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On conjugate-symplecticity of B-series integrators
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The long-time integration of Hamiltonian differential exdfions requires special numerical methods.
Symplectic integrators are an excellent choice, but thersituations (e.g., multistep schemes or energy-
preserving methods), where symplecticity is not possilbiis.then of interest to study if the methods are
conjugate-symplectic and thus have the same long-timevimetes symplectic methods.

This question is addressed in this work for the class of Beseintegrators. Algebraic criteria for
conjugate-symplecticity up to a certain order are preskimeerms of the coefficients of the B-series.
The effect of simplifying assumptions is investigated. Jéeriteria are then applied to characterize the
conjugate-symplecticity of implicit Runge—Kutta methdgtsbatto I11A and Lobatto 111B) and of energy-
preserving collocation methods.
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1. Introduction

Consider a Hamiltonian differential equation
T 0o |
y=J""OH(y), J(_, O>, (1.)

wherel is the canonical structure matrix ahid: R2 — R is sufficiently differentiabled is the number
of degrees of freedom). The functid#(y) is called the Hamiltonian or energy of the system. A
classical result by Poincaré tells us that the exact flompter by¢:(y), is for everyt a symplectic
transformation. This means that the derivative with resfrethe initial value satisfies

$(y) I (y) =2 (1.2)

For problems with one degree of freedom this property is\ed@it to area preservation, and it implies
volume preservation of the flow in the general case. Anothgpegrty of Hamiltonian systems is energy
preservation, which means thaty(t)) is constant along solutions of (1.1).

We are interested in the numerical treatment of Hamiltosigtems. In the spirit of geometric nu-
merical integration, the ideal situation would be to haveimarical integratoy, 1 = ®n(yn) for which
the discrete flow mappin@y(y) is symplectic, and which exactly preserves the energy. ttiunfiately
this is not possible (Ge & Marsden (1988), see also Chaetial. (2006)). One is therefore constrained
to consider methods satisfying one of these properties@stlitly how well the other is verified.
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An important tool for studying the long-time behavior of nemcal methods ivackward error
analysis(see Haireet al.(2006)). It tells us that the discrete flow of a numericalgnétor®y(y), when
applied toy' = f(y), can be (formally) interpreted as the exact flow of a modifid@ntial equation,
whose vector field is given as a series in powers of the stefhsiz

y= f(y)+hfi(y) +h>fa(y) + h3fa(y) +... .

If the method is of ordep we havef;(y) = 0 for 1< j < p, so that the perturbation is of sizghP).
For symplectic methods applied to (1.1) the modified diffieigd equation is Hamiltonian,

y=J"10Hn(y)  with  Hy(y) =H(y)+hHi(y) + h®Ha(y) + h®Ha(y) + ... |,

with functionsHj(y) that are globally defined for B-series integrators. Thiswshthat the discrete
flow of symplectic methods has the same qualitative behasdahe exact flow. Formally, it exactly
conserves the modified Hamiltoni,(y), so that the energhl (y) is nearly conserved with an error
bounded byZ’(hP) (without any drift). Moreover it can be shown (see e.g., Eiadt al. (2006)) that
symplectic methods exactly preserve quadratic first imtegof the system and, in the case of nearly
integrable systems, they nearly conserve all action vesaéind have at most a linear error growth in
the angle variables.

In the present article we are interested in methods that@neatessarily symplectic, but neverthe-
less have an excellent long-time behavior. We call a nurakmethod of ordep conjugate-symplectic
up to order p+r (with r > 0), if there exists a change of coordinates x (y) that is&(hP)-close to the
identity, such that, = x o @, 0 x ! satisfies

W(2)TIY (2) =+ O(hPHHY, (1.3)

The method#, has the same order a#,, and the coefficient function$;j(z) of the corresponding
modified differential equation are Hamiltonian fpi< p+r. Consequently, the error in the energy
H(z,) is bounded by’ (hP) + & (thP*"), so that no drift can be observed on intervals of length™").
The same is true for the near preservation of quadraticfitstirals and for the action variables in nearly
integrable Hamiltonian systems. Since for a method thabigugyate-symplectic up to ord@r+r we
havey, —z, = 0'(hP), the same statements remain true for the numerical appatianyyn}.

In Section 2 we start with recalling the definition of B-serieve present the composition law, and
we give explicit formulas for the B-series representingrtiedified equation. We also recall algebraic
conditions on the coefficients of a B-series that guaramsesyimplecticity, and we discuss the B-series
that is obtained after conjugation. Section 3 is then delttecriteria for conjugate-symplecticity
in terms of the coefficients of the modified differential etioi. A recurrence relation counting the
number of necessary conditions is given. Analogous cat@rierms of the coefficients of the B-series
integrator are then proved in Section 4. For high order thmber of order conditions is very high, and
they can be handled only with the use of simplifying assuami In Section 5 we recall a coordinate-
free definition of simplifying assumptior3(n) andD({), and we discuss the simplification of the
algebraic criteria for conjugate-symplecticity undershsimplifying assumptions. Applications of the
criteria are the subject of the final Section 6. We discussctimgugate-symplecticity of Lobatto Il1A
and Lobatto 111B Runge—Kutta methods, and we prove that trexgy-preserving collocation methods
of maximal order 2 are conjugate-symplectic up to ordes22, but not up to a higher order.
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2. B-series theory

Based on the seminal publication of Butcher (1972), the ephaf B-series has been introduced in the
article of Hairer & Wanner (1974). It is motivated by the fétwat the exact solution of= f(y) as well

as the numerical solution of nearly all integrators can hiétevr as B-series. For a modern treatment of
the theory of B-series we refer to the monograph of Haateal. (2006), to Murua (1999), and to the
recent article by Chartiegt al. (2010). In the following we collect the definitions and theutks that
will be needed in this work.

vttt

be the set of rooted trees. If it is convenient to consider tile empty tree, we writ®y = T U {0}. We
use the notatiom = [11,.. ., Iy] for the tree that is obtained by grafting the rootsrgf...,Tn€ T to a
new vertex which becomes the rootofWe denote the number of vertices hiy and call it the order
of 7. The symmetry coefficient is defined recursively by

o(e)=1  o(r)=0(t)---0(Tm) ! 2! - , (2.1)

where the integergy, L, ... count equal trees amormg, ..., Tm. For a differential equatioy = f(y),
the corresponding elementary differentiBlg) are given by

F(W =1y, F@OO=f"Fy). .. Fmmy).
For given real coefficients(0) anda(t), T € T, a B-series is a formal series of the form

1]
Blay) = a(0)y+ Z%a(rmr)(y). (2.2)

B-series integrators. A discrete flow®,(y), whose (formal) Taylor series is of the form (2.2) with
a(0) = 1 is called a B-series integratab;,(y) = B(a,y). It is consistent withy = f(y) if in addition
a(es) =1. This is a wide class of numerical methods that compridéduaige—Kutta methods, the un-
derlying one-step method of multistep methods, the averagetor field integrator, energy-preserving
collocation methods, and many more.

The exact timeh flow of y = f(y) can be interpreted as a B-series integraiglly) = B(e,y) with
coefficients

e(0)=¢e(s)=1, e(1) = %e(rl) co..-€(tm) for T=111,...,Tm|. (2.3)
A B-series integrator is obrder p, if its Taylor series matches that of the exact solution ugrterror
of sizeo’(hP*+1). Algebraically, this can be expressedads) = (1) for all trees with| 7| < p.

Composition law. Let B(c,y) be a B-series witle(0) = 1, so that it is close to the identity mapping.
The expressionB(1)(B(c,y)) can then be expanded into a Taylor series argumahd it turns out (see
for example (Haireet al., 2006, p. 62)) that the composition of B-series satisfies

B(b,B(cY) =B(cby) with  (cb(1)= T b(8)c(r\0). (2.4)
6cOST(1)

Here,OST(1) denotes the set of ordered subtrees.oThe empty tree 0 and are inOST(1), as well
as treed that are formed by a connected subset of verticasaaintaining its root. All vertices of are
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considered different, so that for example the tfe@ppears twice in the s@&ST(Y/). The difference
sett \ O consists of those trees that remain witeand its adjacent branches are removed frorand
the expression(t \ 0) is defined as the productt \ 6) = [1scr\0¢(9) -

The setG = {a: To — R; a(0) = 1} provided with the above composition law is called the Butche
group. Let us also mention that (2.4) defines a co-produativimiakes the algebra of polynomials with
the rooted trees as commuting indeterminates to a Hopf edgeb

B-series vector fields and modified differential equation A B-seriesB(a,y) with coefficients satis-
fying a(0) = 0 is of the form

B(a,y) =ha(e)f(y) +h’a()F' () fy) +...

and can be interpreted as a vector field. The modified diffedesquation of a B-series integrator (in

the sense of backward error analysis) is such a vector fieldyeT a relation between the coefficients

a(t) of the method and the coefficient 1) of the vector field it is convenient to work with thée

derivatived, c as discussed in (Hairet al,, 2006, p. 370). I§(t) is a solution of the differential equation

hy(t) = B(a,y(t)), then we have

h%B(c,y(t)) =B(daCy(t))  with  (dac)(T)= 3 c(B)a(r\6), (2.5)
B6eSHT)

for|7] > 1, and(dyC)(0) = 0. Here,SR(T) = {6 € OST(1); 1\ 6 consists of only one elementienotes
the set of splittings of the tree Higher derivatives can be expressed in terms of iteratpticapion of
the Lie derivative. It then follows from Taylor series expam thathy(t) = B(a,y(t)) is the modified
differential equation of the B-series integrayar1 = B(a,yn) if and only if

a(r):i_l( 7a) (7). (2.6)
=5

This formula yields a bijection between the coefficieats) anda (1), which can be used to compute
the modified differential equation from the coefficientstod tntegrator.

Criteria for symplecticity. The symplecticity of a mapping— B(a,y) can be characterized in terms
of algebraic conditions on the coefficients of the B-seristhis end, we need thHeutcher producbf
two treesu,v € T which is defined by

uov=[us,...,Un,V| for u=[ug,...,Un.
The B-serieB(a,y) is symplectic for all Hamiltonian systems if and only if
a(uov)+a(vou)=a(u)a(v) for all uveT. (2.7)
The differential equatiohy = B(a,y) is Hamiltonian whenevef(y) = J"10H(y) if and only if
a(uov)+a(vou)=0 for all uveT. (2.8)

If the coefficientsa(1) anda (1) are related via (2.6), then both conditions, (2.7) and (28 equiva-
lent. These statements are discussed in (Hairat, 2006, Sections VI.7 and X1.9).
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Conjugation. We consider a B-series integratgr.1 = ®n(yn) with @,(y) = B(a,y), and a change of
coordinatez = x (y) that can be written as a B-series

z=B(c,y) with c(0) =1

In the new coordinates the method becomes = ¥,(z,) with Y, = x o &y, o x~1. Using the composi-
tion law for B-series, this can be expressed as

Zw1=B(b,zy) with b=clac (2.9)

If hy=B(a,y) denotes the modified differential equation correspondirthé method(a, y), then the
modified differential equation for the meth@&db, z) is given by

hz=B(B,z2  with B =c ld,c. (2.10)

This is a consequence of (2.5), becalise: B(dqC,y) = B(daC,B(c1,2)).

3. Conjugate symplecticity in terms of the modified equation

We consider a B-series integratB(a,y) of orderp > 1. For the coefficients of the corresponding
modified differential equationtsy = B(a,y) this implies that

a(0)=0, a(e)=1, a(t)=0 for 2< 1] < . (3.1)

In view of studying the conjugate-symplecticity of numatiintegrators in terms of their modified
differential equation we introduce the notation (fpwv € T)

a(u,v) =a(uov)+a(vou).

The same notation is used for the coefficightsf the modified differential equation in the transformed
coordinates and for the coefficierdsf the transformation.

LEMMA 3.1 In addition to (3.1) assume that the B-seB¢s y) satisfies
c(0) =1, c(r)=0 for 1< |1|<p—1, (3.2)
so thatB(c,y) = y+ ¢'(hP), and letB be given by (2.10). Fon,v € T with |u| + |v| < 2p we then have
a(u,v) = B(u,v) — Z c(u,v) — Z c(G,v), (3.3)

veSP.(v) €SP, (u)

whereSP,.(1) = {6 € SRT); |8]| = |1| — 1} is the set of splittings that separate only one tree with one
vertex. By conventioiBP,( «) is the empty set, so that the corresponding sums are zero.

Proof. The assumption ooimplies that the conjugated method is also of ongleso that the coefficients
B satisfy the same relations (3.1)@sWe now write the equation (2.10) dgc = c3. The assumptions
on a andc imply that only the terms witl® = 0 and|6| = |1| — 1 give rise to non-vanishing terms in
(2.5). Those o8 andc imply that in the composition law far3 only the terms wittB = T and|6| =1
have to be considered. The relatidqc = cf thus yields

a(t)+ z c(0) = B(1)+ Z c(t\0) for |T| < 2p. (3.4)
0cSH(T),[0|=|1|-1 6cSA(T),|6)=1



6 E. HAIRER AND C.J. ZBINDEN

For T = uov, the sum in the right-hand side of (3.4) is emptyuf > 2, and the sef8 € SR1); |0| =
|T| — 1} is in one-to-one correspondence W8R, (u) U SR, (v) if |v| > 2. This proves

a(uov)=B(uov)— Z c(uoV) — z c(lov),

VeSP, (v) GeSP; (u)

and the statement of the lemma follows fof > 2 and|v| > 2.

For 7 = « ov the sum in the right-hand side of (3.4) reduces(g). Fort = uo « the set{0 €
SR(1); |6| = |1| — 1} is in one-to-one correspondence Wi, (u) U {u}, so that the sum in the left-
hand side has an additional teofu). In the suma(e,v) = a(s ov)+a(vo o) these terms cancel and
we get (3.3) also in this case. O

ExAMPLE 3.1 Forp > 2 and|u| + |v| = 3 we have
a(e, ) =B(s,J)—cle, ).
For p > 2 and|u| + |v| = 4 we have
a(«,V) = B(«,V)—2c(+,]),
a(n}) = B(n))*C(',I),
a(l.l) = B(.J)—2c(+.]).

The equations (3.3) can be considered as a linear systemeaoefficiente(u,v). For its formu-
lation we let(T x T)r = {(u,v); Ju|+|v|] =r} for r > 2, and we consider the vector space of mappings
on(T xT)y,

Y={c:(TxT) —R;c(uv)=c(vu)}.

To compute the dimension of this vector space we considdotheal series
N(Q) =l +neg?+msl®+ .. = (1) ™A~ 73 ™(L-3) ™.
1
M({) = mpd2+mgl3+mul*+... = E(N(Z)Z—FN(ZZ)).

The coefficient, denotes the number of trees witlvertices (this formula is due to Cayley and can be
found in (Haireret al, 2006, p. 95)), and a straight-forward computation showstte coefficientn

is the dimension of/;. These numbers are given in Table 1 fa£ 12. They have also been computed
in Celledoniet al. (2010).

Table 1. Number of rooted trees of orderand dimensiom, of the vector spacé; .

r 1 2 3 4 5 6 7 8 9 10 11 12
ny 1 1 2 4 9 20 48 115 286 719 1842 4766
my 0 1 1 3 6 16 37 96 239 622 1607 4235

We consider the linear mappidgon U=, 7;, whose restrictiorA: ¥ — %1 is defined by

(Ag(uv) = % cuv)+ > cyv), (3.5)
)

SA) SSA(
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so that the condition (3.3) becomesu,v) = B(u,v) — (Ac)(u,v). Since symplecticity of the trans-
formed method is equivalent {8(u,v) = O for allu,v € T, the integrato®y,(y) = B(a,y) is conjugate-
symplectic up to ordep+r if and only if there exists a B-serieB(c,y) satisfying (3.2) such that
a(u,v) = —(Ac)(u,v) for all pairs of trees withu| + |v| < p+r. Before we state this as a theorem we
show that the conditions are independent, and we provetthatssumption (3.2) can be removed.

LEMMA 3.2 The mappind\: ¥ — ¥;.1 of (3.5) is injective.

Proof. For a mapping: (T x T); — R we have to prove that the conditiért = 0 impliesc = 0. Itis
sufficient to consider pairs of trees satisfyig< |v|.

We start withu = «, we assume thatAc)(s,v) = O for treesv with |v| = r, and we prove by
induction on the height of the treethiatc(e,V) = 0 for trees with|V| =r — 1. We denote by the
unique tree wittk vertices and maximal height The equatiorfAc)( e, 1) = c(*, 4r—1) then proves
c(e,V) =0 forvV = yr—1. Assume that this relation holds fuwith height at leash. For an arbitrary
treeV'with r — 1 vertices and height — 1 we choose a tree of heighth such thatv’e SR.(v). We
have(Ac)(«,Vv) = c(»,V), because further terms in the sum (3.5) vanish by the indudtypothesis.
Consequentlyc(«,V) = O for all trees with V| =r — 1.

We next putu = /, and apply the same induction argument as above on the hefighe treev”
Then we consider fou trees of order 3, etc. O

LeEmMA 3.3 Consider a B-series integraf(a, y) of orderp which is conjugate symplectic up to order
p+r with r > 0. Then, there exists a change of coordinatesB(c,y) satisfyingB(c,y) = y+ &'(hP),
such that in the coordinatethe method is symplectic up to orde#-r.

Proof. Since the method is conjugate symplectic up to opgler, there exists a change of coordinates
z=B(c,y) that makes the method symplectic up to ordeir. Letp =min{|t|; T T,c(1) #0}. If p >

p, nothing has to be proved. Therefore, let us assprep. For treequ, v) satisfying|u|+|v|=p+1,

we havea (u,v) = 0 (as a consequence of ordggrandf(u,v) = 0 (as a consequence of symplecticity).
Lemma 3.1 (withp in place ofp) shows tha{Ac)(u,v) = 0 for all such pairs of trees, and Lemma 3.2
impliesc(u*,v*) = 0 for all trees withju*| + |v*| = p. Consequently, there exists a symplectic mapping
B(cp,y) such thaB(c,,y) = B(c,y) + &(h°*1). The transformatioB(cc,t,y) is &(h**1)-close to the
identity, and leaves the transformed method symplecticougrderp+r. The proof can be repeated
until p > pis reached. O

LEmMA 3.4 Consider a symmetric B-series integr&@a, y) of orderp which is conjugate symplectic
up to ordemp+r with 0 < r < p. Then, there exists a change of coordinatesy,(y) = B(c,y) satisfying
X-n(Y) = xn(y), such that in the coordinateshe method is symplectic up to order-r.

Proof. By Lemma 3.3 it is sufficient to consider transformatidd{s,y) that are<'(hP)-close to the
identity. For pairs of treefu, v) with even|u| + |v| we havea (u,v) = 0 by the symmetry of the method.
Lemma 3.1 thus impliegAc)(u,v) = 0 for all such pairs of trees iu| + |v| < p+r, and Lemma 3.2
impliesc(u*,v*) = 0 for all trees with oddu*| + |v*| < p+r — 1. The same argument as in the proof of
Lemma 3.3 shows that non-zero terofs) with odd|7| < p+r — 1 can be removed from the transfor-
mation. Non-zero terms(7) with |7| > p+r can also be removed, because they do not affect conjugate
symplecticity up to ordep+r. O

THEOREM 3.2 A B-series integratds(a,y) of orderp is conjugate-symplectic up to ordpr-r (with
0 < r < p), if and only if there exist coefficients(u*,v*) such that the B-series coefficients of its
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modified differential equatiohy = B(a,y) satisfy

a(u,v) = — z c(u,v) — z c(0,v) for p<lul+ v < p+r. (3.6)
VESPX (V) GeSP; (u)

Elimination of the coefficients(u*,v*) gives exactlyn,, —mp linear relations between the expressions
a(u,v). If the integrator is symmetric, the conditions (3.6) areauatically satisfied for trees with even
Ul +[v].

Proof. It follows from Lemma 3.3 that (3.2) can be assumed withoss lof generality. The equivalence
of conjugate-symplecticity with (3.6) is then a consequeoicLemma 3.1. Finally, Lemma 3.2 yields
the number of additional order conditions, and Lemma 3.4tatement for symmetric methods. O

4. Conjugate symplecticity in terms of the B-series integrtor
The aim of this section is to translate the criterion of Tle®o13.2 into conditions on the coefficients
a(1) of the integratoy,1 = B(a,yn). To this end, we introduce the expression fiov € T)

a(u,v) = a(uov)+a(vou) —a(u)a(v).

The coefficientsx (1) of the modified differential equation are related to the fioehtsa(t) of the
method by (2.6). We have to find a similar relation betweenetkgressions (u,v) for the modified
equation an@(u,v) of the B-series, so that the conditions for conjugate synijgliéy can be expressed
in terms ofa(u, v).

The following notation will be convenient: gfold splitting of a treer is a chain of ordered subtrees

Bp<Bi<..<6j_1<6 =1 suchthat 6_1€SRG), I=1,...,].

We denote such @fold splitting by© = 6y < 61 < ... < 8j_1 < 6}, and we leSP (1) be the set of all
j-fold splittings oft. For a mapping on the set of trees satisfyin@) = 0, we define

(J(@) = (1(90)(1(91\90)~...~(J(9j\9j,1).

We further consider the séiFi(r) ={0¢ SFi(T); 6_1€SP.(6), 1 =1,...,j}, which consists of
j-fold splittings for which|6; \ 8;_1| = 1 for all j.

LEMMA 4.1 Assume the B-series integrai(a, y) to be of ordemp > 1, and letu andv be non-empty
trees satisfyingu| + |v| < 2p. Then, we have

1 N
auv) =5 = a(a,v), (4.1)
i1 J'OGSFifl(uov)

whereu andv are nonempty ordered subtreeuaindv, respectively, such that the smallest tree in the
splitting @ is 6y = Uo V. Splittings, for whichfy is not of this form, are not considered in (4.1).

Proof. Applying iteratively the formula (2.5) for the Lie-derive¢ d, we obtain

(04 ta) (1) = a(o).
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For a pair of treegu, v) we split this sum into

@ ta)uov)= Y a@+ Y ae), (4.2)
OeSFfl(uov) Oesﬁ:l(uov)

WhlereSijl(UOv) denotes the set dff — 1)-fold splittings, for which the root 0§ belongs tofy, and
Slj:l(UOv) is the set of those splittings, for which the rootwodloes not belong té, i.e., there is a
separation between the rootswéndyv for splittings inSF’:l(uOv). We write the second sum as

5 a(@)zjzl(f‘i) % a@) Y a@).
7/ euesP~Yu) oyeSP -1y

0esP(uov) I=1

Here,| — 1 denotes the number of branches removed ftprand j — | — 1 the number of branches
removed fronv. The binomial coefficient counts all possikile— 1)-fold splittings ofuo v that reduce
to fixed splittings®, and®, for u andv, respectively. Similarly, we have

a(e)jzl(jjl‘ll)euezr a@) Y a@).

0esP~(vou) =1 SPHu) evesP1(v)

As a consequence of the binomial identity ) + (1;) = (!) we thus obtain

o
a@ + 5 a@-3 (]) S a@) 5 ae) @3
[CNS

©eSP L (uov) ©esP 1 (vou) I=1 SP~1(u) avesP—-1(y)
On the other hand we have
a(u) =y (04 'a)(u) =
J; J! sl OeSP1(u)
and a similar formula foa(v). Using the Cauchy product of two series this implies that

zzj—ll( S a@+ Y a(@)):a(u)a(v).
12277 "gesp 7Y

uov) 0esP Y (vou)

Note thatSF*fl(uOv) is empty forj = 1. It therefore follows from (4.2) that

a(u,v)zz_—1|( z a(@)+ Z a(@)).

sl OeSP, *(uov) ©eSP, *(vou)

If the method is of ordep and if |u| 4 |v| < 2p, a splitting® gives a nonzero contribution only if all
factors in the product (@) are 1, with the exception af (6). This means tha® € SP.*. Writing
6o = GoV concludes the proof. O

Combining the statements of Theorem 3.2 and Lemma 4.1 yiieéodesired criterion for conjugate-
symplecticity.
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THEOREM4.1 A B-series integratds(a,y) of orderp is conjugate-symplectic up to ordprtr (with
0<r < p), if and only if there exist coefficientg(, V) such that

1 I
a(u,v) = — Z il Z c(0,V) for p<|ul+|v<p+r (4.4)
121" 9esP (uov)

Here,uandVv are nonempty ordered subtreesuaindv, respectively, such that the smallest tree in the
splitting @ is 6y = Uo V. Splittings, for whichfy is not of this form, are not considered in (4.4).

If the integrator is symmetric, the conditions (4.4) arecaudtically satisfied for trees with even
U] + |v|. O

The following particular cases (of low order) have first bebtained in the thesis of Leone (2000),
see also (Haireet al,, 2006, Section VI.8.1). We eliminate the parametgus,v*) to get conditions on
the B-series coefficients only.

EXAMPLE 4.2 Every B-series method of order 2 is conjugate-sympeqtito order 3. It is conjugate-
symplectic up to order 4, if and only if

a('aV)_Za('a>):07 a([?!)_za(°a>):0'

ExXAMPLE 4.3 For a method of ordgy, there arem, 1 — mp (with m: taken from Table 1) additional
order conditions for being conjugate-symplectic up to oqué 1 (up top+ 2 for symmetric methods).
For p = 4, we have the three conditions

sete ) s ssae Yroo ate ) 2ae oo
o« \)-3a(+. | )~ 3a(7. V) +6a(f. ) =0,

For a method of order 6 this results in 21 additional condgjaand this number increases rapidly for
higher orders. The practical investigation of conjugateyslecticity up to a high order is therefore only
possible with the use of simplifying assumptions.

5. Simplifying assumptions

Simplifying assumptions play an important role in the camnstion of high order Runge—Kutta methods.
They reduce the number of order conditions. In this sectiergive a coordinate-free definition (i.e.,
independent of the Runge—Kutta coefficients) of the simplff assumption€(n) andD({), which is
originally due to Butcher (1972), see also Butcher & CharD@0 We then study their effect on the
conditions for conjugate-symplecticity.

Besides the Butcher produet v of two trees, we consider the commutatiderging productwhich,
foru=[uy,...,un] @andv =|vi,...,v], is defined by

UXV=[Ug,...,Un,V1,...,V].

Furthermore we introduce the notatignfor the bushy tree witlk vertices (the unique tree of height 1).
We have forexampley =+, .=/, 3=Y/, ... .
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5.1 Simplifying assumption(@)

DEFINITION 5.1 (partial order o) We denote by<,, the smallest order relation satisfying
[UL,...,Up] X Tkp1 <p [Ug,...,Um] o Ty,

whereu; <, uj for j=1,...,m(with m> 0), and O< k < n (see Figure 1).

We note that = 0 yields 11 < [1i] for k < n, which is the starting point for the construction of
pairs satisfyingi* <, u. Fork = 0 the relation simply readsi;,...,u;] <p [u1,...,um]. By definition,
the relation< , is reflexive, transitive, and anti-symmetric. It is not aatairder, and it only compares
trees having the same number of vertices.

k—1
—

FIG. 1. Trees involved in the simplifying assumptié(n ).

DEFINITION 5.2 A B-serieB(a,y) is said to satisfy the simplifying assumpti@n ), if

a(u) _ a(u) whenever u"<pu.
e(ur)  eu)

Here,e(u) are the B-series coefficients of the exact flow. They are givgR.3).
LEMMA 5.1 If a B-serieBB(a,y) satisfies the simplifying assumpti@{n ), then we have

a(us,v)  a(uv)
e(ur)e(v*)  e(u)e(v)

whenever u"<pu, Vi<V (5.1)

If the methodB(a,y) is of orderp and satisfie€(n), then the coefficients of its modified differential
equatiorhy = B(a,y) satisfy, for|u| +|v| < 2p,
o(u*,v*) a(u,v)

e(u)ev)  e(u)e(v) whenever  u*<ju, Vi<V (5.2)

Proof. Notice thatu* <, u andv* <, v imply |u*| = |u], |V*| = |v|, andu* o V* <puoVv. The first
statement thus follows from the relatigju| 4 |v|) e(uo v) = |u| e(u) &(v).

The proof of the second statement is by inductionpos |u| + |v|, and invoking the formula of
Lemma 4.1. Foip < p the statement is trivial, becausgu*,v¥) = a(u,v) =0. Forp=p+1it
follows from (5.1), because in this cas€u,v) = a(u,v) anda (u*,v*) = a(u*,v*). We now assume
that (5.2) holds for pairg(,V) satisfying|d| + |V| < p, and we consideu* <, u, V¥ <,V satisfying
|u|+ |v| = p+ 1< 2p. Without loss of generality we assurmé= u and thatv* differs fromv only by
the fact that one brandhy| (with k < n) in vis replaced by in v*.

Lemma 4.1 yields

uyv)  auv) 1 a(a,v)
e(u)e(v) e(u)ev) * ;2 jt Z

" @esP (uov)

: (5.3)
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and a similar formula fofu*,v*). We consider thos® € Slj*’l(uw), for whichl branches are removed
from the highlighted subtreey], and the other splittings are fixed. There éce-1)-...- (k—1) possible

(j —1)-fold splittings of thls kind ifl <k, (k—1)-...-2-1if | =k, and one ifl = 0. Similarly, we
consider splitting®* SP- (u oVv*), for whichl branches are removed from the highlighted subtree
Tk+1, and the other splittings are exactly the same as abovee®nek - ... - (k—1+ 1) possible(j — 1)-

fold splittings if| > 0, and one if = 0. As in Lemma 4.1 we denote the smallest trees of the spjgtin
by Go Vandu™ o V*, respectively. The sum in (5.3) over the considered spdjfiis, forl < k,

(k1)~...-(kl)ec(xu(;jé\(7\>/)(k1)~...~(kl)e$>68 (U(;J (\2/ (5.4)
for the pair(u,v), and for the pai(u®,v*) itis
ke 2OV &EDET) a(@r v
k-...-(k I+1)( eV k-...-(k I+1) eV &) (") (5.5)
Sinceu* = u, (* =G, and L L
ov) = ev),  elf)= el

(the second relation is replaced &) = e(V*) if | = K) it follows from the induction hypothesis that
both expressions, (5.4) and (5.5), are the same. This isiia the double sum in (5.3) is the same for
(u,v) and for(u*,v*). Consequently, (5.1) implies (5.2). O

LEMMA 5.2 Consider a B-series integratBfa,y) of order p satisfyingC(n), and assume that the
change of coordinates= B(c,y) transforms it into a method that is symplectic up to orderr (with
0 <r < p). Then, the coefficients of the transformati(t, y) satisfy

c(u*,v¥) c(u,v)

u
e(ur)e(v*)  e(u)e(v)

whenever u"<pu, V'<yv o and |ul+|v| < p+r. (5.6)

Proof. Due to the symmetry of the coefficientéu,v) we can assume without loss of generality that
u* = u. In the following we combine the ideas of the proofs of Lemniaghd Lemma 5.1.
We putu = «, and we consider trees of the form= wo 1y andv* = w x 1,1 with 2 <k < n and
|w| +k < p+r. Forw = s (the unique tree witls vertices and of heigty) it follows from Theorem 3.2
that
a('aIJSOTk) = 7C(0,IJS,:|_OT|()*(k*l)C(O,[JSOTk,l)

a(e,tUsX Tey1) = —C(o,Hs-1 X Tir1) —KC(e, s X Tk).

Fork =2 we haveyso 11 = s X Tz, S0 thata (s, uso 12) = €(T2) a (=, Us X T3) (which follows from
Lemma 5.1) implie®( s, s 10 T2) = e(T2)c(», Us—1 x T3) for all s. Using this result we can treat the
casek = 3 similarly. By an induction argument we then obtair , (s 1 0 ) = €(T) c(*, Us—1 X Tks1)
for 2 < k< n. We next letw be a tree witts vertices and heigtg— 1, and we choose a treeof height
ssuch thatwv € SP,.(W). We apply Theorem 3.2 to the pairs of trdesWwo 1) and(,W x Tx.1), and
the same induction argument oJeyields the statement of the lemma. As in the proof of Lemma 3.2
we decrease the height of the trees one by one, so that (f&)vied for the case = «,v=wo 1 and
Ve =Wx Ty g with 2< k< n and|w|+ k< p+r.

We still keepu = o, but we consider treas= xo (wo Ty) andv* = Xo (WX Ty, 1) with 2< k< n and
IX| + |w| +k < p+r. In this situation the proof proceeds by induction on the banof vertices ok.

(5.7)
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Forx = e, the proof is precisely the same as above. For an arbitreextthe formula of Theorem 3.2
yields additional summands, whetés replaced by a subtree belonging3B. (x) which can be treated
by the induction hypothesis. Up to this point, we have shdvenstatement of the lemma for= « and
for arbitraryv andv*.

We next putu= . Here, the application of Theorem 3.2 yields terms wherditeeargument of
cis « (they have already been treated and the statement of thederambe used), and terms where
the first argument ig’. For these terms the above multiple induction argumentdas repeated. The
same happens for treasvith more than two vertices. This then completes the prodfieflemma. O

REMARK 5.1 The proof of the previous lemma shows that under the #iyimgd assumptiorC(n) the
condition (3.6) of Theorem 3.2 (or equivalently the coradit(4.4) of Theorem 4.1) for a pair of trees
(u,v) is identical to that foru*,v*) if u*<,uandv*<,v. This considerably reduces the number of
additional order conditions and makes it possible to tresthimds of high order.

Lemma 5.2 also shows that not only the number of order camditior conjugate-symplecticity are
reduced, but also the number of free parameters in the tranafionB(c, y).

5.2 Simplifying assumption (Z)
DEFINITION 5.3 A B-seriesB(a,y) is said to satisfy the simplifying assumpti®x{(), if

a(teov) =e(t)(a(v) —a(tpaxv))  for k< andallveT.

FIG. 2. Trees involved in the simplifying assumptibr{).

The following result shows the simplification y({) of the order conditions for conjugate-sym-
plecticity. It is an extension of Theorem 3 in Hairer (2011).

LEmMMA 5.3 If a B-series integratd3(a,y) satisfies the simplifying assumptioBg{) andC(n), then
we have
a(u,v)=0 for Ju <min(n,{) andallveT.

Proof. The simplifying assumptio€(n) impliesa(vo 1) = e(1) a(v x Tx;1) for k < n. Together with
the simplifying assumptioB({) this yieldsa(tk,v) = 0 fork < min(n, {). The general statement then
follows from Lemma 5.1, because the simplifying assump@on) implies 1, < , u for all treesu with
u=k<n. O

LEMMA 5.4 Consider a B-series integratfa,y) of orderp satisfyingC(n) andD({), and assume
that the change of coordinates: B(c,y) transforms it into a method that is symplectic up to orplerr
(with 0 < r < p). Then, the coefficients of the transformatiB(t, y) satisfy

c(u,v)=0 for |ul <min(n,{) and |u|+|v| < p+T. (5.8)

Proof. The proof is the same as that for Lemma 3.2. We have to stop tieebound mifn, () is
reached fotul. O
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5.3 Conjugate-symplecticity under simplifying assumptions

In view of our application in Section 6 we discuss the redurcéind simplification of the order conditions
for conjugate-symplecticity for a few typical situations.

THEOREM 5.4 Consider a symmetric B-series integrator of onder 2s— 2 (s > 2) that satisfies the
simplifying assumption€(s) andD(s— 2).

- Itis always conjugate-symplectic up to order 2

- Fors> 3, itis conjugate-symplectic up to ordes-2 2 if and only if

a(Ts-1, Tsr2) = (S+ 1) a(Ts-1, [Ts+1])- (5.9)

Proof. The conditiona(ts_1,7s) = —(s—1)c(Ts-1,Ts—1) is the only one that has to be satisfied for
conjugate-symplecticity up to ordes2 1. It can always be satisfied with a suitable choic8(@f,y).
Due to the symmetry of the method, it is automatically coajegsymplectic up to ordeis2

For conjugate-symplecticity up to ordes-2 2, the simplifying assumptions imply that we only have
to consider the conditions

alls1,Tsr2) = —(S+1)C(Ts1,Tsr1) — (°41) C(Ts-1, Ts-1)
aTs 1,[Tsp1]) = —50Ts-1,[Ts]) — (3) o(Ts-1,[Ts-2])
a(Ts, Tsy1) = —(5—1)C(Ts-1,Tsr1) —SUTs, Ts) — (5— 1) (5) ©(Ts-1, Ts-1).

The last equation can be satisfied by fixafgs, 7s). By Lemma5.2 we have(Ts 1, [Ts]) = L ¢(Ts_1, Ts41)
andc(ts1,[Ts-2]) = ;12 c(Ts-1, Ts—1) SO that the first two relations give the condition (5.9). O

Note that the conditions of Example 4.3 are automaticaltisfad, if the simplifying assumption
C(3) is satisfied.

THEOREM 5.5 Consider a symmetric B-series integrator of onder 2s— 2 (s > 2) that satisfies the
simplifying assumption€(s— 2) andD(s).
- Itis conjugate-symplectic up to ordes 2 and only if
a(Ts-1,Ts) = (s— 1) a(Ts-1, [Ts-1]). (5.10)
Proof. The conditions for conjugate-symplecticity up to ordsape

a(ls-1,Ts) = —(s—1)c(Ts-1,Ts-1)
aA(Ts-1,[Ts1]) = —(5—2)C(Ts-1,[Ts-2])-
Sincec(Ts-1,[Ts-2]) = ;12 c(Ts-1,Ts-1), this proves the statement. O

The first statement of the next theorem is one of the maintsesuHairer (2011). The criterion for
conjugate-symplecticity up to ordes2 4 is new.

THEOREM5.6 Consider a symmetric B-series integrator of ongler 2s (s > 1) that satisfies the sim-
plifying assumption€(s) andD(s— 1).
- Itis always conjugate-symplectic up to order22.
- Fors> 2, itis conjugate-symplectic up to ordes-2 4 if and only if
(s+2)(s+1)a(ts, [+, Ts11]) (s+1)a(ts, Tsy3) + (S+2) a(Ts, [Ts42])

(S+2)(s+1)a(tsin; [Tsr1]) = (S+2)&(Ts41,Tsr2) +5(5+2)a(Ts, [Tsy2]) — SATs, Tst3)-
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Proof. The simplifying assumptions imply that for conjugate-syaagicity up to order 8+ 2 only
a(Ts, Ts+1) = —SQTs, Ts)

has to be satisfied. This is always possible with a suitalbeetofc(ts, Ts).
The conditions for conjugate-symplecticity up to ordes233 are

a(Ts,Tsr3) = —(S+2)c(Ts, Tﬁz)f(sgz) c(Ts, Ts)
a(Ts, [Tsr2]) = —(S+1)C(Ts, [Tsra]) — (°5) C(Ts, [Ts-1])

)
)
a(Ts, [, Ts11]) = —SATs,[*,Ts]) — C(Ts, [Ts11]) — (S) C(Ts,[*,Ts-2]) — (S) c(Ts, [Ts-1])
)
)

ATsi1,Tsr2) = —SUTs Tey2) — (S+1)C(Tsp1, Tsr1) — S (351 (15, T)
aTsi1, [Tspa]) = —SATs, [Tsp1]) = SATsi1, [T]) —S(3) (s, [T5-1])
By the simplifying assumptio(s) we havec(rs, [Ts-1]) = c(rs, Ts), C(Ts,[*,Tg)) = %C(Ts, Tsi2),
C(Ts, [0, Ts—2]) = c(rs, Ts), andc(Tsy 1, [Ts)) = = C(TS+1, TS_H]_). Elimination of the four free parameters
for the coeff|C|ent$ from the six relations y|elds two conditions for the conjtegaymplecticity up to
order Z+ 4. This completes the proof of the theorem. O

6. Applications

We imply the above criteria for conjugate-symplecticityitgportant classes of integration methods.
Recall that fors-stage Runge—Kutta methods the simplifying assumptiondeanritten as:

s C!(
Za;jc‘-‘*lz—I k=1,...,n, i=1,...s
a0 K

iibicg(lajj:%(l_cli() k=1,...,{, j=1,...,s

For the computation of the expressiceial, v), appearing in Section 5, it is convenient to write the
Runge-Kutta coefficients in terms of orthogonal polynosnialhis is closely related to the W-trans-
formation of (Hairer & Wanner, 1996, Section IV.5).

6.1 Lobatto IIIA methods

Lobatto IIIA methods are Runge—Kutta collocation methaglspse nodes; = 0,¢C;,...,Cs 1,Cs =1
are the zeros of the polynomij(t) — Ps_»(t), wherePs(t) denotes the shifted Legendre polynomial of
degrees (Lobatto quadrature, see Appendix C). They are symmetriboas of order 8— 2, and they
satisfy the simplifying assumptiol¥s) andD(s— 2). The special case= 2 is the implicit trapezoidal
rule, which is conjugate to the symplectic implicit midpbinle. We consider here the case 3.

The Runge—Kutta coefficienmj can be expressed in terms of Legendre polynomials as fallows

aij /Fi (x)dx by R_1(c)), 6.1)

whereb;j are the weights of the Lobatto quadrature. To prove this édarwe have to check the condition
C(s), which uniquely determines the coefficiemts. Details will be given in Appendix C. There it is
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also shown how the B-series coefficients of the Lobatto IllAtlod of order 8— 2 can be obtained.
They satisfy

(P—-2)sl (s—1)! ((s—2)!)°
4(25—3)((2s—2)1)°

_9((s-1))%(s—2)!
a(Tsfl; [TS+1]) = 4(2873) ((257 2)')2 (62)

a(Ts-1, Tsy2) =

Combining these formulas with Theorem 5.4 gives the follayiesult.

THEOREM®6.1 Fors > 3, the Lobatto IlIA method of orders2- 2 is conjugate-symplectic up to order
2s, but it is not conjugate-symplectic up to a higher order. O

6.2 Lobatto IlIB methods

Lobatto IlIB methods are also based on the Lobatto quadraftliney are symmetric, of ordes2 2,
and they satisfy the simplifying assumptidd&— 2) andD(s). Fors= 2, the method is equivalent to
the symplectic implicit midpoint rule. We consider here tases > 3.

Expressing the Runge—Kutta coefficients in terms of Legepdtynomials yields

s—-1

4= 3 (2= R 1()b /leHl(X) dx. (6.3)

These coefficients are uniquely defineddgs), which will be verified in Appendix C. The B-series
coefficients of the Lobatto IIIB Runge—Kutta method of orée+ 2 satisfy, fors > 3,

(s—1)!(s—2)!

2
(25— 2)! ) ) a(Ts-1, [Ts-1]) = 0. (6.4)

a(Ts_1, Ts) = (

Combining these formulas with Theorem 5.5 gives the follayiesult.

THEOREM®6.2 Fors> 3, the Lobatto 11IB method of orders2- 2 is not conjugate-symplectic up to an
order higher than@— 2. O

6.3 Energy-preserving collocation methods

The energy-preserving variant of collocation methods heenbintroduced in Hairer (2011). It can be
interpreted as an implicit Runge—Kutta method with a cantin of stages. For a differential equation
y = f(y) it can be written as

1 1
Ye=yorh [(Auof(Yo)do,  yi=yo+h | Bef(Ye)dr. (6.5)

We haveBs = A1 s so thaty; = Y1, and the coefficienté; ; are polynomials of degrege— 1 in g,
defined by the simplifying assumptiqglAT,o—akflda = T—kk, k=1,...,s which is equivalent t&(s).
An explicit formula for these coefficients (see Brugnasiaal. (2010)) is given with the help of the
shifted Legendre polynomials as follows:

S T 1
A=y (@-1) | Ra@da-Ra©),  B=1  Ci= [Agdo—t.
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The method is a B-series integratar= B(a,yp) that is of order & symmetric, and satisfies the sim-
plifying assumption€(s) andD(s— 1). We know from Hairer (2011) that the method is conjugate-
symplectic up to order- 2. Can it be conjugate-symplectic up to a higher order? Rsipitrpose we
compute the B-series coefficients (see Appendix B). For tethod of order 2we have, fos > 1,

(s+2)2(s+1)(s)*

a(Ts, Tsi3) = 4(2s+3)(2s+1)s((29)!)? (6.6)
1
a(Ts, [Tsy2]) = 4(2(53:1))2 ((() s)!)?
(P+2s-1)( s

a(TSa ['a TSJrl]) =

4(2s—1)(2s+1)s((29))?

These formulas show that the first condition of Theorem 5¥dkated. We thus have the following
result (notice that the statement £ 1 has been proved in Celledaetial. (2009)).

THEOREM 6.3 The energy preserving collocation method of ordeis2conjugate-symplectic up to
order Z+ 2, but it is not conjugate-symplectic up to a higher order. O

7. Summary of results

In Table 2 we summarize the results of the present article vamput them into the context of further
classes of implicit Runge—Kutta methods. The last two calsiindicate whether the method is sym-
plectic, and what is the order of conjugate-symplectiditye methods “Gauss” are collocation methods
of maximal order 8 and they are known to be symplectic (Haie¢ial, 2006, Section V1.4).

For the harmonic oscillatoy = iy the numerical solution of a Runge—Kutta method is given by
Ynt+1 = R(ih)yn, whereR(z) is its stability function. This linear mapping is symplecif and only
if R(zZR(—z) = 1. It is conjugate symplectic up to ordeiif and only if R(zR(—2) = 1+ 0(Z*1).
For the simple differential equation= iy the composition of B-series integrators commutes, so that
the stability functions of®, and x o @, 0 x ~* are identical. The fact that the stability function of the
methods “Radau IA”, “Radau II1A", and “Lobatto IlIC" are sulagjonal Padé-approximations proves

Table 2. Overview on the order of conjugate symplecticity.

method order simpl. assumpt. sympl. conj. sympl.
Gauss 2s C(s), D(s) yes 0
Radau IA 2s-1 C(s—1), D(s) no 2s-1
Radau 1A 2s—1 C(s), D(s—1) no 2s—1
trapezoidal rule 2 C(2) no [
Lobatto IlIA, s> 3 2s—-2 C(s), D(s—2) no 2s
implicit midpoint rule 2 C(1), D(1) yes o0
Lobatto I1IB,s> 3 25-2 C(s—2), D(s) no 25-2
Lobatto IlIC,s > 2 2s—-2 C(s—1), D(s—1) no 2s—-2
energy pres. collocation 2s C(s), D(s—1) no 25+2
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that these methods are neither symplectic nor conjugatelegtic up to an order higher than that of
the stability function.

It is interesting to mention that the underlying one-stephoé of linear multistep methods cannot
be symplectic, but it is conjugate-symplectic up to an aabity high order (cf. Hairer (2008)), if the
method is symmetric.

A natural question is the investigation of energy-preseyuitegrators that are conjugate-symplectic
(up to arbitrarily high order). Their existence as formas&ies is known and follows from the fact
that symplectic integrators conserve a modified Hamiltoaiad modified quadratic first integrals (see
Chartieret al. (2006)). It is still a challenge to find a computational metliioe., an integrator that can
be implemented) that exactly preserves the energy and jagate-symplectic at the same time. The
methods of Section 6.3 do not share these properties.
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Appendix A. Shifted Legendre polynomials

We consider Legendre polynomials shifted to the intef@al]. By abuse of notation, we continue
to write P(1) for the polynomial of degre&. They are normalized bfA(1) = 1, they satisfy the
orthogonality relations

1 0 if K#j
/0 H((X)PJ(X>dX{ (2j+1>71 if k:j, (Al)

and they can conveniently be computed from Rodrigues’ féeimu

1k
R(X) = ( k!l) &(xk(l—x)k). (A.2)

The integral of the Legendre polynomial satisfies,kor 1,

[ R = S (Rea) —Reato). (A3)

and repeated integration by parts gives the relation
"P )Xk = k (k—1 k—j+1 K A4
/o ()X dx=k(k=1)-...-(k—=j+ )m (A.4)

To express the produetR(x) as a linear combination of Legendre polynomials, we use therr
recurrence relation

(Kt 1) Pia(0) = (2K+ 1) (2x— 1) A(x) — KR 1(x). (A5)
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Appendix B. Technical details for the energy preserving cdbcation method

We explain the verification of formula (6.6). The other fodamsican be checked with the same technics.
The B-series coefficients of a Runge—Kutta method (6.5) avitbntinuum of stages are obtained as for
classical Runge—Kutta methods with sums replaced by iakegin this way we get

a.(TS+3O TS / / BTCS—FZAT UCS ldUdT = (A6)

1
s(2s+3)’

where we have exploited the simplifying assumpi@s). Using the explicit formulas for the coeffi-
cientsA; ¢, Br, andC;, we obtain

T 1
a(Tso Ts3) // B.CS 1A, ,CS2dodr = / S 12 1)/0 H,l(a)da/O A_1(0) o 2dadr.

With the expansion ofi$t2 into a series of Legendre polynomials

st2 :lsf(z —1)F1,1(a). /0 1F1,1(a) 0%2do, (A.7)
we obtain
H3 1
a(Tso Tsy3) = / 51/ as*z I—l)FLl(a)/O H,l(a)os*zda)dadr
[ s+l
B (s+3)(25+3) ~RGs),
where s
Rg= S @-1([ =t a)d d )o%*2da).
§=3 y( [ e[ "R s@dad) ([ A(0)0%2do)

Because of (A.3) and the orthogonality relation, the exgicgsin the first parenthesis vanishes for
| > s+ 1. Only the term witH = s+ 1 remains and yields

((s—1)!(s+2)1)?

RS =~ 22— D1 2s+ 3y

Since the quadrature conditioaér) = 1/k, k > 1 are satisfied for all energy preserving B-series inte-
grators, we obtaia(Ts, Ts13) = a(Tso Ts3) + &(Ts130 Ts) — a(Ts) &(Ts13) = —R(S). This proves formula
(6.6) of Section 6.3. The other expressions are obtainedimiar way.

Appendix C. Lobatto methods

The nodes of the Lobatto quadrature are the zeros of the alahPs(X) — Ps_2(x), and they satisfy
c1 = 0 andcs = 1. The quadrature formula is of ordes-2 2, which means that polynomials of degree
< 2s— 3 are integrated without error. The dominant error termygeigby

s o5 1 d(s-1!(s-1)!(s—-2)
i;b'ciz i (2s—1)!(2s-2)! (A-8)
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Further useful formulas are

Zibl 1(€¢)Bc1(c) = 0 if 14Kk isodd

Zb| Ps 1 C,)Ps l(cl)

Zb| Ps(ci)Ps(ci) = 25— 3

2s—1
i;bl PS*l CI) PS+1(CI) (ZS— 3)(S+ 1)(5— 1)5

which can be obtained by using properties of the Legendrsmpanhials (see Appendix A), and by using
the fact that the nodes of the Lobatto quadrature safigfy) = Ps_»(c;) for all i.

Lobatto IIIA methodsFor the verification of formula (6.1) we compute

stlaij 1(cj) = 2 -1) /Oq R-1(X) dxjilbjﬂl(cj)ﬂl(cj) = /Oq R-1(x) dx

The second equality holds far< s, because the quadrature formula is exact for polynomiadegfee
<2s—3and because we ha\[é' Ps_1(x)dx = 0 as a consequence of (A.3). This proves the identity
Yi_1ajp(cy) = o' p(x) dx for all polynomials of degres— 1. Puttingp(x) = X1 verifies the condition
C(s) which unlquely determines the coefficieaip of the method.

For the computation of the B-series coefficients (6.2) wethiseelation

Z\bl au—(lc?l)%bj Ps_1(cj),

which permits a simplification similar to that with the cofioih D(s— 1). This formula can either
be proved with the help of (6.1) or by writing the left-handpeassion as a linear combination of
Po(ci),Pi(ci), ...,Ps—1(ci) and computing the coefficients with help of the orthogogaldations. A
direct calculation then gives

s—1 S
aA(Ts-1,Ts42) = ( 25) 2! Z i Ps-1(cj) CSH
(s=1!(s=2)! & S
a(Ts-1,[Tsv1]) = 2s— 2 Z j Ps-1(cj) z 3k Cy-

Writing c?“ (respectivelyy_; ajk ;) as a linear combination ¢%(c;), ...,Ps_1(c;) finally yields the
relations (6.2). Notice that only the coefficientRf 1(c;) is relevant.

Lobatto I11IB methodsTo prove the formula (6.3) we compute, foe=1,...,s,

1
Zb'PK L(c)aij = Zb.nk 1(c)R_1(c) b Hfl<x)dx=b,- / R_1(X) dx
]

The same argumentation as before proves that the coeffd@?3) verify the conditiod(s).
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Most of the B-series coefficients for the Lobatto |1IB metkpdeeded in Section 6.2, can be reduced
via the simplifying assumptioB(s) to the bushy treeg, k < 2s— 1. For the remaining trefgs_1, 7s_1]

we use the relation o1
S . c- s—1)!(s—2)!
Za”c]s 2_ - :_( ) ( ) Psfl(ci)
=1

s—1 (2s—2)!

which has a similar effect as the simplifying assumpt@is— 1). It can be proved in the same way as
its analogue for the Lobatto I1IA methods. This relationrpis to obtain the formulas (6.4).



