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On conjugate-symplecticity of B-series integrators
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The long-time integration of Hamiltonian differential equations requires special numerical methods.
Symplectic integrators are an excellent choice, but there are situations (e.g., multistep schemes or energy-
preserving methods), where symplecticity is not possible.It is then of interest to study if the methods are
conjugate-symplectic and thus have the same long-time behavior as symplectic methods.
This question is addressed in this work for the class of B-series integrators. Algebraic criteria for
conjugate-symplecticity up to a certain order are presented in terms of the coefficients of the B-series.
The effect of simplifying assumptions is investigated. These criteria are then applied to characterize the
conjugate-symplecticity of implicit Runge–Kutta methods(Lobatto IIIA and Lobatto IIIB) and of energy-
preserving collocation methods.
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1. Introduction

Consider a Hamiltonian differential equation

ẏ = J−1∇H(y), J =

(

0 I
−I 0

)

, (1.1)

whereJ is the canonical structure matrix andH : R
2d → R is sufficiently differentiable (d is the number

of degrees of freedom). The functionH(y) is called the Hamiltonian or energy of the system. A
classical result by Poincaré tells us that the exact flow, denoted byϕt(y), is for everyt a symplectic
transformation. This means that the derivative with respect to the initial value satisfies

ϕ ′
t (y)

TJϕ ′
t (y) = J. (1.2)

For problems with one degree of freedom this property is equivalent to area preservation, and it implies
volume preservation of the flow in the general case. Another property of Hamiltonian systems is energy
preservation, which means thatH(y(t)) is constant along solutions of (1.1).

We are interested in the numerical treatment of Hamiltoniansystems. In the spirit of geometric nu-
merical integration, the ideal situation would be to have a numerical integratoryn+1 = Φh(yn) for which
the discrete flow mappingΦh(y) is symplectic, and which exactly preserves the energy. Unfortunately
this is not possible (Ge & Marsden (1988), see also Chartieret al.(2006)). One is therefore constrained
to consider methods satisfying one of these properties and to study how well the other is verified.
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An important tool for studying the long-time behavior of numerical methods isbackward error
analysis(see Haireret al.(2006)). It tells us that the discrete flow of a numerical integratorΦh(y), when
applied to ˙y = f (y), can be (formally) interpreted as the exact flow of a modified differential equation,
whose vector field is given as a series in powers of the step size h:

ẏ = f (y)+h f1(y)+h2 f2(y)+h3 f3(y)+ . . . .

If the method is of orderp we havef j(y) = 0 for 16 j < p, so that the perturbation is of sizeO(hp).
For symplectic methods applied to (1.1) the modified differential equation is Hamiltonian,

ẏ = J−1∇Hh(y) with Hh(y) = H(y)+hH1(y)+h2H2(y)+h3H3(y)+ . . . ,

with functionsH j(y) that are globally defined for B-series integrators. This shows that the discrete
flow of symplectic methods has the same qualitative behavioras the exact flow. Formally, it exactly
conserves the modified HamiltonianHh(y), so that the energyH(y) is nearly conserved with an error
bounded byO(hp) (without any drift). Moreover it can be shown (see e.g., Hairer et al. (2006)) that
symplectic methods exactly preserve quadratic first integrals of the system and, in the case of nearly
integrable systems, they nearly conserve all action variables and have at most a linear error growth in
the angle variables.

In the present article we are interested in methods that are not necessarily symplectic, but neverthe-
less have an excellent long-time behavior. We call a numerical method of orderp conjugate-symplectic
up to order p+ r (with r > 0), if there exists a change of coordinatesz= χ(y) that isO(hp)-close to the
identity, such thatΨh = χ ◦Φh◦ χ−1 satisfies

Ψ ′
h(z)

TJΨ ′
h(z) = J+O(hp+r+1). (1.3)

The methodΨh has the same order asΦh, and the coefficient functionsf j(z) of the corresponding
modified differential equation are Hamiltonian forj < p+ r. Consequently, the error in the energy
H(zn) is bounded byO(hp)+O(thp+r), so that no drift can be observed on intervals of lengthO(h−r).
The same is true for the near preservation of quadratic first integrals and for the action variables in nearly
integrable Hamiltonian systems. Since for a method that is conjugate-symplectic up to orderp+ r we
haveyn−zn = O(hp), the same statements remain true for the numerical approximation{yn}.

In Section 2 we start with recalling the definition of B-series, we present the composition law, and
we give explicit formulas for the B-series representing themodified equation. We also recall algebraic
conditions on the coefficients of a B-series that guarantee its symplecticity, and we discuss the B-series
that is obtained after conjugation. Section 3 is then devoted to criteria for conjugate-symplecticity
in terms of the coefficients of the modified differential equation. A recurrence relation counting the
number of necessary conditions is given. Analogous criteria in terms of the coefficients of the B-series
integrator are then proved in Section 4. For high order the number of order conditions is very high, and
they can be handled only with the use of simplifying assumptions. In Section 5 we recall a coordinate-
free definition of simplifying assumptionsC(η) and D(ζ ), and we discuss the simplification of the
algebraic criteria for conjugate-symplecticity under these simplifying assumptions. Applications of the
criteria are the subject of the final Section 6. We discuss theconjugate-symplecticity of Lobatto IIIA
and Lobatto IIIB Runge–Kutta methods, and we prove that the energy-preserving collocation methods
of maximal order 2sare conjugate-symplectic up to order 2s+2, but not up to a higher order.
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2. B-series theory

Based on the seminal publication of Butcher (1972), the concept of B-series has been introduced in the
article of Hairer & Wanner (1974). It is motivated by the factthat the exact solution of ˙y = f (y) as well
as the numerical solution of nearly all integrators can be written as B-series. For a modern treatment of
the theory of B-series we refer to the monograph of Haireret al. (2006), to Murua (1999), and to the
recent article by Chartieret al. (2010). In the following we collect the definitions and the results that
will be needed in this work.

Let
T =

{

, , , , , , , , . . .
}

be the set of rooted trees. If it is convenient to consider also the empty tree, we writeT0 = T ∪{ /0}. We
use the notationτ = [τ1, . . . ,τm] for the tree that is obtained by grafting the roots ofτ1, . . . ,τm ∈ T to a
new vertex which becomes the root ofτ. We denote the number of vertices by|τ| and call it the order
of τ. The symmetry coefficient is defined recursively by

σ( ) = 1, σ(τ) = σ(τ1) · · ·σ(τm)µ1!µ2! · · · , (2.1)

where the integersµ1,µ2, . . . count equal trees amongτ1, . . . ,τm. For a differential equation ˙y = f (y),
the corresponding elementary differentialsF(τ) are given by

F( )(y) = f (y), F(τ)(y) = f (m)(y)
(

F(τ1)(y), . . . ,F(τm)(y)
)

.

For given real coefficientsa( /0) anda(τ),τ ∈ T, a B-series is a formal series of the form

B(a,y) = a( /0)y+ ∑
τ∈T

h|τ|

σ(τ)
a(τ)F(τ)(y). (2.2)

B-series integrators. A discrete flowΦh(y), whose (formal) Taylor series is of the form (2.2) with
a( /0) = 1 is called a B-series integrator,Φh(y) = B(a,y). It is consistent with ˙y = f (y) if in addition
a( ) = 1. This is a wide class of numerical methods that comprises all Runge–Kutta methods, the un-
derlying one-step method of multistep methods, the averaged vector field integrator, energy-preserving
collocation methods, and many more.

The exact time-h flow of ẏ = f (y) can be interpreted as a B-series integratorϕh(y) = B(e,y) with
coefficients

e( /0) = e( ) = 1, e(τ) =
1
|τ|

e(τ1) · . . . ·e(τm) for τ = [τ1, . . . ,τm]. (2.3)

A B-series integrator is oforder p, if its Taylor series matches that of the exact solution up toan error
of sizeO(hp+1). Algebraically, this can be expressed asa(τ) = e(τ) for all trees with|τ| 6 p.

Composition law. Let B(c,y) be a B-series withc( /0) = 1, so that it is close to the identity mapping.
The expressionsF(τ)(B(c,y)) can then be expanded into a Taylor series aroundy, and it turns out (see
for example (Haireret al., 2006, p. 62)) that the composition of B-series satisfies

B
(

b,B(c,y)
)

= B(cb,y) with (cb)(τ) = ∑
θ∈OST(τ)

b(θ )c(τ \θ ). (2.4)

Here,OST(τ) denotes the set of ordered subtrees ofτ. The empty tree /0 andτ are inOST(τ), as well
as treesθ that are formed by a connected subset of vertices ofτ containing its root. All vertices ofτ are
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considered different, so that for example the treeappears twice in the setOST( ). The difference
setτ \θ consists of those trees that remain whenθ and its adjacent branches are removed fromτ, and
the expressionc(τ \θ ) is defined as the productc(τ \θ ) = ∏δ∈τ\θ c(δ ) .

The setG = {a : T0 → R ; a( /0) = 1} provided with the above composition law is called the Butcher
group. Let us also mention that (2.4) defines a co-product which makes the algebra of polynomials with
the rooted trees as commuting indeterminates to a Hopf algebra.

B-series vector fields and modified differential equation.A B-seriesB(α,y) with coefficients satis-
fying α( /0) = 0 is of the form

B(α,y) = hα( ) f (y)+h2α( ) f ′(y) f (y)+ . . .

and can be interpreted as a vector field. The modified differential equation of a B-series integrator (in
the sense of backward error analysis) is such a vector field. To get a relation between the coefficients
a(τ) of the method and the coefficientsα(τ) of the vector field it is convenient to work with theLie
derivative∂αcas discussed in (Haireret al., 2006, p. 370). Ify(t) is a solution of the differential equation
hẏ(t) = B(α,y(t)), then we have

h
d
dt

B
(

c,y(t)
)

= B
(

∂αc,y(t)
)

with (∂αc)(τ) = ∑
θ∈SP(τ)

c(θ )α(τ \θ ), (2.5)

for |τ|> 1, and(∂αc)( /0) = 0. Here,SP(τ) = {θ ∈OST(τ) ; τ \θ consists of only one element} denotes
the set of splittings of the treeτ. Higher derivatives can be expressed in terms of iterated application of
the Lie derivative. It then follows from Taylor series expansion thathẏ(t) = B(α,y(t)) is the modified
differential equation of the B-series integratoryn+1 = B(a,yn) if and only if

a(τ) =
|τ|

∑
j=1

1
j!

(

∂ j−1
α α

)

(τ). (2.6)

This formula yields a bijection between the coefficientsa(τ) andα(τ), which can be used to compute
the modified differential equation from the coefficients of the integrator.

Criteria for symplecticity. The symplecticity of a mappingy 7→ B(a,y) can be characterized in terms
of algebraic conditions on the coefficients of the B-series.To this end, we need theButcher productof
two treesu,v∈ T which is defined by

u◦ v= [u1, . . . ,um,v] for u = [u1, . . . ,um].

The B-seriesB(a,y) is symplectic for all Hamiltonian systems if and only if

a(u◦ v)+a(v◦u)= a(u)a(v) for all u,v∈ T. (2.7)

The differential equationhẏ = B(α,y) is Hamiltonian wheneverf (y) = J−1∇H(y) if and only if

α(u◦ v)+ α(v◦u) = 0 for all u,v∈ T. (2.8)

If the coefficientsa(τ) andα(τ) are related via (2.6), then both conditions, (2.7) and (2.8), are equiva-
lent. These statements are discussed in (Haireret al., 2006, Sections VI.7 and XI.9).
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Conjugation. We consider a B-series integratoryn+1 = Φh(yn) with Φh(y) = B(a,y), and a change of
coordinatesz= χ(y) that can be written as a B-series

z= B(c,y) with c( /0) = 1.

In the new coordinates the method becomeszn+1 =Ψh(zn) with Ψh = χ ◦Φh◦χ−1. Using the composi-
tion law for B-series, this can be expressed as

zn+1 = B(b,zn) with b = c−1ac. (2.9)

If hẏ= B(α,y) denotes the modified differential equation corresponding to the methodB(a,y), then the
modified differential equation for the methodB(b,z) is given by

hż= B(β ,z) with β = c−1∂αc. (2.10)

This is a consequence of (2.5), becausehż= B(∂αc,y) = B
(

∂αc,B(c−1,z)
)

.

3. Conjugate symplecticity in terms of the modified equation

We consider a B-series integratorB(a,y) of order p > 1. For the coefficients of the corresponding
modified differential equationshẏ = B(α,y) this implies that

α( /0) = 0, α( ) = 1, α(τ) = 0 for 26 |τ| 6 p. (3.1)

In view of studying the conjugate-symplecticity of numerical integrators in terms of their modified
differential equation we introduce the notation (foru,v∈ T)

α(u,v) = α(u◦ v)+ α(v◦u).

The same notation is used for the coefficientsβ of the modified differential equation in the transformed
coordinates and for the coefficientsc of the transformation.

LEMMA 3.1 In addition to (3.1) assume that the B-seriesB(c,y) satisfies

c( /0) = 1, c(τ) = 0 for 16 |τ| 6 p−1, (3.2)

so thatB(c,y) = y+O(hp), and letβ be given by (2.10). Foru,v∈ T with |u|+ |v|6 2p we then have

α(u,v) = β (u,v) − ∑
v̂∈SP∗(v)

c(u, v̂) − ∑
û∈SP∗(u)

c(û,v), (3.3)

whereSP∗(τ) = {θ ∈ SP(τ) ; |θ | = |τ|−1} is the set of splittings that separate only one tree with one
vertex. By conventionSP∗( ) is the empty set, so that the corresponding sums are zero.

Proof. The assumption onc implies that the conjugated method is also of orderp, so that the coefficients
β satisfy the same relations (3.1) asα. We now write the equation (2.10) as∂αc= cβ . The assumptions
on α andc imply that only the terms withθ = /0 and|θ | = |τ|−1 give rise to non-vanishing terms in
(2.5). Those onβ andc imply that in the composition law forcβ only the terms withθ = τ and|θ |= 1
have to be considered. The relation∂αc = cβ thus yields

α(τ)+ ∑
θ∈SP(τ),|θ |=|τ|−1

c(θ ) = β (τ)+ ∑
θ∈SP(τ),|θ |=1

c(τ \θ ) for |τ| 6 2p. (3.4)
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For τ = u◦ v, the sum in the right-hand side of (3.4) is empty if|u| > 2, and the set{θ ∈ SP(τ) ; |θ | =
|τ|−1} is in one-to-one correspondence withSP∗(u)∪SP∗(v) if |v| > 2. This proves

α(u◦ v) = β (u◦ v)− ∑
v̂∈SP∗(v)

c(u◦ v̂)− ∑
û∈SP∗(u)

c(û◦ v),

and the statement of the lemma follows for|u| > 2 and|v| > 2.
For τ = ◦ v the sum in the right-hand side of (3.4) reduces toc(v). For τ = u◦ the set{θ ∈

SP(τ) ; |θ | = |τ| − 1} is in one-to-one correspondence withSP∗(u)∪{u}, so that the sum in the left-
hand side has an additional termc(u). In the sumα( ,v) = α( ◦v)+α(v◦ ) these terms cancel and
we get (3.3) also in this case. �

EXAMPLE 3.1 Forp > 2 and|u|+ |v|= 3 we have

α( , ) = β ( , )−c( , ).

For p > 2 and|u|+ |v|= 4 we have

α( , ) = β ( , )−2c( , ),

α( , ) = β ( , )−c( , ),

α( , ) = β ( , )−2c( , ).

The equations (3.3) can be considered as a linear system for the coefficientsc(u,v). For its formu-
lation we let(T ×T)r = {(u,v) ; |u|+ |v|= r} for r > 2, and we consider the vector space of mappings
on (T ×T)r ,

Vr = {c : (T ×T)r → R ; c(u,v) = c(v,u)}.

To compute the dimension of this vector space we consider theformal series

N(ζ ) = n1ζ +n2ζ 2 +n3ζ 3 + . . . = ζ (1− ζ )−n1(1− ζ 2)−n2(1− ζ 3)−n3 · . . .

M(ζ ) = m2ζ 2 +m3ζ 3 +m4ζ 4 + . . . =
1
2

(

N(ζ )2 +N(ζ 2)
)

.

The coefficientnr denotes the number of trees withr vertices (this formula is due to Cayley and can be
found in (Haireret al., 2006, p. 95)), and a straight-forward computation shows that the coefficientmr

is the dimension ofVr . These numbers are given in Table 1 forr 6 12. They have also been computed
in Celledoniet al. (2010).

Table 1. Number of rooted trees of orderr , and dimensionmr of the vector spaceVr .

r 1 2 3 4 5 6 7 8 9 10 11 12

nr 1 1 2 4 9 20 48 115 286 719 1842 4766

mr 0 1 1 3 6 16 37 96 239 622 1607 4235

We consider the linear mappingA on∪r>2Vr , whose restrictionA : Vr → Vr+1 is defined by

(Ac)(u,v) = ∑
v̂∈SP∗(v)

c(u, v̂) + ∑
û∈SP∗(u)

c(û,v), (3.5)
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so that the condition (3.3) becomesα(u,v) = β (u,v)− (Ac)(u,v). Since symplecticity of the trans-
formed method is equivalent toβ (u,v) = 0 for all u,v∈ T, the integratorΦh(y) = B(a,y) is conjugate-
symplectic up to orderp+ r if and only if there exists a B-seriesB(c,y) satisfying (3.2) such that
α(u,v) = −(Ac)(u,v) for all pairs of trees with|u|+ |v| 6 p+ r. Before we state this as a theorem we
show that the conditions are independent, and we prove that the assumption (3.2) can be removed.

LEMMA 3.2 The mappingA : Vr → Vr+1 of (3.5) is injective.

Proof. For a mappingc : (T ×T)r → R we have to prove that the conditionAc= 0 impliesc = 0. It is
sufficient to consider pairs of trees satisfying|u| 6 |v|.

We start withu = , we assume that(Ac)( ,v) = 0 for treesv with |v| = r, and we prove by
induction on the height of the tree ˆv that c( , v̂) = 0 for trees with|v̂| = r −1. We denote byµk the
unique tree withk vertices and maximal heightk. The equation(Ac)( ,µr) = c( ,µr−1) then proves
c( , v̂) = 0 for v̂ = µr−1. Assume that this relation holds for ˆv with height at leasth. For an arbitrary
tree v̂ with r − 1 vertices and heighth− 1 we choose a treev of heighth such that ˆv ∈ SP∗(v). We
have(Ac)( ,v) = c( , v̂), because further terms in the sum (3.5) vanish by the induction hypothesis.
Consequently,c( , v̂) = 0 for all trees with|v̂| = r −1.

We next putu = , and apply the same induction argument as above on the heightof the tree ˆv.
Then we consider foru trees of order 3, etc. �

LEMMA 3.3 Consider a B-series integratorB(a,y) of orderp which is conjugate symplectic up to order
p+ r with r > 0. Then, there exists a change of coordinatesz= B(c,y) satisfyingB(c,y) = y+O(hp),
such that in the coordinatesz the method is symplectic up to orderp+ r.

Proof. Since the method is conjugate symplectic up to orderp+ r, there exists a change of coordinates
z= B(c,y) that makes the method symplectic up to orderp+r. Letρ = min{|τ| ; τ ∈T,c(τ) 6= 0}. If ρ >

p, nothing has to be proved. Therefore, let us assumeρ < p. For trees(u,v) satisfying|u|+ |v|= ρ +1,
we haveα(u,v) = 0 (as a consequence of orderp) andβ (u,v) = 0 (as a consequence of symplecticity).
Lemma 3.1 (withρ in place ofp) shows that(Ac)(u,v) = 0 for all such pairs of trees, and Lemma 3.2
impliesc(u∗,v∗) = 0 for all trees with|u∗|+ |v∗| = ρ . Consequently, there exists a symplectic mapping
B(cρ ,y) such thatB(cρ ,y) = B(c,y)+O(hρ+1). The transformationB(cc−1

ρ ,y) is O(hρ+1)-close to the
identity, and leaves the transformed method symplectic up to orderp+ r. The proof can be repeated
until ρ > p is reached. �

LEMMA 3.4 Consider a symmetric B-series integratorB(a,y) of orderp which is conjugate symplectic
up to orderp+ r with 06 r 6 p. Then, there exists a change of coordinatesz= χh(y) = B(c,y) satisfying
χ−h(y) = χh(y), such that in the coordinatesz the method is symplectic up to orderp+ r.

Proof. By Lemma 3.3 it is sufficient to consider transformationsB(c,y) that areO(hp)-close to the
identity. For pairs of trees(u,v) with even|u|+ |v| we haveα(u,v) = 0 by the symmetry of the method.
Lemma 3.1 thus implies(Ac)(u,v) = 0 for all such pairs of trees if|u|+ |v| 6 p+ r, and Lemma 3.2
impliesc(u∗,v∗) = 0 for all trees with odd|u∗|+ |v∗| 6 p+ r −1. The same argument as in the proof of
Lemma 3.3 shows that non-zero termsc(τ) with odd|τ| 6 p+ r −1 can be removed from the transfor-
mation. Non-zero termsc(τ) with |τ|> p+ r can also be removed, because they do not affect conjugate
symplecticity up to orderp+ r. �

THEOREM 3.2 A B-series integratorB(a,y) of orderp is conjugate-symplectic up to orderp+ r (with
0 6 r 6 p), if and only if there exist coefficientsc(u∗,v∗) such that the B-series coefficients of its
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modified differential equationhẏ = B(α,y) satisfy

α(u,v) = − ∑
v̂∈SP∗(v)

c(u, v̂) − ∑
û∈SP∗(u)

c(û,v) for p < |u|+ |v|6 p+ r. (3.6)

Elimination of the coefficientsc(u∗,v∗) gives exactlymp+r −mp linear relations between the expressions
α(u,v). If the integrator is symmetric, the conditions (3.6) are automatically satisfied for trees with even
|u|+ |v|.

Proof. It follows from Lemma 3.3 that (3.2) can be assumed without loss of generality. The equivalence
of conjugate-symplecticity with (3.6) is then a consequence of Lemma 3.1. Finally, Lemma 3.2 yields
the number of additional order conditions, and Lemma 3.4 thestatement for symmetric methods. �

4. Conjugate symplecticity in terms of the B-series integrator

The aim of this section is to translate the criterion of Theorem 3.2 into conditions on the coefficients
a(τ) of the integratoryn+1 = B(a,yn). To this end, we introduce the expression (foru,v∈ T)

a(u,v) = a(u◦ v)+a(v◦u)−a(u)a(v).

The coefficientsα(τ) of the modified differential equation are related to the coefficientsa(τ) of the
method by (2.6). We have to find a similar relation between theexpressionsα(u,v) for the modified
equation anda(u,v) of the B-series, so that the conditions for conjugate symplecticity can be expressed
in terms ofa(u,v).

The following notation will be convenient: aj-fold splittingof a treeτ is a chain of ordered subtrees

θ0 < θ1 < .. . < θ j−1 < θ j = τ such that θl−1 ∈ SP(θl ), l = 1, . . . , j.

We denote such aj-fold splitting byΘ = θ0 < θ1 < .. . < θ j−1 < θ j , and we letSPj(τ) be the set of all
j-fold splittings ofτ. For a mapping on the set of trees satisfyingα( /0) = 0, we define

α(Θ) = α(θ0)α(θ1 \θ0) · . . . ·α(θ j \θ j−1).

We further consider the setSPj
∗(τ) = {Θ ∈ SPj

∗(τ) ; θl−1 ∈ SP∗(θl ), l = 1, . . . , j}, which consists of
j-fold splittings for which|θ j \θ j−1| = 1 for all j.

LEMMA 4.1 Assume the B-series integratorB(a,y) to be of orderp > 1, and letu andv be non-empty
trees satisfying|u|+ |v|6 2p. Then, we have

a(u,v) = ∑
j>1

1
j! ∑

Θ∈SPj−1
∗ (u◦v)

α(û, v̂), (4.1)

whereû andv̂ are nonempty ordered subtrees ofu andv, respectively, such that the smallest tree in the
splittingΘ is θ0 = û◦ v̂. Splittings, for whichθ0 is not of this form, are not considered in (4.1).

Proof. Applying iteratively the formula (2.5) for the Lie-derivative ∂α we obtain

(∂ j−1
α α)(τ) = ∑

Θ∈SPj−1(τ)

α(Θ).
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For a pair of trees(u,v) we split this sum into

(∂ j−1
α α)(u◦ v) = ∑

Θ∈SPj−1
+ (u◦v)

α(Θ) + ∑
Θ∈SPj−1

− (u◦v)

α(Θ), (4.2)

whereSPj−1
+ (u◦ v) denotes the set of( j −1)-fold splittings, for which the root ofv belongs toθ0, and

SPj−1
− (u◦ v) is the set of those splittings, for which the root ofv does not belong toθ0, i.e., there is a

separation between the roots ofu andv for splittings inSPj−1
− (u◦ v). We write the second sum as

∑
Θ∈SPj−1

− (u◦v)

α(Θ) =
j−1

∑
l=1

(

j −1
l −1

)

∑
Θu∈SPl−1(u)

α(Θu) ∑
Θv∈SPj−l−1(v)

α(Θv).

Here, l − 1 denotes the number of branches removed fromu, and j − l − 1 the number of branches
removed fromv. The binomial coefficient counts all possible( j −1)-fold splittings ofu◦ v that reduce
to fixed splittingsΘu andΘv for u andv, respectively. Similarly, we have

∑
Θ∈SPj−1

− (v◦u)

α(Θ) =
j−1

∑
l=1

(

j −1
j − l −1

)

∑
Θu∈SPl−1(u)

α(Θu) ∑
Θv∈SPj−l−1(v)

α(Θv).

As a consequence of the binomial identity
( j−1

l−1

)

+
( j−1

l

)

=
( j

l

)

we thus obtain

∑
Θ∈SPj−1

− (u◦v)

α(Θ) + ∑
Θ∈SPj−1

− (v◦u)

α(Θ) =
j−1

∑
l=1

(

j
l

)

∑
Θu∈SPl−1(u)

α(Θu) ∑
Θv∈SPj−l−1(v)

α(Θv). (4.3)

On the other hand we have

a(u) = ∑
j>1

1
j!

(∂ j−1
α α)(u) = ∑

j>1

1
j! ∑

Θ∈SPj−1(u)

α(Θ),

and a similar formula fora(v). Using the Cauchy product of two series this implies that

∑
j>2

1
j!

(

∑
Θ∈SPj−1

− (u◦v)

α(Θ) + ∑
Θ∈SPj−1

− (v◦u)

α(Θ)
)

= a(u)a(v).

Note thatSPj−1
− (u◦ v) is empty for j = 1. It therefore follows from (4.2) that

a(u,v) = ∑
j>1

1
j!

(

∑
Θ∈SPj−1

+ (u◦v)

α(Θ)+ ∑
Θ∈SPj−1

+ (v◦u)

α(Θ)
)

.

If the method is of orderp and if |u|+ |v| 6 2p, a splittingΘ gives a nonzero contribution only if all
factors in the productα(Θ) are 1, with the exception ofα(θ0). This means thatΘ ∈ SPj−1

∗ . Writing
θ0 = û◦ v̂ concludes the proof. �

Combining the statements of Theorem 3.2 and Lemma 4.1 yieldsthe desired criterion for conjugate-
symplecticity.
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THEOREM 4.1 A B-series integratorB(a,y) of orderp is conjugate-symplectic up to orderp+ r (with
0 6 r 6 p), if and only if there exist coefficientsc(û, v̂) such that

a(u,v) = − ∑
j>1

1
j! ∑

Θ∈SPj
∗(u◦v)

c(û, v̂) for p < |u|+ |v|6 p+ r. (4.4)

Here,û andv̂ are nonempty ordered subtrees ofu andv, respectively, such that the smallest tree in the
splittingΘ is θ0 = û◦ v̂. Splittings, for whichθ0 is not of this form, are not considered in (4.4).

If the integrator is symmetric, the conditions (4.4) are automatically satisfied for trees with even
|u|+ |v|.

The following particular cases (of low order) have first beenobtained in the thesis of Leone (2000),
see also (Haireret al., 2006, Section VI.8.1). We eliminate the parametersc(u∗,v∗) to get conditions on
the B-series coefficients only.

EXAMPLE 4.2 Every B-series method of order 2 is conjugate-symplectic up to order 3. It is conjugate-
symplectic up to order 4, if and only if

a( , )−2a( , ) = 0, a( , )−2a( , ) = 0.

EXAMPLE 4.3 For a method of orderp, there aremp+1−mp (with mr taken from Table 1) additional
order conditions for being conjugate-symplectic up to order p+1 (up top+2 for symmetric methods).
For p = 4, we have the three conditions

2a( , )−6a( , )+3a( , ) = 0, a( , )−2a( , ) = 0,

a( , )−3a( , )−3a( , )+6a( , ) = 0.

For a method of order 6 this results in 21 additional conditions, and this number increases rapidly for
higher orders. The practical investigation of conjugate-symplecticity up to a high order is therefore only
possible with the use of simplifying assumptions.

5. Simplifying assumptions

Simplifying assumptions play an important role in the construction of high order Runge–Kutta methods.
They reduce the number of order conditions. In this section we give a coordinate-free definition (i.e.,
independent of the Runge–Kutta coefficients) of the simplifying assumptionsC(η) andD(ζ ), which is
originally due to Butcher (1972), see also Butcher & Chan (2002). We then study their effect on the
conditions for conjugate-symplecticity.

Besides the Butcher productu◦v of two trees, we consider the commutativemerging productwhich,
for u = [u1, . . . ,um] andv = [v1, . . . ,vl ], is defined by

u×v= [u1, . . . ,um,v1, . . . ,vl ].

Furthermore we introduce the notationτk for the bushy tree withk vertices (the unique tree of height 1).
We have for exampleτ1 = , τ2 = , τ3 = , . . . .
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5.1 Simplifying assumption C(η)

DEFINITION 5.1 (partial order onT) We denote by6η the smallest order relation satisfying

[u∗1, . . . ,u
∗
m]× τk+1 6η [u1, . . . ,um]◦ τk,

whereu∗j 6η u j for j = 1, . . . ,m (with m> 0), and 06 k 6 η (see Figure 1).

We note thatm= 0 yieldsτk+16η [τk] for k 6 η , which is the starting point for the construction of
pairs satisfyingu∗6η u. Fork = 0 the relation simply reads[u∗1, . . . ,u

∗
m] 6η [u1, . . . ,um]. By definition,

the relation6η is reflexive, transitive, and anti-symmetric. It is not a total order, and it only compares
trees having the same number of vertices.

u∗1 u∗m
k

u1 um

k−1

FIG. 1. Trees involved in the simplifying assumptionC(η).

DEFINITION 5.2 A B-seriesB(a,y) is said to satisfy the simplifying assumptionC(η), if

a(u∗)
e(u∗)

=
a(u)

e(u)
whenever u∗6η u.

Here,e(u) are the B-series coefficients of the exact flow. They are givenin (2.3).

LEMMA 5.1 If a B-seriesB(a,y) satisfies the simplifying assumptionC(η), then we have

a(u∗,v∗)
e(u∗)e(v∗)

=
a(u,v)

e(u)e(v)
whenever u∗6η u, v∗6η v. (5.1)

If the methodB(a,y) is of orderp and satisfiesC(η), then the coefficients of its modified differential
equationhẏ = B(α,y) satisfy, for|u|+ |v|6 2p,

α(u∗,v∗)
e(u∗)e(v∗)

=
α(u,v)

e(u)e(v)
whenever u∗6η u, v∗6η v. (5.2)

Proof. Notice thatu∗6η u andv∗6η v imply |u∗| = |u|, |v∗| = |v|, andu∗ ◦ v∗6η u◦ v. The first
statement thus follows from the relation(|u|+ |v|)e(u◦ v) = |u|e(u)e(v).

The proof of the second statement is by induction onρ = |u|+ |v|, and invoking the formula of
Lemma 4.1. Forρ 6 p the statement is trivial, becauseα(u∗,v∗) = α(u,v) = 0. For ρ = p+ 1 it
follows from (5.1), because in this caseα(u,v) = a(u,v) andα(u∗,v∗) = a(u∗,v∗). We now assume
that (5.2) holds for pairs(û, v̂) satisfying |û|+ |v̂| 6 ρ , and we consideru∗6η u, v∗6η v satisfying
|u|+ |v| = ρ +1 6 2p. Without loss of generality we assumeu∗ = u and thatv∗ differs fromv only by
the fact that one branch[τk] (with k 6 η) in v is replaced byτk+1 in v∗.

Lemma 4.1 yields

a(u,v)
e(u)e(v)

=
α(u,v)

e(u)e(v)
+ ∑

j>2

1
j! ∑

Θ∈SPj−1
∗ (u◦v)

α(û, v̂)
e(u)e(v)

, (5.3)
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and a similar formula for(u∗,v∗). We consider thoseΘ ∈SPj−1
∗ (u◦v), for whichl branches are removed

from the highlighted subtree[τk], and the other splittings are fixed. There are(k−1) · . . .·(k− l) possible
( j −1)-fold splittings of this kind ifl < k, (k−1) · . . . · 2 · 1 if l = k, and one ifl = 0. Similarly, we
consider splittingsΘ ∗ ∈ SPj−1

∗ (u∗ ◦ v∗), for which l branches are removed from the highlighted subtree
τk+1, and the other splittings are exactly the same as above. There arek· . . . · (k− l +1) possible( j −1)-
fold splittings if l > 0, and one ifl = 0. As in Lemma 4.1 we denote the smallest trees of the splittings
by û◦ v̂ andû∗ ◦ v̂∗, respectively. The sum in (5.3) over the considered splittings is, forl < k,

(k−1) · . . . · (k− l)
α(û, v̂)

e(u)e(v)
= (k−1) · . . . · (k− l)

e(û)e(v̂)
e(u)e(v)

α(û, v̂)
e(û)e(v̂)

(5.4)

for the pair(u,v), and for the pair(u∗,v∗) it is

k · . . . · (k− l +1)
α(û∗, v̂∗)
e(u∗)e(v∗)

= k · . . . · (k− l +1)
e(û∗)e(v̂∗)
e(u∗)e(v∗)

α(û∗, v̂∗)
e(û∗)e(v̂∗)

(5.5)

Sinceu∗ = u, û∗ = û, and

e(v) =
1
k

e(v∗), e(v̂) =
1

k− l
e(v̂∗)

(the second relation is replaced bye(v̂) = e(v̂∗) if l = k) it follows from the induction hypothesis that
both expressions, (5.4) and (5.5), are the same. This implies that the double sum in (5.3) is the same for
(u,v) and for(u∗,v∗). Consequently, (5.1) implies (5.2). �

LEMMA 5.2 Consider a B-series integratorB(a,y) of order p satisfyingC(η), and assume that the
change of coordinatesz= B(c,y) transforms it into a method that is symplectic up to orderp+ r (with
0 6 r 6 p). Then, the coefficients of the transformationB(c,y) satisfy

c(u∗,v∗)
e(u∗)e(v∗)

=
c(u,v)

e(u)e(v)
whenever u∗6η u, v∗6η v and |u|+ |v|< p+ r. (5.6)

Proof. Due to the symmetry of the coefficientsc(u,v) we can assume without loss of generality that
u∗ = u. In the following we combine the ideas of the proofs of Lemma 3.2 and Lemma 5.1.

We putu = , and we consider trees of the formv = w◦ τk andv∗ = w× τk+1 with 2 6 k 6 η and
|w|+k < p+ r. Forw = µs (the unique tree withsvertices and of heights) it follows from Theorem 3.2
that

α( ,µs◦ τk) = −c( ,µs−1◦ τk)− (k−1)c( ,µs◦ τk−1)

α( ,µs× τk+1) = −c( ,µs−1× τk+1)−kc( ,µs× τk).
(5.7)

For k = 2 we haveµs◦ τ1 = µs× τ2, so thatα( ,µs◦ τ2) = e(τ2)α( ,µs× τ3) (which follows from
Lemma 5.1) impliesc( ,µs−1 ◦ τ2) = e(τ2)c( ,µs−1× τ3) for all s. Using this result we can treat the
casek = 3 similarly. By an induction argument we then obtainc( ,µs−1◦ τk) = e(τk)c( ,µs−1× τk+1)
for 2 6 k 6 η . We next letw be a tree withsvertices and heights−1, and we choose a tree ˜w of height
s such thatw∈ SP∗(w̃). We apply Theorem 3.2 to the pairs of trees( ,w̃◦ τk) and( ,w̃× τk+1), and
the same induction argument overk yields the statement of the lemma. As in the proof of Lemma 3.2
we decrease the height of the trees one by one, so that (5.6) isproved for the caseu = , v = w◦ τk and
v∗ = w× τk+1 with 2 6 k 6 η and|w|+k < p+ r.

We still keepu= , but we consider treesv= x◦(w◦τk) andv∗ = x◦(w×τk+1) with 26 k6 η and
|x|+ |w|+ k < p+ r. In this situation the proof proceeds by induction on the number of vertices ofx.
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Forx = , the proof is precisely the same as above. For an arbitrary treex, the formula of Theorem 3.2
yields additional summands, wherex is replaced by a subtree belonging toSP∗(x) which can be treated
by the induction hypothesis. Up to this point, we have shown the statement of the lemma foru = and
for arbitraryv andv∗.

We next putu = . Here, the application of Theorem 3.2 yields terms where thefirst argument of
c is (they have already been treated and the statement of the lemma can be used), and terms where
the first argument is . For these terms the above multiple induction argument has to be repeated. The
same happens for treesu with more than two vertices. This then completes the proof ofthe lemma. �

REMARK 5.1 The proof of the previous lemma shows that under the simplifying assumptionC(η) the
condition (3.6) of Theorem 3.2 (or equivalently the condition (4.4) of Theorem 4.1) for a pair of trees
(u,v) is identical to that for(u∗,v∗) if u∗6η u andv∗6η v. This considerably reduces the number of
additional order conditions and makes it possible to treat methods of high order.

Lemma 5.2 also shows that not only the number of order conditions for conjugate-symplecticity are
reduced, but also the number of free parameters in the transformationB(c,y).

5.2 Simplifying assumption D(ζ )

DEFINITION 5.3 A B-seriesB(a,y) is said to satisfy the simplifying assumptionD(ζ ), if

a(τk ◦ v) = e(τk)
(

a(v)−a(τk+1×v)
)

for k 6 ζ and all v∈ T.

kk−1 v

v

FIG. 2. Trees involved in the simplifying assumptionD(ζ ).

The following result shows the simplification byD(ζ ) of the order conditions for conjugate-sym-
plecticity. It is an extension of Theorem 3 in Hairer (2011).

LEMMA 5.3 If a B-series integratorB(a,y) satisfies the simplifying assumptionsD(ζ ) andC(η), then
we have

a(u,v) = 0 for |u|6 min(η ,ζ ) and all v∈ T.

Proof. The simplifying assumptionC(η) impliesa(v◦τk) = e(τk)a(v×τk+1) for k 6 η . Together with
the simplifying assumptionD(ζ ) this yieldsa(τk,v) = 0 for k 6 min(η ,ζ ). The general statement then
follows from Lemma 5.1, because the simplifying assumptionC(η) impliesτk 6η u for all treesu with
|u| = k 6 η . �

LEMMA 5.4 Consider a B-series integratorB(a,y) of order p satisfyingC(η) andD(ζ ), and assume
that the change of coordinatesz= B(c,y) transforms it into a method that is symplectic up to orderp+ r
(with 0 6 r 6 p). Then, the coefficients of the transformationB(c,y) satisfy

c(u,v) = 0 for |u| 6 min(η ,ζ ) and |u|+ |v|< p+ r. (5.8)

Proof. The proof is the same as that for Lemma 3.2. We have to stop whenthe bound min(η ,ζ ) is
reached for|u|. �
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5.3 Conjugate-symplecticity under simplifying assumptions

In view of our application in Section 6 we discuss the reduction and simplification of the order conditions
for conjugate-symplecticity for a few typical situations.

THEOREM 5.4 Consider a symmetric B-series integrator of orderp = 2s−2 (s> 2) that satisfies the
simplifying assumptionsC(s) andD(s−2).

- It is always conjugate-symplectic up to order 2s.
- Fors> 3, it is conjugate-symplectic up to order 2s+2 if and only if

a(τs−1,τs+2) = (s+1)a(τs−1, [τs+1]). (5.9)

Proof. The conditiona(τs−1,τs) = −(s−1)c(τs−1,τs−1) is the only one that has to be satisfied for
conjugate-symplecticity up to order 2s−1. It can always be satisfied with a suitable choice ofB(c,y).
Due to the symmetry of the method, it is automatically conjugate-symplectic up to order 2s.

For conjugate-symplecticity up to order 2s+2, the simplifying assumptions imply that we only have
to consider the conditions

a(τs−1,τs+2) = −(s+1)c(τs−1,τs+1)−
(s+1

3

)

c(τs−1,τs−1)

a(τs−1, [τs+1]) = −sc(τs−1, [τs])−
(s

3

)

c(τs−1, [τs−2])

a(τs,τs+1) = −(s−1)c(τs−1,τs+1)−sc(τs,τs)− (s−1)
(s

2

)

c(τs−1,τs−1).

The last equation can be satisfied by fixingc(τs,τs). By Lemma 5.2 we havec(τs−1, [τs])= 1
s c(τs−1,τs+1)

andc(τs−1, [τs−2]) = 1
s−2 c(τs−1,τs−1) so that the first two relations give the condition (5.9). �

Note that the conditions of Example 4.3 are automatically satisfied, if the simplifying assumption
C(3) is satisfied.

THEOREM 5.5 Consider a symmetric B-series integrator of orderp = 2s−2 (s> 2) that satisfies the
simplifying assumptionsC(s−2) andD(s).

- It is conjugate-symplectic up to order 2s if and only if

a(τs−1,τs) = (s−1)a(τs−1, [τs−1]). (5.10)

Proof. The conditions for conjugate-symplecticity up to order 2sare

a(τs−1,τs) = −(s−1)c(τs−1,τs−1)

a(τs−1, [τs−1]) = −(s−2)c(τs−1, [τs−2]).

Sincec(τs−1, [τs−2]) = 1
s−2 c(τs−1,τs−1), this proves the statement. �

The first statement of the next theorem is one of the main results in Hairer (2011). The criterion for
conjugate-symplecticity up to order 2s+4 is new.

THEOREM 5.6 Consider a symmetric B-series integrator of orderp = 2s (s> 1) that satisfies the sim-
plifying assumptionsC(s) andD(s−1).

- It is always conjugate-symplectic up to order 2s+2.
- Fors> 2, it is conjugate-symplectic up to order 2s+4 if and only if

(s+2)(s+1)a(τs, [ ,τs+1]) = (s+1)a(τs,τs+3)+ (s+2)a(τs, [τs+2])

(s+2)(s+1)a(τs+1, [τs+1]) = (s+2)a(τs+1,τs+2)+s(s+2)a(τs, [τs+2])−sa(τs,τs+3).
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Proof. The simplifying assumptions imply that for conjugate-symplecticity up to order 2s+2 only

a(τs,τs+1) = −sc(τs,τs)

has to be satisfied. This is always possible with a suitable choice ofc(τs,τs).
The conditions for conjugate-symplecticity up to order 2s+3 are

a(τs,τs+3) = −(s+2)c(τs,τs+2)−
(s+2

3

)

c(τs,τs)

a(τs, [τs+2]) = −(s+1)c(τs, [τs+1])−
(s+1

3

)

c(τs, [τs−1])

a(τs, [ ,τs+1]) = −sc(τs, [ ,τs])−c(τs, [τs+1])−
(s

3

)

c(τs, [ ,τs−2])−
(s

2

)

c(τs, [τs−1])

a(τs+1,τs+2) = −sc(τs,τs+2)− (s+1)c(τs+1,τs+1)−s
(s+1

2

)

c(τs,τs)

a(τs+1, [τs+1]) = −sc(τs, [τs+1])−sc(τs+1, [τs])−s
(s

2

)

c(τs, [τs−1]).

By the simplifying assumptionC(s) we havec(τs, [τs−1]) = 1
s−1 c(τs,τs), c(τs, [ ,τs]) = 1

s c(τs,τs+2),

c(τs, [ ,τs−2]) = 1
s−2 c(τs,τs), andc(τs+1, [τs]) = 1

s c(τs+1,τs+1). Elimination of the four free parameters
for the coefficientsc from the six relations yields two conditions for the conjugate-symplecticity up to
order 2s+4. This completes the proof of the theorem. �

6. Applications

We imply the above criteria for conjugate-symplecticity toimportant classes of integration methods.
Recall that fors-stage Runge–Kutta methods the simplifying assumptions can be written as:

C(η) :
s

∑
j=1

ai j c
k−1
j =

ck
i

k
k = 1, . . . ,η , i = 1, . . . ,s,

D(ζ ) :
s

∑
i=1

bic
k−1
i ai j =

b j

k

(

1−ck
j

)

k = 1, . . . ,ζ , j = 1, . . . ,s.

For the computation of the expressionsa(u,v), appearing in Section 5, it is convenient to write the
Runge-Kutta coefficients in terms of orthogonal polynomials. This is closely related to the W-trans-
formation of (Hairer & Wanner, 1996, Section IV.5).

6.1 Lobatto IIIA methods

Lobatto IIIA methods are Runge–Kutta collocation methods,whose nodesc1 = 0,c2, . . . ,cs−1,cs = 1
are the zeros of the polynomialPs(t)−Ps−2(t), wherePs(t) denotes the shifted Legendre polynomial of
degrees (Lobatto quadrature, see Appendix C). They are symmetric methods of order 2s−2, and they
satisfy the simplifying assumptionsC(s) andD(s−2). The special cases= 2 is the implicit trapezoidal
rule, which is conjugate to the symplectic implicit midpoint rule. We consider here the cases> 3.

The Runge–Kutta coefficientsai j can be expressed in terms of Legendre polynomials as follows:

ai j =
s−1

∑
l=1

(2l −1)

∫ ci

0
Pl−1(x)dx bj Pl−1(c j), (6.1)

whereb j are the weights of the Lobatto quadrature. To prove this formula we have to check the condition
C(s), which uniquely determines the coefficientsai j . Details will be given in Appendix C. There it is
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also shown how the B-series coefficients of the Lobatto IIIA method of order 2s−2 can be obtained.
They satisfy

a(τs−1, τs+2) =
(s2−2)s! (s−1)!

(

(s−2)!
)2

4(2s−3)
(

(2s−2)!
)2 , a(τs−1, [τs+1]) =

s!
(

(s−1)!
)2

(s−2)!

4(2s−3)
(

(2s−2)!
)2 . (6.2)

Combining these formulas with Theorem 5.4 gives the following result.

THEOREM 6.1 Fors> 3, the Lobatto IIIA method of order 2s−2 is conjugate-symplectic up to order
2s, but it is not conjugate-symplectic up to a higher order.

6.2 Lobatto IIIB methods

Lobatto IIIB methods are also based on the Lobatto quadrature. They are symmetric, of order 2s−2,
and they satisfy the simplifying assumptionsC(s−2) andD(s). Fors= 2, the method is equivalent to
the symplectic implicit midpoint rule. We consider here thecases> 3.

Expressing the Runge–Kutta coefficients in terms of Legendre polynomials yields

ai j =
s−1

∑
l=1

(2l −1) Pl−1(ci)b j

∫ 1

cj

Pl−1(x)dx. (6.3)

These coefficients are uniquely defined byD(s), which will be verified in Appendix C. The B-series
coefficients of the Lobatto IIIB Runge–Kutta method of order2s−2 satisfy, fors> 3,

a(τs−1, τs) = −

(

(s−1)!(s−2)!
(2s−2)!

)2

, a(τs−1, [τs−1]) = 0. (6.4)

Combining these formulas with Theorem 5.5 gives the following result.

THEOREM 6.2 Fors> 3, the Lobatto IIIB method of order 2s−2 is not conjugate-symplectic up to an
order higher than 2s−2.

6.3 Energy-preserving collocation methods

The energy-preserving variant of collocation methods has been introduced in Hairer (2011). It can be
interpreted as an implicit Runge–Kutta method with a continuum of stages. For a differential equation
ẏ = f (y) it can be written as

Yτ = y0 +h
∫ 1

0
Aτ,σ f (Yσ )dσ , y1 = y0 +h

∫ 1

0
Bτ f (Yτ )dτ. (6.5)

We haveBσ = A1,σ so thaty1 = Y1, and the coefficientsAτ,σ are polynomials of degrees− 1 in σ ,

defined by the simplifying assumption
∫ 1

0 Aτ,σ σk−1dσ = τk

k , k = 1, . . . ,s, which is equivalent toC(s).
An explicit formula for these coefficients (see Brugnanoet al. (2010)) is given with the help of the
shifted Legendre polynomials as follows:

Aτ,σ =
s

∑
l=1

(2l −1)

∫ τ

0
Pl−1(α)dα ·Pl−1(σ), Bτ = 1, Cτ =

∫ 1

0
Aτ,σ dσ = τ.



ON CONJUGATE-SYMPLECTICITY OF B-SERIES INTEGRATORS 17

The method is a B-series integratory1 = B(a,y0) that is of order 2s, symmetric, and satisfies the sim-
plifying assumptionsC(s) andD(s− 1). We know from Hairer (2011) that the method is conjugate-
symplectic up to order 2s+2. Can it be conjugate-symplectic up to a higher order? For this purpose we
compute the B-series coefficients (see Appendix B). For the method of order 2swe have, fors> 1,

a(τs, τs+3) =
(s+2)2 (s+1)(s!)4

4(2s+3)(2s+1)s((2s)!)2 (6.6)

a(τs, [τs+2]) =
(s+1)2 (s!)4

4 (2s+1)2s((2s)!)2

a(τs, [ , τs+1]) =

(

s2 +2s−1
)

(s!)4

4 (2s−1)(2s+1)s((2s)!)2 .

These formulas show that the first condition of Theorem 5.6 isviolated. We thus have the following
result (notice that the statement fors= 1 has been proved in Celledoniet al. (2009)).

THEOREM 6.3 The energy preserving collocation method of order 2s is conjugate-symplectic up to
order 2s+2, but it is not conjugate-symplectic up to a higher order.

7. Summary of results

In Table 2 we summarize the results of the present article, and we put them into the context of further
classes of implicit Runge–Kutta methods. The last two columns indicate whether the method is sym-
plectic, and what is the order of conjugate-symplecticity.The methods “Gauss” are collocation methods
of maximal order 2s, and they are known to be symplectic (Haireret al., 2006, Section VI.4).

For the harmonic oscillator ˙y = i y the numerical solution of a Runge–Kutta method is given by
yn+1 = R(i h)yn, whereR(z) is its stability function. This linear mapping is symplectic if and only
if R(z)R(−z) = 1. It is conjugate symplectic up to orderr if and only if R(z)R(−z) = 1+ O(zr+1).
For the simple differential equation ˙y = i y the composition of B-series integrators commutes, so that
the stability functions ofΦh andχ ◦Φh ◦ χ−1 are identical. The fact that the stability function of the
methods “Radau IA”, “Radau IIA”, and “Lobatto IIIC” are subdiagonal Padé-approximations proves

Table 2. Overview on the order of conjugate symplecticity.

method order simpl. assumpt. sympl. conj. sympl.

Gauss 2s C(s), D(s) yes ∞
Radau IA 2s−1 C(s−1), D(s) no 2s−1
Radau IIA 2s−1 C(s), D(s−1) no 2s−1
trapezoidal rule 2 C(2) no ∞
Lobatto IIIA, s> 3 2s−2 C(s), D(s−2) no 2s
implicit midpoint rule 2 C(1), D(1) yes ∞
Lobatto IIIB, s> 3 2s−2 C(s−2), D(s) no 2s−2
Lobatto IIIC,s> 2 2s−2 C(s−1), D(s−1) no 2s−2
energy pres. collocation 2s C(s), D(s−1) no 2s+2
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that these methods are neither symplectic nor conjugate symplectic up to an order higher than that of
the stability function.

It is interesting to mention that the underlying one-step method of linear multistep methods cannot
be symplectic, but it is conjugate-symplectic up to an arbitrarily high order (cf. Hairer (2008)), if the
method is symmetric.

A natural question is the investigation of energy-preserving integrators that are conjugate-symplectic
(up to arbitrarily high order). Their existence as formal B-series is known and follows from the fact
that symplectic integrators conserve a modified Hamiltonian and modified quadratic first integrals (see
Chartieret al. (2006)). It is still a challenge to find a computational method (i.e., an integrator that can
be implemented) that exactly preserves the energy and is conjugate-symplectic at the same time. The
methods of Section 6.3 do not share these properties.
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MURUA, A. (1999) Formal series and numerical integrators. I. Systems of ODEs and symplectic inte-
grators.Appl. Numer. Math., 29, 221–251.

Appendix A. Shifted Legendre polynomials

We consider Legendre polynomials shifted to the interval[0,1]. By abuse of notation, we continue
to write Pk(τ) for the polynomial of degreek. They are normalized byPk(1) = 1, they satisfy the
orthogonality relations

∫ 1

0
Pk(x)Pj(x)dx =

{

0 if k 6= j

(2 j +1)−1 if k = j,
(A.1)

and they can conveniently be computed from Rodrigues’ formula

Pk(x) =
(−1)k

k!
dk

dxk

(

xk(1−x)k
)

. (A.2)

The integral of the Legendre polynomial satisfies, fork > 1,

∫ x

0
Pk(t)dt =

1
2(2k+1)

(

Pk+1(x)−Pk−1(x)
)

, (A.3)

and repeated integration by parts gives the relation

∫ 1

0
Pj(x)xk dx = k (k−1) · . . . · (k− j +1)

k!
(k+ j +1)!

. (A.4)

To express the productxPk(x) as a linear combination of Legendre polynomials, we use the 3-term
recurrence relation

(k+1)Pk+1(x) = (2k+1)(2x−1)Pk(x)−kPk−1(x). (A.5)
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Appendix B. Technical details for the energy preserving collocation method

We explain the verification of formula (6.6). The other formulas can be checked with the same technics.
The B-series coefficients of a Runge–Kutta method (6.5) witha continuum of stages are obtained as for
classical Runge–Kutta methods with sums replaced by integrals. In this way we get

a(τs+3◦ τs) =

∫ 1

0

∫ 1

0
BτC

s+2
τ Aτ,σCs−1

σ dσ dτ =
1

s(2s+3)
, (A.6)

where we have exploited the simplifying assumptionC(s). Using the explicit formulas for the coeffi-
cientsAτ,σ , Bτ , andCτ , we obtain

a(τs◦τs+3)=

∫ 1

0

∫ 1

0
BτC

s−1
τ Aτ,σCs+2

σ dσ dτ =

∫ 1

0
τs−1

s

∑
l=1

(2l−1)

∫ τ

0
Pl−1(α)dα

∫ 1

0
Pl−1(σ)σs+2 dσ dτ.

With the expansion ofαs+2 into a series of Legendre polynomials

αs+2 =
s+3

∑
l=1

(2l −1)Pl−1(α)

∫ 1

0
Pl−1(σ)σs+2 dσ , (A.7)

we obtain

a(τs◦ τs+3) =
∫ 1

0
τs−1

∫ τ

0

(

αs+2−
s+3

∑
l=s+1

(2l −1)Pl−1(α)
∫ 1

0
Pl−1(σ)σs+2dσ

)

dα dτ

=
1

(s+3)(2s+3)
−R(s),

where

R(s) =
s+3

∑
l=s+1

(2l −1)
(

∫ 1

0
τs−1

∫ τ

0
Pl−1(α)dα dτ

)(

∫ 1

0
Pl−1(σ)σs+2dσ

)

.

Because of (A.3) and the orthogonality relation, the expression in the first parenthesis vanishes for
l > s+1. Only the term withl = s+1 remains and yields

R(s) = −
((s−1)!(s+2)!)2

4(2s−1)! (2s+3)!
.

Since the quadrature conditionsa(τk) = 1/k, k > 1 are satisfied for all energy preserving B-series inte-
grators, we obtaina(τs,τs+3) = a(τs◦τs+3)+a(τs+3◦τs)−a(τs)a(τs+3) =−R(s). This proves formula
(6.6) of Section 6.3. The other expressions are obtained in asimilar way.

Appendix C. Lobatto methods

The nodes of the Lobatto quadrature are the zeros of the polynomial Ps(x)−Ps−2(x), and they satisfy
c1 = 0 andcs = 1. The quadrature formula is of order 2s−2, which means that polynomials of degree
6 2s−3 are integrated without error. The dominant error term is given by

s

∑
i=1

bi c
2s−2
i −

1
2s−1

=
s! (s−1)! (s−1)! (s−2)!

(2s−1)! (2s−2)!
. (A.8)
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Further useful formulas are

s

∑
i=1

bi Pl−1(ci)Pk−1(ci) = 0 if l +k is odd

s

∑
i=1

bi Ps−1(ci)Ps−1(ci) =
1

s−1
s

∑
i=1

bi Ps(ci)Ps(ci) =
1

2s−3
s

∑
i=1

bi Ps−1(ci)Ps+1(ci) =
2s−1

(2s−3)(s+1)(s−1)
,

which can be obtained by using properties of the Legendre polynomials (see Appendix A), and by using
the fact that the nodes of the Lobatto quadrature satisfyPs(ci) = Ps−2(ci) for all i.

Lobatto IIIA methods.For the verification of formula (6.1) we compute

s

∑
j=1

ai j Pk−1(c j) =
s−1

∑
l=1

(2l −1)

∫ ci

0
Pl−1(x)dx

s

∑
j=1

b jPl−1(c j )Pk−1(c j) =

∫ ci

0
Pk−1(x)dx.

The second equality holds fork 6 s, because the quadrature formula is exact for polynomials ofdegree
6 2s− 3 and because we have

∫ ci
0 Ps−1(x)dx = 0 as a consequence of (A.3). This proves the identity

∑s
j=1ai j p(c j) =

∫ ci
0 p(x)dx for all polynomials of degrees−1. Puttingp(x) = xk−1 verifies the condition

C(s) which uniquely determines the coefficientsai j of the method.
For the computation of the B-series coefficients (6.2) we usethe relation

s

∑
i=1

bi c
s−2
i ai j −

b j

s−1

(

1−cs−1
j

)

=
(s−1)! (s−2)!

(2s−2)!
b j Ps−1(c j),

which permits a simplification similar to that with the condition D(s− 1). This formula can either
be proved with the help of (6.1) or by writing the left-hand expression as a linear combination of
P0(ci),P1(ci), . . . ,Ps−1(ci) and computing the coefficients with help of the orthogonality relations. A
direct calculation then gives

a(τs−1,τs+2) =
(s−1)! (s−2)!

(2s−2)!

s

∑
j=1

b j Ps−1(c j )cs+1
j

a(τs−1, [τs+1]) =
(s−1)! (s−2)!

(2s−2)!

s

∑
j=1

b j Ps−1(c j )
s

∑
k=1

a jk cs
k.

Writing cs+1
j (respectively∑s

k=1a jk cs
k) as a linear combination ofP0(c j), . . . ,Ps−1(c j) finally yields the

relations (6.2). Notice that only the coefficient ofPs−1(c j) is relevant.

Lobatto IIIB methods.To prove the formula (6.3) we compute, fork = 1, . . . ,s,

s

∑
i=1

biPk−1(ci)ai j =
s−1

∑
l=1

(2l −1)
s

∑
i=1

biPk−1(ci)Pl−1(ci)b j

∫ 1

cj

Pl−1(x)dx = b j

∫ 1

cj

Pk−1(x)dx.

The same argumentation as before proves that the coefficients (6.3) verify the conditionD(s).
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Most of the B-series coefficients for the Lobatto IIIB methods, needed in Section 6.2, can be reduced
via the simplifying assumptionD(s) to the bushy treesτk, k 6 2s−1. For the remaining tree[τs−1,τs−1]
we use the relation

s

∑
j=1

ai j cs−2
j −

cs−1
i

s−1
= −

(s−1)! (s−2)!
(2s−2)!

Ps−1(ci)

which has a similar effect as the simplifying assumptionC(s−1). It can be proved in the same way as
its analogue for the Lobatto IIIA methods. This relation permits to obtain the formulas (6.4).


