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Abstract

This paper studies estimates of the form ‖y1−ŷ1‖ ≤ ϕ(hν)‖y0−ŷ0‖,
where y1, ŷ1 are the numerical solutions of a Runge-Kutta method ap-
plied to a stiff differential equation satisfying a one-sided Lipschitz
condition (with constant ν). An explicit formula for the optimal
function ϕ(x) is given, and it is shown to be superexponential, i.e.,
ϕ(x1)ϕ(x2) ≤ ϕ(x1 + x2) if x1 and x2 have the same sign. As a con-
sequence, results on asymptotic stability are obtained. Furthermore,
upper bounds for ϕ(x) are presented that can be easily computed from
the coefficients of the method.
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1 Introduction

For the numerical solution of systems of ordinary differential equations

y′ = f(t, y), y(t0) = y0 (1.1)
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(where f : IR× |Cn → |Cn) we consider Runge-Kutta methods defined by

gi = y0 + h
s∑
j=1

aijf(t0 + cjh, gj), i = 1, . . . , s,

y1 = y0 + h
s∑
i=1

bif(t0 + cih, gi).

(1.2)

Here h is the step size (it may be adapted during the integration), s the
number of stages, and ci, aij, bj are the coefficients determining the method.
We refer the reader to the books of Butcher [3], Dekker & Verwer [4], and
Hairer & Wanner [6] for a discussion of such methods.

In order to understand the behaviour of these methods when applied to
stiff differential equations, several stability and contractivity concepts have
been introduced. Let us briefly recall their definitions as far as they will be
needed in this paper.

A-stability. This concept is based on the linear scalar autonomous test
equation y′ = λy with λ being a complex number. The numerical solution
(given by (1.2)) is y1 = R(z)y0, where z = hλ, and

R(z) = 1 + zbT (I − zA)−11l (1.3)

is the so-called stability function of the method. Here we have used the matrix
notation b = (b1, . . . , bs)

T , A = (aij)
s
i,j=1 for the coefficients of the method,

and 1l = (1, . . . , 1)T . The method (1.2) is called A-stable if

|R(z)| ≤ 1 whenever <z ≤ 0. (1.4)

AN-stability. If one applies method (1.2) to the non-autonomous problem
y′ = λ(t)y, the numerical solution can be written as y1 = K(z1, . . . , zs)y0,
where zj = hλ(t0+cjh), and the so-called AN-stability function K(z1, . . . , zs)
is given by

K(z1, . . . , zs) = 1 + bTZ(I − AZ)−11l (1.5)

with Z = diag(z1, . . . , zs). The Runge-Kutta method is called AN-stable if

|K(z1, . . . , zs)| ≤ 1 whenever <zi ≤ 0 and zj = zk if cj = ck. (1.6)

B-stability. If the differential equation (1.1) satisfies the one-sided Lipschitz
condition

<〈f(t, y)− f(t, ŷ), y − ŷ〉 ≤ 0, (1.7)
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the distance of two solutions is a non-increasing function of time. If for all
such problems and for all step sizes h > 0 the numerical solutions y1, ŷ1
corresponding to two different initial values y0, ŷ0 satisfy

‖y1 − ŷ1‖ ≤ ‖y0 − ŷ0‖, (1.8)

then the method is called B-stable. The norm used corresponds to the inner
product employed in (1.7).

Error Growth Function. If the differential equation satisfies

<〈f(t, y)− f(t, ŷ), y − ŷ〉 ≤ ν‖y − ŷ‖2, (1.9)

for some real ν (positive or negative), then a simple application of the Gron-
wall Lemma shows that

‖y(t)− ŷ(t)‖ ≤ eν(t−t0)‖y0 − ŷ0‖ for t ≥ t0. (1.10)

In this situation we are interested in obtaining analogous estimates for the
numerical solution. In particular we are interested in the smallest value
ϕ(hν), such that the difference of any two numerical solutions satisfies

‖y1 − ŷ1‖ ≤ ϕ(hν)‖y0 − ŷ0‖ (1.11)

for all differential equations (1.1) satisfying (1.9). This function, introduced
by Burrage & Butcher [1], is called the error growth function of the Runge-
Kutta method. Interesting results concerning this function can be found in
[2]. In particular, it is explained how upper bounds of ϕ(hν) can be obtained.

The aim of this paper is to get more insight into the error growth function.
In Section 2 we discuss explicit formulas. A simple upper bound of ϕ(hν) is
given in Section 3. There we also consider error growth functions for problems
satisfying a Lipschitz condition in addition to (1.9). For this restricted class
of problems estimates with ϕ(hν) < 1 can be obtained also for methods
whose stability function is of modulus one at infinity. In Section 4 we prove
that the error growth function is superexponential. This allows us to obtain
results on the asymptotic stability of the numerical solution (Section 5).
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2 Study of Error Growth Functions

We are interested in the error growth functions for three classes of differential
equations. The first class (we denote it by FA) consists of all linear systems
with constant coefficients, whose logarithmic norm is bounded by ν:

y′ = Cy, µ(C) ≤ ν. (2.1)

Recall that the logarithmic norm µ = µ(C) is the smallest real number such
that <〈v, Cv〉 ≤ µ〈v, v〉 for all vectors v. We do not make any assumption
on the dimension of the system. As second class FK , we consider scalar
complex-valued nonlinear problems (1.1) satisfying the one-sided Lipschitz
condition (1.9). Finally, we let FB be the class of all nonlinear problems (1.1)
satisfying the one-sided Lipschitz condition (1.9), without any restriction on
the dimension of the system. Throughout this paper we assume that f(t, y)
is a continuous function.

Definition 2.1 Let ν be a given real number and set x = hν, where h is the
step size. We then denote by ϕA(x), ϕK(x) and ϕB(x) the smallest numbers
ϕ such that the difference of any two numerical solutions satisfies

‖y1 − ŷ1‖ ≤ ϕ‖y0 − ŷ0‖

for all problems from the classes FA, FK and FB, respectively. These func-
tions are called error growth functions corresponding to FA, FK and FB.

An explicit formula for ϕA(x) is obtained from a Theorem of von Neu-
mann (see [6], Section IV.11).

Theorem 2.1 Let R(z) be the stability function (1.3). Then it holds

ϕA(x) = sup
<z≤x
|R(z)|. (2.2)

Formula (2.2) means that it is sufficient to consider scalar problems (2.1)
for the computation of ϕA(x). Since the class of scalar linear problems (2.1)
is a subclass of FK , which again is a subclass of FB, it holds for all x that

ϕA(x) ≤ ϕK(x) ≤ ϕB(x). (2.3)

Moreover, they are increasing functions of x.
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Theorem 2.2 The error growth function for scalar nonlinear problems sat-
isfying (1.9) is given by

ϕK(x) = sup
<z1≤x,...,<zs≤x

|K(z1, . . . , zs)|, (2.4)

where K(z1, . . . , zs) is the AN-stability function (1.5).

Proof. Upper Bound. Consider a scalar problem satisfying (1.9) and ap-
ply the method (1.2) with two different initial values y0, ŷ0. Defining zi :=
h(f(t0 + cih, gi)− f(t0 + cih, ĝi))/(gi − ĝi) if the internal stages gi and ĝi are
different, and zi := hν = x if gi = ĝi, we see that the numerical solution
satisfies y1 − ŷ1 = K(z1, . . . , zs)(y0 − ŷ0) with K given in (1.5). Hence, the
right-hand expression of (2.4) is an upper bound of ϕK(x).

Lower Bound. We first consider nonconfluent Runge-Kutta methods. For
given z1, . . . , zs with <zj ≤ x, we let λ(t) be a continuous function satisfying
hλ(t0 + cjh) = zj and <λ(t) ≤ x/h. Applying the Runge-Kutta method to
y′ = λ(t)y, we obtain y1 − ŷ1 = K(z1, . . . , zs)(y0 − ŷ0) and, consequently,
ϕK(x) ≥ |K(z1, . . . , zs)| for all zj with <zj ≤ x.

For confluent methods the proof is more complicated. Without loss of gen-
erality we assume the method to be irreducible. By extending the techniques
of Hundsdorfer & Spijker [8] (see [6], Sect. IV.12, Proof of Theorem 12.18)
one can show that, for given z1, . . . , zs (for which the matrix I−AZ is invert-
ible), there exists a continuous function f : |C→ |C satisfying (1.9) such that
the Runge-Kutta solutions y1, gi and ŷ1, ĝi corresponding to y0 = 0, ŷ0 = 1,
h = 1 satisfy

f(ĝi)− f(gi) = zi(ĝi − gi) for i = 1, . . . , s.

This yields ŷ1−y1 = K(z1, . . . , zs), and shows that the right-hand expression
of (2.4) is a lower bound of ϕK(x).

An analogous formula for the error growth function ϕB(x) is based on the
following result.

Lemma 2.1 Let a and b (b 6= 0) be two vectors in |Cn satisfying <〈a, b〉 ≤
x‖b‖2. Then, there exists a matrix Z such that

a = Zb and µ(Z) ≤ x.

5



Proof. We put u1 = b/‖b‖, and complete it to an orthonormal basis u1, . . . , un
of |Cn. Then we define the matrix Z by

Zu1 = a/‖b‖, Zui = xui − 〈ui, a〉u1/‖b‖, i = 2, . . . , n.

We have Zb = a, and one readily verifies that <〈Zv, v〉 ≤ x‖v‖2 for all
v =

∑n
i=1 αiui.

We now consider a system (1.1) of arbitrary dimension and assume (1.9).
We take two different initial values y0, ŷ0, and denote the corresponding in-
ternal stage values by gi and ĝi, respectively. The main observation is that
we can find matrices Zi satisfying µ(Zi) ≤ hν = x such that

h
(
f(t0 + cih, gi)− f(t0 + cih, ĝi)

)
= Zi(gi − ĝi). (2.5)

If gi = ĝi we can take any matrix Zi satisfying µ(Zi) ≤ x; if gi 6= ĝi this follows
from Lemma 2.1 with b = gi − ĝi and a = h(f(t0 + cih, gi)− f(t0 + cih, ĝi)).
Equation (2.5) implies that the numerical solution can be written as y1−ŷ1 =
K(Z1, . . . , Zs)(y0 − ŷ0), where

K(Z1, . . . , Zs) = I + (bT ⊗ I)Z
(
I ⊗ I − (A⊗ I)Z

)−1
(1l⊗ I) (2.6)

and Z is the block diagonal matrix with Z1, . . . , Zs as entries in the diagonal.

Theorem 2.3 It holds

ϕB(x) = sup
µ(Z1)≤x,...,µ(Zs)≤x

‖K(Z1, . . . , Zs)‖, (2.7)

where the matrix K(Z1, . . . , Zs) is given by (2.6).

Proof. The above considerations show that the supremum in (2.7) is an upper
bound of ϕB(x). It is also a lower bound of ϕB(x), because all ingredients for
the proof of Theorem 2.2 are still valid for systems of differential equations.
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Examples. For one-stage methods (the θ-method) it holds K(Z1) = R(Z1),
and Theorem 2.3 together with the Theorem of von Neumann yields ϕA(x) =
ϕK(x) = ϕB(x).

For two-stage methods the computation of ϕA(x) and ϕK(x) can be done
with help of a formula manipulation program. For example, for the two-stage
Radau IIA method we get

ϕA(x) =


|1 + x/3|

1− 2x/3 + x2/6
if x ≤ −6− 3

√
10√

3
√

12x2 + 12x+ 9 + 10x+ 7

2(2− x)
if −6− 3

√
10 ≤ x < 2,

ϕK(x) =


4

5− 2x
if x ≤ (9− 3

√
17)/8

3 + 4x√
(3− 2x)(3 + 4x− 2x2)

if (9− 3
√

17)/8 ≤ x < 3/2.

Since the function ϕK(x) is identical to the upper bound for ϕB(x), given in
[2], it is equal to ϕB(x).

It is interesting to note that for all irreducible two-stage methods it holds

ϕB(x) = ϕK(x)

(see [7]). For the moment it is not clear, whether this is also true for methods
with more than two stages. We do not know of a counterexample.

3 Elementary Upper Bounds

For Runge-Kutta methods with more than two stages the concrete compu-
tation of the supremum in (2.7) may be difficult or even impossible. In the
case of (irreducible) algebraically stable Runge-Kutta methods, i.e.,

bi > 0 for i = 1, . . . , s
M = (biaij + bjaji − bibj)si,j=1 positive semi-definite

(3.1)

(see e.g., [6], Sect. IV.12) the following theorem gives an upper bound of
ϕB(x) which is easily obtained from the coefficients of the method. Observe
that the bound is sharp for x = 0 and for x → −∞, and assures that
ϕB(x) < 1 for x < 0, if |R(∞)| < 1.
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Theorem 3.1 Let the Runge-Kutta method (1.2) be irreducible and alge-
braically stable, i.e., (3.1) holds. Then the error growth function satisfies

ϕB(x) ≤

√
1− 2xγ(1− ρ2)− 2xγρ

1− 2xγ
for x ≤ 0, (3.2)

where ρ = |R(∞)| with R(z) given by (1.3) and

γ =
( s∑
j=1

b−1j v2j
)−1

(3.3)

with (v1, . . . , vs)
T = limε→0 b

T (A+ εI)−1 (see Lemma 3.1 for the existence of
this limit).

Proof. Let y0, ŷ0 be two initial values and denote the differences of the nu-
merical solution, the stage values and the function values (multiplied by h)
by ∆y0, ∆y1, ∆gi, and ∆fi, respectively. The Runge-Kutta formula then
becomes

∆y1 = ∆y0 +
s∑
i=1

bi∆fi, (3.4)

∆gi = ∆y0 +
s∑
j=1

aij∆fj, (3.5)

and the one-sided Lipschitz condition (1.9) leads to <〈∆fi,∆gi〉 ≤ x‖∆gi‖2,
where x = hν. If the method is algebraically stable, it holds (see for example
[6], p. 144)

‖∆y1‖2 ≤ ‖∆y0‖2 + 2x
s∑
i=1

bi‖∆gi‖2. (3.6)

We are looking for a lower bound of
∑
i bi‖∆gi‖2.

Suppose for the moment that the inverse of the Runge-Kutta matrix A
exists and denote its elements by ωij. From (3.5) we get

∆fi =
s∑
j=1

ωij∆gj −
( s∑
j=1

ωij
)
∆y0,

and, inserted into (3.4), this yields

∆y1 = R(∞)∆y0 +
s∑
j=1

( s∑
i=1

biωij
)
∆gj,
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where R(∞) is the value at infinity of the stability function (1.3). Using the
Cauchy-Schwarz inequality for the estimation of the right-hand expression,
we arrive at∣∣∣‖∆y1‖−ρ ‖∆y0‖∣∣∣ ≤ ‖∆y1−R(∞) ∆y0‖ ≤

√√√√ s∑
j=1

b−1j
( s∑
i=1

biωij
)2
·

√√√√ s∑
i=1

bi‖∆gi‖2

and consequently we get the lower bound
s∑
i=1

bi‖∆gi‖2 ≥ γ(‖∆y1‖ − ρ ‖∆y0‖)2 (3.7)

where γ is given by (3.3). Therefore, by substituting (3.7) in (3.6), we get
the second degree inequality

(1− 2xγ)‖∆y1‖2 + 4xγρ‖∆y1‖ · ‖∆y0‖ − (1 + 2xγρ)2‖∆y0‖2 ≤ 0,

which, in turn, implies the desired result.
If the Runge-Kutta matrix A is singular, we replace it everywhere by the

regular matrix (A + εI) and consider the limit ε → 0. The existence of the
limits in the considered formulas are assured by Lemma 3.1 below.

Lemma 3.1 For irreducible algebraically stable Runge-Kutta methods the
following limit exists

lim
ε→0

bT (A+ εI)−1 = vT .

Proof. If the coefficient matrix A is regular, the result is obvious. There-
fore assume that A is singular. We first show that the Jordan blocks of A
corresponding to zero eigenvalues have a size at most 1. Let u 6= 0 be an
eigenvector (i.e., Au = 0) and assume that there exists a vector w satisfying
Aw = u. From algebraic stability it follows that uTMu = −(bTu)2 ≥ 0
and thus bTu = 0, uTMu = 0. Since M is positive semi-definite we get
0 = uTMw = uTBAw = uTBu, which is impossible because of (3.1).

The inverse of A + εI can then be expanded in a series as (A + εI)−1 =
ε−1A−1+A0+εA1+ε2A2+. . .. Comparing the coefficient of ε−1 in the identity
I = (A + εI)(A + εI)−1, we get AA−1 = 0. Hence, using algebraic stability
(3.1), we conclude AT−1MA−1 = −AT−1bbTA−1 ≥ 0. This yields bTA−1 = 0
and thus multiplying the above expansion of (A + εI)−1 by bT on the left
yields the desired result with vT = bTA0.
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If the stability function of an algebraically stable Runge-Kutta method
satisfies |R(∞)| = 1, then we have ϕB(x) = 1 and ϕA(x) = 1 for all x ≤ 0. In
order to get sharper estimates also in this case, one has to restrict the class
of problems. Let us consider nonlinear problems y′ = f(t, y) that satisfy

‖f(t, y)− f(t, z)‖ ≤ L‖y − z‖ (3.8)

in addition to (1.9). It is clear that, under this condition, the problem has
limited stiffness and that L ≥ |ν|.

Theorem 3.2 Let the Runge-Kutta method be irreducible and algebraically
stable and assume that the differential equation satisfies (1.9) and (3.8). For
any pair of numerical solutions we then have for ν ≤ 0

‖∆y1‖ ≤ ϕ(hν, hL)‖∆y0‖ (3.9)

where

ϕ(x, `) =

√
1 +

2x

(1 + β`)2
(3.10)

and β =

√√√√ s∑
j=1

b−1j
( s∑
i=1

biaij
)2

.

Proof. Multiplying (3.5) by bi and summing up yields (because of
∑
i bi = 1)

∆y0 =
s∑
i=1

bi∆gi −
s∑
j=1

( s∑
i=1

biaij
)
∆fj.

The Lipschitz condition of f together with bi > 0 then imply

‖∆y0‖ ≤
s∑
i=1

bi‖∆gi‖+ `
s∑
j=1

∣∣∣∣∣
s∑
i=1

biaij

∣∣∣∣∣ · ‖∆gj‖,
where we have used the abbreviation ` = hL. With the Cauchy-Schwarz
inequality we can conclude that

‖∆y0‖ ≤

1 + `

√√√√ s∑
j=1

b−1j
( s∑
i=1

biaij
)2 √√√√ s∑

i=1

bi‖∆gi‖2.

This yields a lower bound for
∑
i bi‖∆gi‖2 which, inserted into (3.6), gives

the desired estimate.
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4 Superexponential Growth Functions

For a problem (1.1) satisfying the one-sided Lipschitz condition (1.9), the dif-
ference of two solutions grows at most like exp(ν(t− t0))‖∆y0‖. The charac-
teristic property of the exponential function is exp(x1) exp(x2) = exp(x1+x2).
The aim of this section is to show a similar relation for the error growth func-
tions ϕA(x), ϕK(x) and ϕB(x). This will be useful for the study of asymptotic
stability.

Definition 4.1 Let I be an interval containing 0. A continuous function
ϕ : I → IR is called superexponential if it satisfies ϕ(0) = 1 and

ϕ(x1)ϕ(x2) ≤ ϕ(x1 + x2) (4.1)

for all x1, x2 ∈ I having the same sign and satisfying x1 + x2 ∈ I.

Proposition 4.1 For a superexponential function it holds

ϕ(x) ≥ eαrx for x ≥ 0, ϕ(x) ≥ eαlx for x ≤ 0,

where αr = lim sup
h→0,h>0

ϕ(h)− ϕ(0)

h
, αl = lim inf

h→0,h<0

ϕ(h)− ϕ(0)

h
.

Proof. Because of ϕ(x) ≥ ϕ(x/2)ϕ(x/2) ≥ 0, a superexponential function
cannot assume negative values. By Definition 4.1 it holds ϕ(x)ϕ(h) ≤ ϕ(x+
h) and hence

ϕ(x+ h)− ϕ(x)

h
≥ ϕ(x)

ϕ(h)− 1

h

whenever x and h are positive. Consequently, we get D+ϕ(x) ≥ ϕ(x) ·αr for
x ≥ 0 (here D+ϕ(x) = lim suph→0,h>0(ϕ(x+ h)− ϕ(x)))/h denotes the Dini
derivate; see [5], Section I.10). Solving this differential inequality yields the
statement for x ≥ 0.

The lower bound for x < 0 is obtained by applying the just proved esti-
mate to the superexponential function ψ(x) := ϕ(−x).
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Theorem 4.1 If the Runge-Kutta method is A-stable, the error growth func-
tion ϕA(x) is superexponential. If it is B-stable, the error growth functions
ϕK(x) and ϕB(x) are superexponential.

Proof. a) A-stability is equivalent to ϕA(0) = 1. It therefore remains to
verify (4.1). Let x1 and x2 be fixed (both ≤ 0 or both ≥ 0) and assume
ϕA(x1 + x2) <∞. The idea is to consider the rational function

S(z) = R(a− z)R(z)

where a ∈ |C is a parameter satisfying <a ≤ x1 + x2. Due to A-stability
and ϕA(x1 + x2) < ∞, S(z) is analytic on the strip 0 ≤ <z ≤ x1 + x2 (or
x1+x2 ≤ <z ≤ 0). At the border of this strip the modulus of S(z) is bounded
by ϕA(x1 +x2), because |R(z)| ≤ 1 on the imaginary axis (see Theorem 2.1).
By the maximum principle we therefore have for all z in the considered strip

|R(a− z)R(z)| ≤ ϕA(x1 + x2).

We now choose z on the line <z = x2 in such a way that |R(z)| becomes
maximal; then, we choose a on the line <a = x1 + x2 (i.e., <(a − z) = x1)
such that |R(a−z)| becomes maximal (eventually one has to consider limits).
This shows that ϕA(x1)ϕA(x2) ≤ ϕA(x1 + x2).

b) For the function ϕK(x) of (2.4) the argumentation is similar. This
time we consider the rational function

S(z) = K(a1 − z, . . . , as − z)K(b1 + z, . . . , bs + z),

where <aj ≤ x1 + x2 and <bj ≤ 0. The maximum principle applied to S(z)
on the same strip as before yields

|K(a1 − z, . . . , as − z)K(b1 + z, . . . , bs + z)| ≤ ϕK(x1 + x2).

We now fix b1, . . . , bs on the line <bj = 0 such that |K(b1 + x2, . . . , bs + x2)|
is maximal; then, we fix a1, . . . , as on the line <aj = x1 + x2 such that
|K(a1 − x2, . . . , as − x2)| is maximal. This proves that ϕK(x) is superexpo-
nential.

c) For the proof of the last statement we consider the rational function

S(z) = u∗AK(A1 − zI, . . . , As − zI)vAu
∗
BK(B1 + zI, . . . , Bs + zI)vB,

where the matrices Aj, Bj satisfy µ(Aj) ≤ x1 + x2 and µ(Bj) ≤ 0, and
uA, vA, uB, vB are vectors of |Cm. Using the property µ(Aj−zI) = µ(Aj)−<z
and the fact that ‖C‖ = sup‖u‖=1,‖v‖=1 |u∗Cv|, one obtains as above that also
ϕB(x) is superexponential (see Theorem 2.3).
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The upper bound of Theorem 3.1 can also be shown to be superexponen-
tial. The computations, however, are very long and tedious, and need the
use of a formula manipulation program.

Theorem 4.2 For given ν < 0 and L ≥ −ν the function Φ(h) = ϕ(hν, hL)
with ϕ(x, `) given by (3.10) is superexponential, provided that β ≥ 8/15. The
function Φ(h) is strictly decreasing for h < 1/(βL) and strictly increasing
for h > 1/(βL).

Proof. The property Φ(0) = 1 is easy to check. On the contrary, about
two pages of tedious standard calculations are necessary to conclude that
Φ(h1)Φ(h2) ≤ Φ(h1 + h2) is equivalent to the inequality

− 2ν

Lβ
≤ 4 + 7Lβ(h1 + h2) + 4L2β2(h1 + h2)

2 + L3β3(h1 + h2)(h
2
1 + h1h2 + h22)

(1 + Lβ(h1 + h2))2
.

It can be checked that the right hand side is > 15/4 for all h1, h2 ≥ 0 and
thus, by L ≥ −ν, the condition β ≥ 8/15 is sufficient to guarantee (4.1).

The rest of the proof is easily obtained by computing and analyzing the
derivative Φ′(h) = ν(1− βhL)/(Φ(h)(1 + βhL)3).

5 Asymptotic Stability

The results of this section illustrate the role of superexponential functions
in the asymptotic stability analysis of Runge-Kutta methods. Recall that a
problem y′ = f(t, y) satisfying the one-sided Lipschitz condition (1.9) with
ν < 0 is asymptotically stable (see (1.10)). Other results about asymptotic
stability have been recently obtained by Stuart & Humphries [9].

Definition 5.1 A B-stable numerical method is called asymptotically B-
stable if for the difference ∆yn of any two numerical solutions, when applied
to y′ = f(t, y) satisfying (1.9) with ν < 0, it holds limn→∞ ‖∆yn‖ = 0 for
any mesh t0, t1, . . . with tn →∞.

Observe that, even if a Runge-Kutta method is B-stable, it is not guar-
anteed that the numerical solution {yn}n≥0 of the test equation y′ = λy,
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<λ < 0, tends to zero if the step sizes are not uniformly bounded. This may
happen when |R(∞)| = 1. In fact, in such a case, it is possible to choose
a diverging sequence of step sizes hn such that, even being |R(hnλ)| < 1
for all n, the product

∏n−1
k=0 |R(hkλ)| tends to some limit r 6= 0 as n → ∞.

The same situation arises for constant step sizes, if we consider a problem
y′ = λ(t)y, where λ(t) tends sufficiently fast to −∞ as t→∞. In order to get
asymptotic stability results, we either have to restrict the class of methods
(|R(∞)| < 1) or to consider only problems with limited stiffness.

Theorem 5.1 Consider a B-stable Runge-Kutta method satisfying |R(∞)| <
1 and suppose that the differential equation satisfies (1.9) with ν < 0. For
the difference ∆yn of any two numerical solutions (corresponding to a mesh
t0, t1, . . . with tn →∞, hn = tn+1 − tn) we have:
a) the method is asymptotically B-stable, i.e., without any restriction on the
step sizes it holds

‖∆yn‖ → 0 for n→∞;

b) under the restriction hn+1 ≤ chn (c > 1) there exist C > 0 and α > 0 such
that

‖∆yn‖ ≤ C(tn − t0)−α‖∆y0‖ for n = 1, 2, . . . ;

c) if the step sizes are uniformly bounded, there exist C > 0 and β > 0 such
that

‖∆yn‖ ≤ Ce−β(tn−t0)‖∆y0‖ for n = 0, 1, 2, . . . .

Remark 5.1 The same statements hold if we replace “B-stable” by “A-
stable” and if we consider only linear systems with constant coefficients.

Proof. a) We assume that the considered method is irreducible (otherwise we
replace it by an equivalent, irreducible one without changing the numerical
solution), so that the Runge-Kutta coefficients satisfy (3.1) (see e.g., Theorem
IV.12.18 of Hairer & Wanner [6]). By definition of the error growth function
ϕB(x) we have that

‖∆yn‖ ≤
( n−1∏

k=0

ϕB(hkν)
)
‖∆y0‖. (5.1)

Since ν < 0 and |R(∞)| < 1, it follows from Theorem 3.1 that the factors
ϕB(hkν) are all smaller than one and that they are close to one only for
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small values of hk. However, due to the fact that ϕB(x) is superexponential
we have

ϕB(hkν)ϕB(hk+1ν) ≤ ϕB((hk + hk+1)ν).

Hence, replacing two consecutive steps by one large step of size hk + hk+1,
increases the upper bound in (5.1). After combining several consecutive
steps (if necessary) we can assume that hk ≥ h > 0 for all k. From the
monotonicity of ϕB(x) it thus follows that ‖∆yn‖ ≤ (ϕB(hν))n‖∆y0‖ → 0
for n→∞, because ϕB(hν) < 1 (again by Theorem 3.1).

b) We remove points of the mesh until hk ≥ h > 0 and hk+1 ≤ c1hk for
all k, where c1 > 1 is a suitable constant depending on c. This implies that
t−t0 ≤ c0c

n
1 for t ∈ [tn, tn+1], where c0 > 0 is another suitable constant. Com-

puting n from this inequality and inserting it into ‖∆yn‖ ≤ (ϕB(hν))n‖∆y0‖,
we get the desired estimate.

c) We remove mesh-points until 0 < h ≤ hk ≤ H for all k. This yields
t − t0 ≤ c2n for t ∈ [tn, tn+1], where c2 > 0 is a suitable constant, and the
exponential decay can be obtained as above.

Theorem 5.2 Consider a B-stable Runge-Kutta method ( |R(∞)| = 1 is
admitted) and suppose that the differential equation satisfies (1.9) with ν < 0
and (3.8) with some L ≥ −ν. Then the conclusion (c) of the preceding
theorem can be drawn.

Proof. We consider the function ϕ(hν, hL) of Theorem 3.2 instead of ϕB(x).
Since ϕ(hν, hL) is an increasing function of β, we can assume without restric-
tions that β ≥ 8/15, so that this function is superexponential by Theorem 4.2.
As ϕ(hkν, hkL) ≤ q < 1 for h ≤ hk ≤ H, the proof of the preceding theorem
can be applied.
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