(n)
k ,

either over the interval [a, xj ] or the interval [xj, b], possibly contain-
ing w as a weight function. The claim is that all eigenvalues of these
matrices lie in the open right half of the complex plane. This is proven
to be true for Legendre polynomials and a special Jacobi polynomial.
Ample evidence for the validity of the claim is provided for a variety
of other classical, and nonclassical, weight functions when the inte-
grals are weighted, but not necessarily otherwise. Even in the case of
weighted integrals, however, the conjecture is found by computation
to be false for a piecewise constant positive weight function. Con-
nections are mentioned with the theory of collocation Runge–Kutta
methods in ordinary differential equations.
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(Ernst.Hairer@unige.ch)

1



1 Introduction

Let w be a nonnegative weight function on [a, b], −∞ ≤ a < b ≤ ∞, and pn
the orthonormal polynomial of degree n relative to the weight function w.
Let {xj}

n
j=1 be the zeros of pn and

(1) `
(n)
k (x) =

∏

1≤j≤n

j 6=k

x− xj

xk − xj
, k = 1, 2, . . . , n,

the elementary Lagrange interpolation polynomial of degree n−1 having the
value 1 at xk and 0 at all the other zeros xj. The Stenger conjectures relate
to the eigenvalues of matrices of order n whose elements are certain integrals
involving the elementary Lagrange polynomials (1), the claim being that the
real part of all eigenvalues is positive. We distinguish between the restricted

Stenger conjecture ([8, §2.3, Remark 2.2]), in which the matrices are

(2)

Un = [u
(n)
jk ], u

(n)
jk =

∫ xj

a

`
(n)
k (x)dx,

j, k = 1, 2, . . . , n,

Vn = [v
(n)
jk ], v

(n)
jk =

∫ b

xj

`
(n)
k (x)dx,

and the extended Stenger conjecture (called “new conjecture” in [8, §2.4]), in
which the matrices are

(3)

Un = [u
(n)
jk ], u

(n)
jk =

∫ xj

a

`
(n)
k (x)w(x)dx,

j, k = 1, 2, . . . , n,

Vn = [v
(n)
jk ], v

(n)
jk =

∫ b

xj

`
(n)
k (x)w(x)dx,

where w is assumed to be positive a.e. on [a, b]. (For the fact that this as-
sumption is essential, see Sections 7 and 8.) Thus, in the latter conjecture
the elements of Un, Vn depend on the weight function w not only through
the polynomials `

(n)
k , but also by virtue of w being part of the integration

process. Note that, unlike for the extended conjecture, the restricted conjec-
ture requires [a, b] to be a finite interval, at least for one of the two matrices
Un, Vn.
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We also note that the order in which the xj are arranged is immaterial
since a permutation of j = {1, 2, 3, . . . , n} implies the same permutation
of k = {1, 2, 3, . . . , n}, which amounts to a similarity transformation of Un

resp. Vn, and therefore leaves the eigenvalues unchanged.
The weight function w(x) = 1 on [−1.1] is special in the sense that the

extended conjecture is the same as the restricted one and will be simply
called the Stenger conjecture. Its proof will be given in Section 4. In Sec-
tion 2 we will prove that the eigenvalues of Un and Vn in the restricted as
well as in the extended Stenger conjecture are the same if w is a symmetric
weight function. In Section 3 we show that, both in the restricted and ex-
tended conjecture, the matrix U

(α,β)
n belonging to the Jacobi weight function

w(x) = (1− x)α(1 + x)β on [−1, 1] with parameters α, β is the same as the

matrix V
(β,α)
n with the Jacobi parameters interchanged. Section 5, devoted

to the restricted Stenger conjecture, shows, partly by numerical computa-
tion, that the conjecture may be true for large classes of weight functions,
but can also be false for other classes of weight functions. In contrast, Sec-
tion 6 provides ample computational support for the validity of the extended
Stenger conjecture for a variety of classical and nonclassical weight functions.
Discrete weight functions are considered in Section 7. In Section 8 the ex-
tended Stenger conjecture is challenged in the case of a piecewise constant
positive weight function. Related work on collocation Runge–Kutta methods
is mentioned in the Appendix.

2 Symmetric weight functions

We assume here the weight function w(x) to be symmetric, i.e., w(−x) =
w(x) on [−b, b], 0 < b ≤ ∞, and the zeros xj of the corresponding orthonor-
mal polynomial pn ordered increasingly,

−b < x1 < x2 < · · · < xn < b.

We then have, by symmetry,

(4) xj + xn+1−j = 0, j = 1, 2, . . . , n.

Theorem 1. If w is symmetric, the eigenvalues of Vn are the same as

those of Un, both in the case of the restricted (where b < ∞) and the extended

Stenger conjecture.
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Proof. We present the proof for the extended conjecture, the one for
the restricted conjecture being the same (just drop the factor w(t) in all
integrals). From the definition of Vn in (3), we have

vjk =

∫ b

xj

`
(n)
k (x)w(x)dx =

∫ −xj

−b

`
(n)
k (−t)w(t)dt,

and, therefore, by (4),

vjk =

∫ xn+1−j

−b

`
(n)
k (−t)w(t)dt.

Since `
(n)
k (−t) = 1 if −t = xk, that is, t = −xk = xn+1−k, and `

(n)
k (−t) = 0 if

t = xj, j 6= n+ 1− k, we get

vjk =

∫ xn+1−j

−b

`
(n)
n+1−k(x)w(x)dx,

thus, by (3) (with a = −b),

vjk = un+1−j,n+1−k.

In matrix form, this can be written as

Vn =











1
...

1
1











Un











1
...

1
1











,

which is a similarity transformation of Un. Hence, Vn and Un have the same
eigenvalues. �

3 Jacobi weight functions

In this section we look at Jacobi weight functions

(5) w(α,β)(x) = (1− z)α(1 + x)β on [−1, 1],

where α, β are greater than −1.
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Switching Jacobi parameters has the effect of turning a U -matrix into a
V -matrix and vice versa. More precisely, we have

Theorem 2. Let U
(α,β)
n be the matrix Un for Jacobi polynomials with

parameters α, β, and V
(β,α)
n the matrix Vn for Jacobi polynomials with pa-

rameters β, α. Then

(6) U (α,β)
n = V (β,α)

n ,

both in the restricted and extended Stenger conjecture.

Proof. We give the proof for the restricted Stenger conjecture. It is the
same for the extended conjecture, using w(α,β)(−x) = w(β,α)(x).

We denote quantities x related to Jacobi parameters α, β by x∗ af-
ter interchange of the parameters. Since the Jacobi polynomial satisfies
P

(α,β)
n (x) = (−1)nP

(β,α)
n (−x) (cf. [9, Eq. (4.1.3)]), we can take x∗

j = x
(β,α)
j =

−xj = −x
(α,β)
j for the zeros of P

(β,α)
n . Noting that

`
(n)
k (x;α, β) =

∏

j 6=k

x− xj

xk − xj
= −

∏

j 6=k

x + x∗
j

x∗
k − x∗

j

=
∏

j 6=k

(−x)− x∗
j

x∗
k − x∗

j

= `
(n)
k (−x; β, α),

we get

u
(α,β)
jk =

∫ xj

−1

`
(n)
k (t;α, β)dt =

∫ xj

−1

`
(n)
k (−t; β, α)dt =

∫ 1

x∗
j

`
(n)
k (x; β, α))dx = v

(β,α)
jk .

�

4 Proof of the Stenger conjecture for Legen-

dre polynomials

By virtue of Theorem 1, it suffices to consider the matrix Un.
Let λ ∈ C be an eigenvalue of Un and y = [y1, y2, . . . , yn]

T ∈ Cn a
corresponding eigenvector,

(7) Uny = λy, y 6= [0, 0, . . . , 0]T ,

so that

(8)

∫ xi

−1

(

n
∑

j=1

`
(n)
j (x)yj

)

dx = λyi, i = 1, 2, . . . , n.
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Let y(x) ∈ Pn−1 be the unique polynomial of degree ≤ n− 1 interpolating to
yj at xj, j = 1, 2, . . . , n. By the Lagrange interpolation formula, and (8), we
then have

(9)

∫ xi

−1

y(t)dt = λy(xi), i = 1, 2, . . . , n.

With wi, i = 1, 2, . . . , n, denoting the weights of the n-point Gauss–Legendre
quadrature formula, multiply (9) by wiy(xi) and sum over i to get

n
∑

i=1

wi y(xi)

∫ xi

−1

y(t)dt = λ
n
∑

i=1

wi |y(xi)|
2.

Since y(x)
∫ x

−1
y(t)dt is a polynomial of degree 2n − 1, and n-point Gauss

quadrature is exact for any such polynomial, and since |y(x)|2 is a polynomial
of degree 2n− 2, we have

(10)

∫ 1

−1

y(x)

(
∫ x

−1

y(t)dt

)

dx = λ

∫ 1

−1

|y(x)|2dx.

Integration by parts on the left yields the identity

(11)

∫ 1

−1

y(x)

(
∫ x

−1

y(t)dt

)

dx +

∫ 1

−1

y(x)

(
∫ x

−1

y(t)dt

)

dx =

∣

∣

∣

∣

∫ 1

−1

y(t)dt

∣

∣

∣

∣

2

.

The real part of the left-hand side of (10) is

1

2

[
∫ 1

−1

y(x)

(
∫ x

−1

y(t)dt

)

dx +

∫ 1

−1

y(x)

(
∫ x

−1

y(t)dt

)

dx

]

,

which, by (11), equals 1
2

∣

∣

∣

∫ 1

−1
y(t)dt

∣

∣

∣

2

. Therefore, taking the real part on the

right of (10) yields

(12) Reλ

∫ 1

−1

|y(x)|2dx =
1

2

∣

∣

∣

∣

∫ 1

−1

y(t)dt

∣

∣

∣

∣

2

.

From this, it follows that Reλ ≥ 0.
To prove strict positivity of Reλ, we have to show that the integral on

the right of (12) does not vanish. To do this, we look at
∫ x

−1
y(t)dt− λy(x),
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which is a polynomial of degree n vanishing at xi, i = 1, 2, . . . , n, by (9).
Therefore,

(13)

∫ x

−1

y(t)dt− λy(x) = constPn(x),

where Pn is the Legendre polynomial of degree n. We now multiply (13) by
(1 − x)k−1, 1 ≤ k ≤ n, and integrate over [−1, 1]. Then, by orthogonality,
we get

∫ 1

−1

(1− x)k−1

(
∫ x

−1

y(t)dt

)

dx = λ

∫ 1

−1

(1− x)k−1y(x)dx.

On the left, integrating by parts, letting

u(x) =

∫ x

−1

y(t)dt, v′(x) = (1− x)k−1,

u′(x) = y(x), v(x) =

∫ x

1

(1− t)k−1dt = −(1− x)k/k ,

and noting that u(−1) = v(1) = 0, we get

(14)

∫ 1

−1

(1− x)k

k
y(x)dx = λ

∫ 1

−1

(1− x)k−1y(x)dx, 1 ≤ k ≤ n.

Now suppose that
∫ 1

−1
y(x)dx = 0. Then (14) for k = 1 implies that

y(x) is orthogonal to all linear functons. Putting k = 2 in (14) then implies
orthogonality of y(x) to all quadratic functions. Proceding in this manner
up to k = n − 1, we conclude that y(x) is orthogonal to all polynomials of

degree n− 1, in particular to itself, so that
∫ 1

−1
y2(x)dx = 0, hence y(x) ≡ 0.

This contradicts (7). Thus, by (12), Reλ > 0. �

5 The restricted Stenger conjecture

5.1 Proof of the restricted Stenger conjecture for a
special Jacobi polynomial

Here we consider the weight function w(x) = 1 − x on [−1, 1], that is, the
Jacobi weight function (1− x)α(1 + x)β with parameters α = 1, β = 0, and
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denote by xi, i = 1, 2, . . . , n, the zeros of the Jacobi polynomial P
(1,0)
n and

by Un the matrix in (2) formed with these zeros xi. As is well known, the xi

are the internal nodes of the (n+1)-point Gauss–Radau quadrature formula

(15)

∫ 1

−1

f(x)dx =
n
∑

i=1

wif(xi) + wn+1f(xn+1), f ∈ P2n,

where xn+1 = 1.
Let again λ ∈ C be an eigenvalue of Un and y = [y1, y2, . . . , yn] ∈ Cn a

corresponding eigenvector, and y(x) as defined in Section 4. Multiplying (9)
now by wi(1− xi)y(xi) and summing over i = 1, 2, . . . , n+ 1, we obtain

n+1
∑

i=1

wi(1− xi)y(xi)

∫ xi

−1

y(t)dt = λ
n+1
∑

i=1

wi(1− xi)|y(xi)|
2.

(The last term in the sums on the left and right, of course, are zero.) There-
fore, by (15), since (1−x)y(x)

∫ x

−1
y(t)dt is a polynomial of degree ≤ 2n, and

(1− x)|y(x)|2 a polynomial of degree ≤ 2n− 1,

(16)

∫ 1

−1

(1− x)y(x)

(
∫ x

−1

y(t)dt

)

dx = λ

∫ 1

−1

(1− x)|y(x)|2dx.

The real part of the left-hand side of (16) is
(17)

1

2

[∫ 1

−1

(1− x)y(x)

(∫ x

−1

y(t)dt

)

dx +

∫ 1

−1

(1− x)y(x)

(∫ x

−1

y(t)dt

)

dx

]

=
1

2

∫ 1

−1

(1− x)
d

dx

∣

∣

∣

∣

∫ x

−1

y(t)dt

∣

∣

∣

∣

2

dx,

having used the product rule of differentiation on the right. Integration by
parts then yields

1

2

∫ 1

−1

∣

∣

∣

∣

∫ x

−1

y(t)dt

∣

∣

∣

∣

2

dx = Reλ

∫ 1

−1

(1− x)|y(x)|2dx.

Since the integral on the right is positive, and so is the integral on the left,
there follows Reλ > 0. �

It may be thought that the same kind of proof might work also for Ja-
cobi weight functions with parameters α = 0, β = 1 or α = β = 1, using

8



Gauss–Radau quadrature with fixed node −1 or Gauss–Lobatto quadrature,
respectively. The last step in the proof (integration by parts of the integral
on the right of (17)), however, fails to produce the desired conclusion, the
first factor in that integral being 1 + x, resp. 1− x2.

5.2 A Counterexample

The simplest conterexample we came across involves a Gegenbauer polyno-
mial of small degree.

Counterexample.

(18) pn(x) = C(α)
n (x), n = 5, α = 10,

where C
(α)
n is the Gegenbauer polynomial of degree n.

From [1, Eq. 22.3.4] one finds

C
(α)
5 (x) = α(α + 1)(α+ 2) x

[

4

15
(α + 3)(α + 4) x4 −

4

3
(α + 3) x2 + 1

]

.

One zero of C
(α)
5 , of course, is 0, while the other four are the zeros of the

polynomial P in brackets. When α = 10, one finds

P (x) =
1

3

(

728

5
x4 − 52 x2 + 3

)

.

This is a quadratic polynomial in x2, the zeros of which could be found explic-
itly. However, we proceed computationally, using Matlab, since eventually,
to obtain eigenvalues, one has to compute anyway.

The Matlab routine doing the computations is counterex.m.1 It com-
putes the elements of Un in (2) (where n = 5) exactly by 3-point Gauss–
Legendre quadrature of the last integral in

(19) ujk =

∫ xj

−1

`
(5)
k (x)dx =

1

2
(1+xj)

∫ 1

−1

`
(5)
k

(

1

2
(1 + xj) t−

1

2
(1− xj)

)

dt

1All Matlab routines referenced in this paper, and all textfiles used, can be accessed at
CONJS of the website https://www.cs.purdue.edu/archives/2002/wxg/codes.
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and uses a routine lagrange.m for calculating the elementary Lagrange in-
terpolation polynomials as well as the OPQ routines r jacobi.m, gauss.m.
For the latter, see [4, pp. 301, 304].

The output, showing the five eigenvalues d of U5, is

>> counterex

d =

.431796388637445 + 0.000000000000000i

.285123529721968 + .272861054932517i

.285123529721968 - .272861054932517i

-.001021724040688 + .286723270044925i

-.001021724040688 - .286723270044925i

>>

The last pair of eigenvalues has negative real part, disproving, at least com-
putationally, the restricted Stenger conjecture. The extended conjecture,
however, seems to be valid for this example; see Section 6.2, Example 1.

5.3 Conjectures

The counterexample in Section 5.2 is symptomatic for more general coun-
terexamples, not only regarding Gegenbauer, but also many other weight
functions. They are formulated here as separate conjectures, all firmly rooted
in computational evidence.

5.3.1 Gegenbauer polynomials

Conjecture 1. The restricted Stenger conjecture for Un (and, by Theorem

1, also for Vn) is true for all Gegenbauer polynomials C
(α)
n with 2 ≤ n ≤ 4,

but for n ≥ 5 is true only for α > −1 up to some αn > 1.

The routine Uconj restr jac.m evaluates the matrix Un (for Jacobi poly-
nomials) in Matlab double-precision arithmetic and its eigenvalues in 32-
digit variable-precision arithmetic. Since the eigenvalues become more ill-
conditioned as n increases, we first make sure that they are accurate to at
least four significant decimal digits by running the routine entirely in 32-digit
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arithmetic for selected values of α (and also of β) in (−1, 1] and selected val-
ues of n, using the routine sUconj restr jac.m, and comparing the results
with those obtained in double precision.

Conjecture 1 has then been confirmed for all α = −.9 : .1 : 10, using the
routine run Uconj restr jac.m. Estimates of αn have been obtained by a
bisection-type procedure and are shown in Table 1. They are ”estimates” in
the sense that the conjecture is true for α ≤ αn, but false for α = αn + .001.

n αn n αn

5 9.000 25 1.025
10 1.264 30 1.017
15 1.081 35 1.012
20 1.041 40 1.009

Table 1. Estimates of αn, n = 5 : 5 : 40

It appears that αn converges monotonically down to 1 as n → ∞.

5.3.2 Jacobi polynomials

Conjecture 2. The restricted Stenger conjecture for Un holds true in the

case of Jacobi polynomials P
(α,β)
n , for all n > 1, if −1 < α, β ≤ 1, but not

necessarily otherwise.

The positive part of the conjecture has been confirmed for [α, β] = −.9 :
.1 : 1, and in each case for n = 2 : 40, using the routine run Uconj restr jac.m.
The negative part follows from Conjecture 1, Table 1 (if true). By Theorem
2, the same conjecture can be made for the matrix Vn.

5.3.3 Algebraic/logarithmic weight functions

Here we first examine weight functions of the type

(20) wα(x) = xα log(1/x) on [0, 1] with α > −1.

Conjecture 3. For the matrix Un, the restricted Stenger conjecture holds

true in the case of the weight function (20), for all n > 1, if −1 < α ≤ α1,

where 1 < α1 < 2, but not necessarily otherwise. For the matrix Vn, in

contrast, the conjecture is true for all α > −1.
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In order to compute the zeros xj of the required orthogonal polynomials

(needed to obtain the Lagrange polynomials `
(n)
k ), for degrees 2 ≤ n ≤ 40 and

arbitrary α > −1, we need a routine that generates the respective recurrence
coefficients for the orthogonal polynomials. This can be done by applying
a multicomponent discretization procedure, using appropriate quadrature
rules to discretize the integral

∫ 1

0
f(x)xα log(1/x)dx, where f is a polynomial

of degree ≤ 2n − 1. It was found to be helpful to split the integral in
two integrals, one extended from 0 to ξ, and the other from ξ to 1, 0 <
ξ < 1, and use ξ to optimize the rate of convergence (that is, to minimize
the parameter Mcap in the discretization routine mcdis.m). Using obvious
changes of variables, one finds

(21)

∫ ξ

0

f(x)xα log(1/x)dx = ξα+1

[

log(1/ξ)

∫ 1

0

f(tξ)tαdt

+
1

(1 + α)2

∫ ∞

0

f(ξe−t/(1+α))te−tdt

]

,

(22)

∫ 1

ξ

f(x)xα log(1/x)dx = (1− ξ)

∫ 1

0

f(x(t))[x(t)]α log(1/x(t))dt,

where in (22), x(t) = (1 − ξ)t + ξ maps the interval [0, 1] onto [ξ, 1]. In
(21), the first integral on the right can be discretized (without error) by n-
point Gauss–Jacobi quadrature on [0, 1] with Jacobi parameters 0 and α, and
the second integral (with small error) by sufficiently high-order generalized
Gauss–Laguerre quadrature with Laguerre parameter 1. The integral in (22)
can be discretized by sufficiently high-order Gauss–Legendre quadrature on
[0, 1]. For the optimal ξ, one can use, as found empirically (using the routine
run r alglog1.m),

ξ =

{

[1 + 10(α + .9)]/1000 if − .9 ≤ α ≤ 1,
.02 if α > 1.

This is implemented in the routine r alglog1.m.
The routine sUconj restr log1.m, run with dig = 32, generates the

matrix Un and its eigenvalues in 32-digit arithmetic. It relies on the global
n × 2 arrays ab and ableg containing the first n recurrence coefficients
of the (monic) orthogonal polynomials relative to the weight functions wα

and 1, respectively (both supported on [0, 1]). The array ab, when α =
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−1/2, 0, 1/2, 1, 2 is available, partly in [5, 2.3.1,2.41,2.4.3], to 32 digits for
n at least as large as 100, whereas ableg can easily be generated by the
routine sr jacobi01.m. For these five values of α, we can therefore produce
reference values to high precision for the eigenvalues of Un.

The Matlab double-precision routine Uconj restr log1.m, also run with
dig = 32, generates the matrix Un in double-precision arithmetic and the
eigenvalues in 32-digit arithmetic, for arbitrary values of α > −1, its global
array ab being produced by the routine r alglog1.m. When the eigenvalues
so obtained are compared with the reference values, for the above five val-
ues of α, it is found that for n ≤ 40 they all are accurate to at least four
decimal digits (cf. test Uconj restr log1.m). This provides us with some
confidence that the routine Uconj restr log1.m, when n ≤ 40, will produce
eigenvalues to the same accuracy, also when α is arbitrary in the range from
−1/2 to 2.

The routine run Uconj restr log1.m validates the restriced Stenger con-
jecture for the matrix Un when α = −1/2, 0, 1/2, 1, at least for all n between
2 and 40, but refutes it when α = 2 and n = 8, producing a pair of eigenvalues
with negative real part −1.698 . . . (−3). This provides some indication that
Conjecture 3 for the matrix Un may be valid. We strengthen this expectation
by running the routine for additional values of α, and at the same time try
to estimate the value of α1 in dependence of n by applying a bisection-type
procedure. It is found that, when n ≤ 40, Conjecture 3 for Un is true with
α1 as shown in Table 2.

n α1

10 1.511
20 1.253
30 1.203
40 1.179

Table 2. The values of α1 in Conjec-
ture 2 in dependence of n

It appears that α1 is monotonically decreasing. Since it is bounded below by
1, it would then have to converge to a limit value (perhaps = 1).

The routines dealing with the matrix Vn are Vconj restr log1.m and
run Vconj restr log1.m. They validate Conjecture 3 for the matrix Vn

when α = −1/2, 0, 1/2, 1, 2, 5, 10, in each case for 2 ≤ n ≤ 40.
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Figure 1: Eigenvalues of the matrix Un for a logarithmic weight

function and n = 10, 20, 40 (from left to right)
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Figure 2: Eigenvalues of the matrix Vn for a logarithmic weight

function and n = 10, 20, 40 (from left to right)

For illustration, the eigenvalues of Un are shown in Fig. 1 for α = 0 and
n = 10, 20, 40, and those of Vn in Fig. 2 for the same α and n.

For the weight function

(23) w(x) = xα log2(1/x) on [0, 1], with α > −1,

our conjecture for Un is the same as the one in Conjecture 3, but not so for
Vn.

CoNjecture 4. For the matrix Un, the restricted Stenger conjecture holds

true in the case of the weight function (23), for all n > 1, if −1 < α < α2,

where α2 is a number between 1 and 2, but not necessarily otherwise. For the

matrix Vn, the conjecture is false for all α > −1.

The routines used to make this conjecture are the same as those used for
Conjecture 3 but with ”log1” replaced by ”log2”. The statements regarding
the matrix Un are arrived at in the same way as in Conjecture 3, the values
of α2 now being as shown in Table 3.
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n α2

10 1.852
20 1.480
30 1.394
40 1.353

Table 3. The values of α2 in Conjec-
ture 4 in dependence of n

With regard to Vn, the conjecture is found to be false for α = −1/2, 0, 1/2,
1, 2, 5 and n = 7 in each case, there being a single pair of conjugate complex
eigenvalues with negative real part.

We illustrate by showing in Fig. 3 the eigenvalues of Un for α = 0 and
n = 10, 20, 40.
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Figure 3: Eigenvalues of the matrix Un for a square-logarithmic

weight function and n = 10, 20, 40 (from left to right)

5.3.4 Laguerre and generalized Laguerre weight functions

For generalized Laguerre weight functions

(24) w(x) = xαe−x on [0,∞], α > −1,

it only makes sense to look at the U -conjecture.

Conjecture 5. For the matrix Un, the restricted Stenger conjecture is true

in the case of the weight function (24), for all n > 1, if −1 < α ≤ α0, where

1 < α0 < 2, but not necessarily otherwise.

The routines written for this conjecture are Uconj restr lag.m and run

Uconj restr lag.m. The latter, run for α = −.9 : .1 : 2, n = 2 : 40,
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confirmes the conjecture up to, and including, α = 1.2, but refutes it when
α = 1.3 and n = 40, producing a single pair of conjugate complex eigenvalues
with negative real part. The case α = 1.3 was checked by running the routine
run sUconj restr lag.m in 32-digit arithmetic, which produced eigenvalues
agreeing with those obtained in double precision to at least 12 digits. (This
check may take as many as five hours to run.) A bisection-type procedure,
run in double precision, yields the values of α0 shown in Table 4 in dependence
of n.

n α0

10 2.475
20 1.522
30 1.317
40 1.228

Table 4. The values of α0 in Conjec-
ture 5 in dependence of n

Fig. 4 shows the eigenvalues of Un when α = 0 and n = 10, 20, 40.
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Figure 4: Eigenvalues of the matrix Un for the Laguerre weight

function and n = 10, 20, 40 (from left to right)

6 The extended Stenger conjecture

To avoid extensive and time-consuming Matlab variable-precision compu-
tations, we restrict ourselves in Sections 6.2 – 6.6 to values of n that are
less than, or equal to, 30. Also note that in all figures of this section the
horizontal axis carries a logarithmic scale.
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6.1 Proof of a weak form of the extended Stenger con-
jecture for a special Jacobi polynomial

We consider here, as in Section 5.1, the Jacobi weight function w(x) = (1−
x)α(1 + x)β on [−1, 1], with α = 1, β = 0, and continue using the same
notations as in that section. In particular, we again use the (n + 1)-point
Gauss–Radau quadrature formula,

(25)

∫ 1

−1

f(x)dx =

n+1
∑

i=1

wif(xi) +Rn(f),

where xn+1 = 1, but this time include the remainder term,

(26) Rn(f) = −γn
f (2n+1)(ξ)

(2n+ 1)!
, γn = 22n+1 (n+ 1)n!4

(2n+ 1)!2

(cf. [3, top of p. 158, where γb should read γb
n]). In place of (9), we now have

(27)

∫ xi

−1

y(t)(1− t)dt = λ y(xi), i = 1, 2, . . . , n.

Multiplying this, as in Section 5.1, by wi(1 − xi)y(xi) and summing over
i = 1, 2, . . . , n+ 1, we obtain

(28)

n+1
∑

i=1

wi(1− xi)y(xi)

∫ xi

−1

y(t)(1− t)dt = λ

n+1
∑

i=1

wi(1− xi)|y(xi)|
2.

Since

(29) f(x) := (1− x)y(x)

∫ x

−1

y(t)(1− t)dt

is a polynomial of degree 2n+1 and the left-hand side of (28) is equal to the
quadrature sum on the right of (25) with f as in (29), we get

n+1
∑

i=1

wi(1− xi)y(xi)

∫ xi

−1

y(t)(1− t)dt

=

∫ 1

−1

(1− x)y(x)

(
∫ x

−1

y(t)(1− t)dt

)

dx + γn
f (2n+1)(ξ)

(2n+ 1)!
,
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where f (2n+1) is a nonnegative constant, namely

f (2n+1)(ξ) =
(2n+ 1)!

n+ 1
|an−1|

2,

with an−1 the leading coefficient (of xn−1) of the polynomial y(x). Thus,

(30)

n+1
∑

i=1

wi(1− xi)y(xi)

∫ xi

−1

y(t)(1− t)dt

=

∫ 1

−1

(1− x)y(x)

(
∫ x

−1

y(t)(1− t)dt

)

dx + Cn,

where
Cn =

γn
n+ 1

|an−1|
2.

Now the real part of the left-hand side of (28), by (30), is

1

2

[
∫ 1

−1

(1− x)y(x)

(
∫ x

−1

y(t)(1− t)dt

)

dx

+

∫ 1

−1

(1− x)y(x)

(
∫ x

−1

y(t)(1− t)dt

)

dx

]

+ Cn

=
1

2

∫ 1

−1

d

dx

∣

∣

∣

∣

∫ x

−1

y(t)(1− t)dt

∣

∣

∣

∣

2

dx + Cn

=
1

2

∣

∣

∣

∣

∫ 1

−1

y(t)(1− t)dt

∣

∣

∣

∣

2

+ Cn,

so that, by (28),

(31)
1

2

∣

∣

∣

∣

∫ 1

−1

y(t)(1− t)dt

∣

∣

∣

∣

2

+ Cn = Reλ

∫ 1

−1

(1− x)|y(x)|2dx.

the integrand on the right being a polynomial of degree 2n − 1. From this,
it follows that Reλ ≥ 0. �

Strict positivity of Reλ holds if |an−1| > 0, that is, if y(x) is a polynomial
of exact degree n − 1, or if the integral on the left of (31) does not vanish.
Computation, using the routines check pos.m and run check pos.m, con-
firms that both are indeed the case, at least for n ≤ 40. Table 5 shows, for

selected values of n, the minimum values of
∣

∣

∣

∫ 1

−1
y(t)(1− t)dt

∣

∣

∣
and |an−1|, the

minimum being taken over all eigenvalues/vectors. For checking purposes,
the computations have also been carried out entirely in 32-digit arithmetic.
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n min int min |an−1| n min int min |an−1|
5 2.273(–1) 4.425(–1) 25 4.906(–1) 1.088(–1)
10 4.228(–1) 2.062(–1) 30 4.809(–1) 1.126(–1)
15 4.200(–1) 1.358(–1) 35 4.595(–1) 1.162(–1)
20 4.966(–1) 1.193(–1) 40 4.435(–1) 1.295(–1)

Table 5. The minimum values min int of
∣

∣

∣

∫ 1
−1 y(t)(1− t)dt

∣

∣

∣
and

|an−1|

6.2 Jacobi weight functions

The element u
(n)
jk of the matrix Un in (3) for the Jacobi weight function

w(x) = (1− x)α(1 + x)β on [−1, 1] is

u
(n)
jk =

∫ xj

−1

`
(n)
k (x)w(x)dx =

1

2
(1 + xj)

∫ 1

−1

`
(n)
k (x(t))w(x(t))dt,

where

x(t) =
1

2
(1 + xj) t−

1

2
(1− xj)

maps [−1, 1] onto [−1, xj]. An elementary computation yields

(32) u
(n)
jk =

(

1 + xj

2

)α+β+1 ∫ 1

−1

`
(n)
k (x(t))

[

3− xj

1 + xj
− t

]α

(1 + t)βdt.

Although the second factor in the integrand of (32) may be algebraically
singular at a point close to, but larger than, 1 (when xj < 1 is close to 1),
we simply apply Gauss–Jacobi quadrature with Jacobi parameters 0 and β
to the integral in (32) and choose the number of quadrature points large
enough so as to produce eigenvalues of Un accurate to at least 4 decimal
places (which is good enough for plotting purposes). This is implemented
by the Matlab function Uconj ext jac.m and can be run with the Matlab
script run Uconj ext jac.m.

Example 1. Gegenbauer weight function w(x) = (1 − x2)α on [−1, 1] with
α = 10.

This is the weight function for which the restricted Stenger conjecture is
false already for n = 5 (cf. Section 5.2). The extended conjecture, however,
is found to be true for all 2 ≤ n ≤ 30; see Fig. 5 for the cases n = 5, 15, 30.
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Figure 5: Eigenvalues of the matrix Un for a special Gegenbauer

polynomial of degrees n = 5, 15, 30 (from left to right)

Example 2. Jacobi weight function with parameters (α, β) = [−.9 : .6 :
.9, 1.7 : .7 : 3.8, 4.7 : .9 : 7.4].

We used the script run Uconj ext jac.m to check the extended U -con-
jecture for all these Jacobi weight functions, separately for n = 5, 15, 30, and
found in every case that the conjecture is valid. By Theorem 2, the same is
true for the matrix Vn.

To illustrate, we show in Fig. 6 the eigenvalues of Un for the three pa-
rameter choices α = β = −.9, α = −.3, β = −.9, and α = 5.6, β = 1.7, in
each case with n = 30.
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Figure 6: Eigenvalues of the matrix Un, n = 30, for selected Jacobi

polynomials

6.3 Algebraic/logarithmic weight functions

6.3.1 The weight function w(x) = xα log(1/x) on [0, 1]

Here, for the matrix Un, we use the change of variables x = xjt in

u
(n)
jk =

∫ xj

0

`
(n)
k (x) xα log(1/x)dx = xα+1

j

∫ 1

0

`
(n)
k (xjt) t

α log(1/(xjt))dt
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to get

(33) u
(n)
jk = xα+1

j

[

log(1/xj)

∫ 1

0

`
(n)
k (xjt) t

αdt +

∫ 1

0

`
(n)
k (xjt) t

α log(1/t)dt

]

.

Both integrals can be evaluated exactly, the first by m-point Gauss–Jacobi
quadrature on [0, 1] with Jacobi parameters 0 and α, where m = dn/2e,
and the second by m-point Gauss quadrature relative to the weight function
w(t) = tα log(1/t) on [0, 1]. For the latter, the recurrence coefficients for the
relevant orthogonal polynomials (when α = 0,−1/2, 1/2, 1, 2, 5) are avail-
able to 32 decimal digits, partly in [5, 2.3.1, 2.4.1, 2.4.3], which allow us to
generate the Gaussian quadrature rule in a well-known manner (cf., e.g., [3,
§3.1.1]), using the OPQ routine gauss.m (see [4, p. 304]). This is implemented
by the Matlab function Uconj ext log1.m and can be run with the Matlab
script run Uconj ext log1.m.

Alternatively, when n ≤ 40, we may compute the recurence coefficients
for arbitrary α > −1 as described in Section 5.3.3. This is implemented by
the routines r alglog1.m, Uconj ext log1.m, and run0 Uconj ext log1.m.

Example 3. Algebraic/logarithmic weight function w(x) = xα log(1/x) on
[0, 1] with α = (−.9 : .1 : 5)(5.2 : .2 : 7)(7.5 : .5 : 10).

Our routines validate the extended Stenger conjecture for all these values
of α and 2 ≤ n ≤ 30. The eigenvalues of Un are shown in the case α = 0
in Fig. 7, and in the cases α = −1/2, 1/2 in Figs. 8 resp. 9 for n = 5, 15, 30.
They are similar when α = 1, 2, 5.
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Figure 7: Eigenvalues of Un in the case of a loga-

rithmic weight function for n = 5, 15, 30 (from left to

right)
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Figure 8: Eigenvalues of Un in the case of an al-

gebraic/logarithmic weight function with parameter

α = −1/2 for n = 5, 15, 30 (from left to right)
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Figure 9: Eigenvalues of Un in the case of an al-

gebraic/logarithmic weight function with parameter

α = 1/2 for n = 5, 15, 30 (from left to right)

With regard to Vn, the conjecture has been similarly validated, using the
routines Vconj ext log1 and run Vconj ext log1.m, for the same values of
n and α as in Example 3. To compute the matrix Vn we have used

(34) v
(n)
jk =

∫ 1

0

`
(n)
k (x)xα log(1/x)dx− u

(n)
jk

with u
(n)
jk as in (33) and the integral evaluated by dn/2e-point Gaussian

quadrature relative to the weight function w(x). The eigenvalues of Vn are
found to be similar to those for Un shown in Figs. 7 – 9.
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6.3.2 Algebraic/square-logarithmic weight function w(x) = xα log2(1/x)
on [0, 1], α > −1

Similarly as in Section 6.3.1, one finds
(35)

u
(n)
jk = xα+1

j

[

log2(1/xj)

∫ 1

0

`
(n)
k (xjt) t

αdt + 2 log(1/xj)

∫ 1

0

`
(n)
k (xjt) t

α log(1/t)dt

+

∫ 1

0

`
(n)
k (xjt) t

α log2(1/t)dt

]

,

where again the integrals can be evaluated exactly and some of the re-
quired recurrence coeffiicients taken from [5, 2.3.2], [5, 2.4.5], [5, 2.4.7].
This is implemented by the Matlab function Uconj ext log2.m and driver
run Uconj ext log2.m.

Example 4. Algebraic/square-logarithmic weight function w(x) = xα log2(1/x)
on [0, 1] with α = 0,−1/2, 1/2, 1, 2, 5.

Our routines validate the extended Stenger conjecture for all these values
of α and 2 ≤ n ≤ 30. The eigenvalues of Un in the case α = 0 are found
to be similar to those depicted in Fig. 7 for the weight function log(1/x).
For the cases α = −1/2, 1/2, 5 they are shown respectively in Figs. 10–
12 for n = 5, 15, 30. Interestingly, all eigenvalues appear to be real when
α− = −1/2.
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Figure 10: Eigenvalues of Un in the case of an algebraic/square-

logarithmic weight function, with exponent α = −1/2, for n =

5, 15, 30 (from left to right)

Similar results and validations, using the routines Vconj ext log2.m and
run Vconj ext log2.m, are obtained for the matrix Vn, which, as in (34), is
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Figure 11: Eigenvalues of Un in the case of an algebraic/square-

logarithmic weight function, with exponent α = 1/2, for n = 5, 15, 30

(from left to right)
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Figure 12: Eigenvalues of Un in the case of an algebraic/square-

logarithmic weight function, with exponent α = 5, for n = 5, 15, 30

(from left to right)

computed exactly by

(36) v
(n)
jk =

∫ 1

0

`
(n)
k (x)xα log2(1/x)dx− u

(n)
jk

with u
(n)
jk as in (35).

6.4 Laguerre and generalized Laguerre weight func-
tions

Here, the weight function is assumed to be w(x) = xαe−x on [0,∞], where
α > −1. We write

u
(n)
jk =

∫ ∞

0

`
(n)
k (x)xαe−xdx−

∫ ∞

xj

`
(n)
k (x)xαe−xdx
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and, in the second integral, make the change of variables x = xj + t to get

(37) u
(n)
jk =

∫ ∞

0

`
(n)
k (x)xαe−xdx− e−xj

∫ ∞

0

`
(n)
k (xj + t)(xj + t)αe−tdt.

The first integral can be evaluated exactly by dn/2e-point generalized Gauss–
Laguerre quadrature. The second integral, similarly as in (32) for Jacobi
weight functions, has an algebraic singularity close to, and to the left of, the
origin when xj is close to zero (and α not an integer). As in Section 6.2,
we ignore this and simply apply Gauss-Laguerre quadrature of sufficiently
high order so as to obtain plotting accuracy for all the eigenvalues of Un.
However, there is yet another complication: Around n = 25, the Gauss–
Laguerre weights, in Matlab double precision, start becoming increasingly
inaccurate (in terms of relative accuracy) and adversely affect the accuracy
of the second integral in (37). For this reason, we use 32-digit variable-
precision arithmetic to compute these weights and convert them to Matlab
double precision, once computed. At the same time we lower the accuracy
requirement from 4- to 3-digit accuracy.

Example 5. Generalized Laguerre weight function w(x) = xαe−xdx on [0,∞]
for the same values of α and n as in Example 2.

The Matlab routines implementing this and validating the conjecture in
each case are Uconj ext lag.m and run Uconj ext lag.m. They may take
several hours to run because of the extensive variable-precision work involved.
The accuracy achieved for the eigenvalues is consistently of the order of 10−4

or better, but the necessary number of quadrature points is found to be as
large as 440 (for α = −.9 and n = 30).

For illustration, we show in Fig. 13 the eigenvalues obtained in the case of
the ordinary Laguerre weight function (α = 0) and for n = 5, 15, 30. Notice
the extremely small real eigenvalues when n = 30, the smallest being of the
order 10−43.

Using

(38) v
(n)
jk =

∫ ∞

0

`
(n)
k (x)xαe−xdx− u

(n)
jk

with u
(n)
jk as in (37), the conjecture has been similarly validated with the help

of the routines Vconj ext lag.m, run Vconj ext lag.m.
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Figure 13: Eigenvalues of Un in the case of the La-

guerre weight function for n = 5, 15, 30 (from left to

right)

6.5 Hermite and generalized Hermite weight functions

These are the weight functions w(x) = |x|2µe−x2

on [−∞,∞], µ > −1/2.
Since they are symmetric, it suffices, by Theorem 1, to consider Un. To
simplify matters, we assume 2µ to be a nonnegative integer.

For the evaluation of u
(n)
jk , we distinguish the cases xj < 0 and xj ≥ 0. In

the former case, by the change of variables x = xj − t, one gets

(39) u
(n)
jk = e−x2

j

∫ ∞

0

`
(n)
k (xj − t)(t− xj)

2µe2xj te−t2dt, xj < 0.

Here, half-range Gauss–Hermite quadrature (cf. [5, 2.9.1]) is expected to
converge rapidly. When xj ≥ 0, breaking up the first integral in (3) (with
a = −∞) into two parts, one extended from −∞ to 0 and the other from 0
to xj, and making appropriate changes of variables in each, yields

(40) u
(n)
jk =

∫ ∞

0

`
(n)
k (−t)t2µe−t2dt + x2µ+1

j

∫ 1

0

`
(n)
k (xjt)e

−x2
j t

2

t2µdt, xj ≥ 0.

The first integral can be evaluated exactly by d(n + 2µ)/2e-point half-range
Gauss–Hermite quadrature. The second integral may be approximated by
Gauss–Jacobi quadrature on [0, 1] with Jacobi parameters 0 and 2µ. This,
too, is expected to converge quickly.

Example 6. Generalized Hermite weight function w(x) = |x|2µe−x2

on [−∞,∞],
µ = 0 : 1/2 : 25 and n = 5, 15, 30.

The conjecture has been validated in all cases, using the routines Uconj
ext herm.m, run Uconj ext herm.m. For illustration, the eigenvalues of Un

are shown in Fig. 14 for the case µ = 0.
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Figure 14: Eigenvalues of Un in the case of the Her-

mite weight function for n = 5, 15, 30 (from left to

right)

6.6 A weight function supported on two disjoint inter-
vals

We now consider a weight function which is not positive a.e.,

(41) w(x) =















|x|(x2 − ξ2)p(1− x2)q if x ∈ [−1,−ξ] ∪ [ξ, 1],

0 otherwise,

where 0 < ξ < 1, p > −1, q > −1. This weight function, of interest in theo-
retical chemistry when p = q = −1/2, has been studied in [2]. In our present
context, we assume, for simplicity, that p and q are nonnegative integers.
Then only integrations of polynomials are required, which, as before, can be
done exactly.

Since the weight function w is symmetric, it suffices, by Theorem 1, to
look at the matrices Un only.

Any polynomial πn orthogonal with respect to w can have at most one
zero in the interval [−ξ, ξ] where w is zero ([3, Theorem 1.20]). By symmetry,
therefore, all zeros of πn are located in the intervals (−1,−ξ) or (ξ, 1), except
when n is odd, in which case there is a zero at the origin.

The recurrence coefficients αk, βk for the (monic) polynomials πn are
known explicitly ([2, Eq. (4.1)]): All αk = 0, by symmetry, and

β0 = (1− ξ2)p+q+1Γ(p+ 1)Γ(q + 1)/Γ(p+ q + 2),

β1 =
1
2
(1− ξ2)αJ

0 + 1
2
(1 + ξ2),
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β2k = (1
2
(1− ξ2))2βJ

k /β2k−1

β2k+1 =
1
2
(1− ξ2)αJ

k + 1
2
(1 + ξ2)− β2k







k = 1, 2, 3, . . . ,

where αJ
k , β

J
k are the recurrence coefficients of the monic Jacobi polynomials

with paramters α = q, β = p. Therefore, the zeros of πn are easily computed
by the OPQ routine gauss.m (see [4, p. 304]).

The computation of u
(n)
jk is different, depending on where the zero xj is

located. In fact,

u
(n)
jk = −

1 + xj

2

∫ 1

−1

`
(n)
k (x1(t))x1(t)(x

2
1(t)− ξ2)p(1− x2

1(t))
q dt if xj < −ξ,

where x1(t) =
1+xj

2
t+

xj−1

2
maps [−1, 1] onto [−1, xj];

u
(n)
jk = −

1− ξ

2

∫ 1

−1

`
(n)
k (x2(t))x2(t)(x

2
2(t)− ξ2)p(1− x2

2(t))
q dt if xj = 0,

where x2(t) =
1−ξ
2
t− 1+ξ

2
maps [−1, 1] onto [−1,−ξ]; and

u
(n)
jk =

(

u
(n)
jk

)

xj=0
+
xj − ξ

2

∫ 1

−1

`k(x3(t))x3(t)(x
2
3(t)−ξ2)p(1−x2

3(t))
q dt if xj > ξ,

where x3(t) =
xj−ξ

2
t +

xj+ξ

2
maps [−1, 1] onto [ξ, xj].

All integrals can be computed exactly by (d(n + 1)/2e + p + q)-point
Gauss–Legendre quadrature.

Example 7. The weight function (41) with ξ = .1 : .2 : .9 and p, q = 0 : 5 for
n = 5, 15, 30.

The routines Uconj ext twoint.m, run Uconj ext twoint.m can be used
to validate the conjecture in all cases, even though the weight function is not
in the class of weight functions assumed in the conjecture. (For another such
example, see Example 9 with N = 1.)

To illustrate, we show in Fig. 15 the eigenvalues of Un, n = 5, 15, 30, in
the case ξ = 1/2, p = q = 0, i.e., for the weight function w(x) on [−1, 1]
equal to |x| outside of [−1/2, 1/2] and 0 inside.
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Figure 15: Eigenvalues of Un in the case of a two-

interval weight function for n = 5, 15, 30 (from left to

right)

7 Discrete weight functions

To demonstrate that an assuption about the weight function like the one
made for the extended Stenger conjecture is called for, we now consider a
discrete measure dλN+1 supported on N +1 points 0, 1, 2, . . . , N with jumps
wk > 0 at the points k, k = 0, 1, . . . , N . The corresponding orthogonal
polynomials, now N+1 in number, are again denoted by pn, n = 0, 1, . . . , N .
If w0 = w1 = · · · = wN = 1, we are dealing eith the classical discrete
orthogonal polynomials attributed to Chebyshev [3, Example 1.15]). They
are the special case α = β = 0 of Hahn polynomials with parameters α, β
(cf. [3, last entry of Table 1.2]). Both the weight function and the zeros of pn
are symmetric about the midpoint N/2. In particular, when N is even and
n odd, one of the zeros is equal to N/2, hence an integer.

For the elements of Un we have

(42) u
(n)
j,k =

ij
∑

i=0

wi `
(n)
k (i), ij = bxjc,

where xj are the zeros of pn (assumed in increasing order). These can be
generated by the functions r hahn.m and gauss.m.

Example 8. The measure dλN+1, N ≥ 2, with w0 = w1 = · · · = wN = 1, and
pn with 2 ≤ n ≤ N .

It is important to note that when the zeros of pn are computed by the
routine gauss.m, and when N is even and n odd, the integer zero xj = N/2
may end up becoming slightly less than N/2, in which case bxjc in (42) will
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yield an incorrect result. Similarly, the smallest zero, when computed, may
turn out to become negative, or the largest zero equal to N . To avoid these
pitfalls, we overwrite the zero, once computed, by N/2 or reset bxjc, j = 1, n,
by 0 resp. N − 1.

On running the script run Uconj ext hahn.m, using Uconj ext hahn.m,
to copmpute Un and its eigenvalues, we found that the extended Stenger
conjecture is still true for all N ≤ 10 and all 2 ≤ n ≤ N , but no longer when
N > 10. The values of N and n for which eigenvalues with negative real
parts appear are shown in Table 6 for 11 ≤ N ≤ 30.

N n N n
11 11 21 18–21
12 12 22 18–22
13 13 23 19–22 23∗

14 13 14 24 16 19–23 24∗

15 14 15 25 16 18 20–24 25∗

16 15 16 26 18 20–25 26∗

17 15–17 27 17 21∗ 22∗ 23∗ 24–26 27∗

18 16–18 28 20–25 26∗ 27∗ 28∗

19 16–19 29 18 19 22∗ 23 24 25∗ 26∗ 27 28∗ 29∗

20 17–20 30 20 22–27 28∗ 29∗ 30∗

Table 6. The presence of delinquent eigenvalues of Un in the case of
a discrete weight function

Asterisks indicate the presence of two pairs of delinquent complex conjugate
eigenvalues rather than the usual single pair. (48-digit arithmetic was used
for the last two entries in Table 6.)

Since the weight function is symmetric (with respect to the midpoint
N/2), by Theorem 1 the same pattern of validity and nonvalidity holds also
for the V -conjecture.

We illustrate by showing in Fig. 16 the eigenvalues of Un, n = N , for
N = 11, 15, 30.

Since there are no approximations involved, the results obtained should
be quite accurate. In fact, we reran Example 8 in 48-digit arithmetic and
found the double-precision eigenvalues accurate to 13, 12, and 10 digits for,
resp., n = 11, 15, 30.

With regard to the restricted Stenger conjecture, the routines used are
run Uconj restr hahn.m and Uconj restr hahn.m. They, too, confirm the
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Figure 16: Eigenvalues of Un in the case of discrete

weight functions for n = N = 11, 15, 30 (from left to

right)

validity of the conjecture for N ≤ 10 and 2 ≤ n ≤ N . But for N > 11,
there are now more values of n than shown in Table 6 for which there are
eigenvalues with negative real parts, and there can be as many as four pairs
of delinquent eigenvalues.

8 Block-discrete and ε-block-discrete weight

functions

It may be interesting to see whether the eigenvalues of Un behave similarly as
in Example 8 when the weight function is not (N +1)-discrete, but (N +1)-
block-discrete, that is, of the form

(43) w(x;N + 1) =







wν if 2ν ≤ x ≤ 2ν + 1, ν = 0, 1, . . . , N,

0 otherwise,

where w0, w1, . . . , wN , N ≥ 1, are positive numbers. Thus, the weight func-
tion is made up of N+1 “blocks” with base 1 and heights wν, ν = 0, 1, . . . , N ,
any two consecutive blocks being separated by a zero-block. More generally,
we may consider (N + 1)-ε-block-discrete weight functions, where the sepa-
rating zero-blocks are replaced by ε-blocks, that is,

(44) w(x;N + 1, ε) =



















wν if 2ν ≤ x < 2ν + 1, ν = 0, 1, . . . , N,

ε if 2ν − 1 ≤ x < 2ν, ν = 1, 2, . . . N,

0 otherwise.
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The orthogonal polynomials pn associated with the weight function w(x;
N + 1, ε) can be generated from their three-term recurrence relation, which
in turn can be computed (exactly) by a (2N + 1)-component discretization
procedure (cf. [3, §2.2.4]) using dn/2e-point Gauss–Legendre quadrature on
[0, 1]. This is implemented in Matlab double and variable precision by the
routines ab blockhahn.m, sab blockhahn.m. (For checking purposes, the
same recurrence relation was also computed by a moment-based routine in
sufficiently high precision.)

The elements ujk of the matrix Un,

ujk =

∫ xj

0

`
(n)
k (x)w(x;N + 1, ε)dx,

where xj are the zeros of pn, can be computed (exactly) as follows. Let
m = bxjc.
If m = 0,

u
(n)
jk = w0

∫ xj

0

`
(n)
k (x)dx = w0 xj

∫ 1

0

`
(n)
k (xjt)dt;

if m = 1,

ujk = w0

∫ 1

0

`
(n)
k (x)dx + ε

∫ xj

1

`
(n)
k (x)dx

=

∫ 1

0

[

w0 `
(n)
k (t) + ε (xj − 1)`

(n)
k ((xj − 1)t+ 1)

]

;

if m > 0 is even,

ujk =

(m−2)/2
∑

ν=0

wν

∫ 2ν+1

2ν

`
(n)
k (x)dx + wm/2

∫ xj

m

`
(n)
k (x)dx + ε

m/2
∑

ν=1

∫ 2ν

2ν−1

`
(n)
k (x)dx

=

∫ 1

0





(m−2)/2
∑

ν=0

wν `
(n)
k (2ν + t) + wm/2(xj −m)`

(n)
k ((xj −m)t +m)

+ ε

m/2
∑

ν=1

`
(n)
k (2ν − 1 + t)



 dt;
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If m > 1 is odd,

ujk =

(m−1)/2
∑

ν=0

wν

∫ 2ν+1

2ν

`
(n)
k (x)dx + ε

(m−1)/2
∑

ν=1

∫ 2ν

2ν−1

`
(n)
k (x)dx + ε

∫ xj

m

`
(n)
k (x)dx

=

∫ 1

0



w0 `
(n)
k (t) +

(m−1)/2
∑

ν=1

[

wν`
(n)
k (2ν + t) + ε `

(n)
k (2ν − 1 + t)

]

+ ε (xj −m)`
(n)
k ((xj −m)t+m)

)

dt.

All integrals on the far right of these equations can be computed exactly
by dn/2e-point Gauss–Legendre quadrature on [0, 1]. The first pitfall men-
tioned in Example 8, associated with computing the floor of xj, is no longer
an issue since the midpoint is now N + 1/2, a half-integer, not an integer.

Example 9. The (N+1)-block-discrete Hahn weight function with parameters
α = β = 0 and pn with 2 ≤ n ≤ N .

This is the weight function (43) with w0 = w1 = · · · = wN = 1. To
check the behavior of the eigenvalues in this case, we have run the script
run Uconj ext blockhahn.m, using the function Uconj ext blockhahn.m

and epsilon= 0, for N = 1 : 10 and 2 ≤ n ≤ 30 for each N . It was
found that the extended Stenger conjecture is still true for 2 ≤ n ≤ 30 (and

N n
2 9 17 18 20–22 25 28–30
3 11 14 21 22 24 27 28 30
4 13 14 16 18 20–22 24∗ 25∗ 29∗ 30
5 14 17 18 20 22–26 27∗ 28∗ 30
6 10 15–17 20–25 26∗ 27 29 30
7 11 17 20 21 23–28
8 14 18 20 23∗ 24 25∗ 27 28∗ 29∗ 30
9 15 19 21 23 24 26 27∗ 29∗ 30
10 13 14 16 18 20 22 26∗ 28∗ 29∗

Table 7. The presence of delinquent eigenvalues of Un in the case of
a block-discrete weight function

probably for all n ≥ 2) when N = 1, i.e., for a 2-block-discrete Hahn weight
function. When N > 1, however, eigenvalues with negative real parts again
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show up, starting from some n ≥ 9, and frequently, but not always, there-
after. The values of N and n for which this occurs are shown in Table 7.
There is usually one pair of delinquent complex conjugate eigenvalues, but
in some cases there are two such pairs. These are identified by an asterisk in
Table 7.

The validity of the extended Stenger conjecture for N = 1 is interesting.
It may well be for the same (unknown) reason that validates the conjecture
in the case of the two-interval weight function of Section 6.6; cf. Example 7.

To illustrate, we show in Fig. 17 the eigenvalues in the cases (N, n) =
(2, 30), (5, 28), (10, 26).
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Figure 17: Eigenvalues of Un in the case of the (N+1)-block-discrete

Hahn weight functions with (N,n) = (2, 30), (5, 28), (10, 26) (from

left to right)

The restricted Stenger conjecture, in this example, fares much better,
though failing also in a few cases. Using the routines run Uconj restr block

hahn.m and Uconj restr blockhahn.m for N = 1 : 10, 2 ≤ n ≤ 30, we found
the conjecture to be true for N = [1, 2, 3, 4, 9], 2 ≤ n ≤ 30, and false in only
the five cases, (N, n) = (5, 30), (6, 28), (7, 30), (8, 28), (10, 25). To rule out
the presence of severe numerical instabilities as a cause for this unexpected
behavior, all cases have been rerun, and confirmed, in 32-digit arithmetic.
The double-precision eigenvalues were compared with those obtained in 32-
digit precision and found to agree to 5–15 digits, the delinquent ones always
to at least 11 digits.

For illustration, we show in Fig. 18 the eigenvalues in the cases (N, n) =
(2, 30), (6, 28), (10, 25), the last two containing a pair of eigenvalues with
negative real part.

The presence of delinquent eigenvalues in this example, strictly speaking,
does not invalidate the extended Stenger conjecture, since the weight func-
tion (43) does not satisfy the positivity a.e. condition imposed by Stenger.
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Figure 18: Eigenvalues of Un in the case of the (N+1)-block-discrete

Hahn weight functions with (N,n) = (2, 30), (6, 28), (10, 25) (from

left to right)

However, the matrix Un associated with the weight function (44), depending
on the potitive parameter ε, by a continuity argument will have the same
pattern of delinquent eigenvalues as the matrix Un associated with the weight
function (43) when ε is sufficiently small. This then shows that the extended
Stenger conjecture cannot be valid for all admissible weight functions. We
illustrate this with the final example,

Example 10. The (N + 1)-ε-block-discrete weight function (44) for N = 2,
ε = 1/100, and n = 9.

This relates to the first item in Table 7. The routine run Uconj ext epsi

lon blockhahn N2 n9.m, using r blockhahn to generate the required recur-
rence coefficients by an (N +1)-component discretization procedure (N = 2)
implemented by the routines mcdis.m and quad blockhahn.m, computes the
eigenvalues of Un for n = 9. They are shown in Table 8.

k λk k λk

1 .269543881598 + .100451106056 i 6 .113959909084 + .146440180631 i
2 .269543881598 − .100451106056 i 7 .113959909084 − .146440180631 i
3 .257834699637 8 −.000421036373 + .156050111474 i
4 .242999895873 + .190318565957 i 9 −.000421036373 − .156050111474 i
5 .242999895873 − .190318565957 i

Table 8. The eigenvalues λk of Un, n = 9, for the
weight function of Example 10

Recomputing them in 32-digit arithmetic proves them correct to all digits
shown.
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Appendix: Relation to Runge–Ktta methods Let x1, x2, . . . , xn be
distinct real numbers (typically in the interval [0, 1]). The corresponding
(collocation) Runge–Kutta method (see [7, Theorem II. 7.7] is then given by
the coefficients

(45) ajk =

∫ xj

0

`k(x)dx, bk =

∫ 1

0

`k(x)dx,

where `k(x) is the kth elementary Lagrange interpolation polynomial of de-
gree n − 1. We collect the coefficients in the n × n matrix A = (ajk)

n
j,k=1,

in the column vector b = (bk)
n
k=1, and we denote the column vector with all

elements equal to 1 by 11.
An application of the Runge–Kutta method with step size h to the Dahlquist

test equation ẏ = λy yields (with z = hλ)

(46) y1 = R(z)y0, R(z) = 1 + zbT(I − zA)−111,

where R(z) is the stability function of the method. Note that for an invert-
ible matrix A, its eigenvalues are the reciprocal of the poles of the rational
function R(z).

The adjoint method of (45) is given by the coefficients (cf. [7, Theorem
II. 8.3])

(47) a∗n+1−j,n+1−k = bk − ajk =

∫ 1

xj

`k(x)dx, b∗n+1−k = bk.

Its stability function is related to that of (45) by R∗(z) = 1/R(−z).

Connection to the Stenger conjecture. The n × n matrix with coeffi-
cients ajk of (45) is equal to the matrix Un (with a = 0) of (2) in Section 1,
and the matrix with coefficients a∗jk of (47) is equal to Vn (with b = 1). Since
the nonzero eigenvalues of A are the reciprocal of the poles of the stability
function (46), there is a close connection between the Stenger conjecture and
A-stability of a Runge–Kutta method.

The (shifted) Legendre polynomials are orthogonal with respect to the
constant weight function w(x) = 1 on [0, 1]. The corresponding collocation
Runge–Kutta method is the so-called Gauss method of order 2n, which is
A-stable (see [6, Section IV.5]). Its stability function is the diagonal Padé
approximation Rn,n(x), for which all poles are in the right half of the complex
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plane. This provides another proof of the Stenger conjecture for Legendre
polynomials.
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