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Abstract. For the numerical solution of parabolic problems with a linear diffusion term, linearly
implicit time integrators are considered. To reduce the cost on the linear algebra level, an alternating
direction implicit approach is applied (so-called AMF-W-methods). The present work proves optimal
bounds of the global error for two classes of 1-stage methods in the Euclidean \ell 2 norm as well as in
the maximum norm \ell \infty . The bounds are valid under a very weak step size restriction that covers
PDE convergence, where the time step size is of the same order as the spatial grid size.
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1. Introduction. The present article is concerned with the numerical solution
of parabolic partial differential equations (PDEs) on a rectangular domain in arbi-
trary dimension m. We assume the space derivatives to be discretized by standard
finite differences, and we solve the resulting large-dimensional ordinary differential
equation by so-called AMF-W-methods. These are linearly implicit time integrators,
where dimensional splitting (alternating direction implicit (ADI)) is used on the lin-
ear algebra level to increase efficiency of the integration. We are interested in getting
rigorous, optimal bounds of the global error in the Euclidean \ell 2 norm as well as in
the maximum norm \ell \infty .

There are a few convergence results for linearly implicit time integrators applied
to discretized parabolic differential equations. Let us mention [21, Chap. 7] and the
convergence analysis of [15] and [14]. Since they are based on estimates on the differ-
ence between the Jacobian of the vector field and its approximation, they cannot be
directly applied to the approximate matrix factorization (AMF) approach.

On the other hand there exist convergence results for ADI-type time integrators,
which are related (but not identical) to W-methods. Convergence of the Peaceman--
Rachford integrator is proved in [11], and for the Crank--Nicolson (with locally one-
dimensional splitting) in [8]. A convergence analysis (also for problems with mixed
derivatives) of a modified Craig--Sneyd scheme is presented in [13]. All these results
give error bounds for the Euclidean \ell 2 norm and are related to two-dimensional PDE
problems. For a modified Douglas scheme, the authors in [1] consider an arbitrary
number of splitting terms and prove second order of convergence in both the Euclidean
and the \ell \infty norm under an assumption that is satisfied for time-independent Dirichlet
boundary conditions, but not for the time-dependent case.
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1118 S. GONZ\'ALEZ-PINTO, E. HAIRER, AND D. HERN\'ANDEZ-ABREU

Our aim is to elaborate a convergence analysis for AMF-W-methods. To em-
phasize the essential ideas, we only consider 1-stage W-methods, and we restrict our
analysis to the linear diffusion problem

(1.1) \partial tu(t, \vec{}x) =

m\sum 
j=1

\alpha j \partial xjxj
u(t, \vec{}x) + c(t, \vec{}x), t \geq 0,

for \vec{}x = (x1, . . . , xm)\top \in [0, 1]m, with constants \alpha j > 0, 1 \leq j \leq m, and Dirichlet
boundary conditions, but we admit an arbitrarily large space dimension m and con-
sider time-dependent boundary conditions. A standard second order central finite
difference discretization on a uniform grid,

(1.2) x
(ij)
j = ij \cdot \Delta xj , 0 \leq ij \leq nxj

+ 1, 1 \leq j \leq m,

with \Delta xj = 1/(nxj + 1), yields the ordinary differential equation

(1.3) \.U = DU + g(t), D = D1 + \cdot \cdot \cdot +Dm, g(t) = g1(t) + \cdot \cdot \cdot + gm(t),

where Dj = \alpha j (Inxm
\otimes \cdot \cdot \cdot \otimes Dxjxj

\otimes \cdot \cdot \cdot \otimes Inx1
). Here, the differentiation matrices

Dxjxj
are tridiagonal with entries (1, - 2, 1)/\Delta x2

j , respectively, and \otimes stands for the
Kronecker product of matrices. Observe that the dimension of system (1.3) is nx :=
nx1 \cdot . . . \cdot nxm .

The splitting of g(t) is not unique. Throughout this article we assume that
the discretization of the reaction term c(t, \vec{}x) is entirely included in g1(t), so that
g2(t), . . . , gm(t) consist only of contributions from the boundary conditions. For ho-
mogeneous Dirichlet boundary conditions we thus have gj(t) = 0 for j = 2, . . . ,m,
and for time-independent Dirichlet boundary conditions the vectors g2(t), . . . , gm(t)
are constant.

Outline of the paper. Section 2 recalls W-methods, when they are applied
with the approximate matrix factorization (AMF) technique, and it presents basic
formulas for the local and global errors. The power-boundedness of the stability
matrix is discussed in section 3. This is standard for the Euclidean \ell 2 norm, but a
challenging problem for the maximum norm \ell \infty . The main convergence results are
given in section 4 for 1-stage AMF-W-methods (with parameter \theta ). For the \ell 2 norm
and \theta = 1/2, convergence of order 2 is proved under a step size restriction that includes
PDE convergence. An error bound \scrO (\tau 2| log h| ) (where \tau is the time step size and
h is the mesh-width) is obtained under a still weaker restriction. Convergence order
1 is obtained in the \ell \infty norm, and essentially order 2 for time-independent Dirichlet
boundary conditions. Section 5 extends the convergence results to a modified method.
The convergence order is improved in the \ell \infty norm for general Dirichlet boundary
conditions and m = 2 spatial dimensions. Some technical results are collected in the
final section A.

2. Time integration -- AMF-W-methods. The space discretized problem
(1.3) is a stiff differential equation. Explicit methods are not suitable for its time
integration. An interesting class of methods is linearly implicit integrators, where
nonlinear equations are avoided. Methods, requiring only an approximate Jacobian
of the vector field, were introduced in [19] and are nowadays called W-methods [7,
sect. IV.7].

The idea of using a splitting at a linear algebra level is already present in [2].
Its use in connection with W-methods is proposed in [22]; see also the monograph
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CONVERGENCE OF AMF-W-METHODS FOR PARABOLIC PDES 1119

[12, sect. IV.5]. Such methods are called AMF-W-methods. Recently much effort has
been devoted to their construction and analysis; see, e.g., [5, 6, 16].

2.1. Formulation of AMF-W-methods. For the integration of (1.3) we con-
sider s-stage AMF-W-methods. Given a numerical approximation Un \approx U(tn) at tn,
the approximation Un+1 \approx U(tn+1) at tn+1 = tn + \tau is defined by (see [5, sect. 4])

(2.1)

K
(0)
i = \tau D

\Bigl( 
Un +

i - 1\sum 
j=1

aijKj

\Bigr) 
+ \tau g(tn + ci\tau ) +

i - 1\sum 
j=1

\ell ijKj ,

(I  - \theta \tau Dj)K
(j)
i = K

(j - 1)
i + \theta \rho i\tau 

2 \.gj(tn), j = 1, . . . ,m, Ki = K
(m)
i ,

Un+1 = Un +

s\sum 
i=1

biKi.

It is characterized by (A,L, b, \theta ) with matrices A = (aij)j<i, L = (\ell ij)j<i, vector
b = (bi)i, and scalar \theta . The coefficients \rho i and ci are recursively defined by \rho i =

1+
\sum i - 1

j=1 \ell ij\rho j , and ci =
\sum i - 1

j=1 aij\rho j . Later, the notation 1 = (1, . . . , 1)\top will also be
used.

Among this family of methods, the simplest ones are the 1-stage methods with
b1 = 1, c1 = 0, \rho 1 = 1 and free parameter \theta > 0:

(2.2)

K
(0)
1 = \tau DUn + \tau g(tn),

(I  - \theta \tau Dj)K
(j)
1 = K

(j - 1)
1 + \theta \tau 2 \.gj(tn), j = 1, . . . ,m,

Un+1 = Un +K
(m)
1 .

2.2. Local and global error. For the study of convergence we denote the global
error by

(2.3) En = Un  - U(tn).

Using DU(tn) = \.U(tn) - g(tn), the internal stages of the method (2.1) can be written
as

K
(0)
i = \tau DEn + \tau D

i - 1\sum 
j=1

aijKj +

i - 1\sum 
j=1

\ell ijKj + \tau \.U(tn) - \tau g(tn) + \tau g(tn + ci\tau ),

(I  - \theta \tau D1)\cdot \cdot \cdot (I  - \theta \tau Dm)Ki = K
(0)
i + \theta \rho i\tau 

2 \.\scrG (tn),

where the vector \scrG (t) is given by1

(2.4) \scrG (t) =
m\sum 
i=1

\Bigl( i - 1\prod 
j=1

\bigl( 
I  - \theta \tau Dj

\bigr) \Bigr) 
gi(t).

With the notation

(2.5) \Pi (\theta ) = (I  - \theta \tau D1) \cdot \cdot \cdot (I  - \theta \tau Dm)

1By convention, the empty product is the identity matrix.
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1120 S. GONZ\'ALEZ-PINTO, E. HAIRER, AND D. HERN\'ANDEZ-ABREU

this shows that

\Pi (\theta )Ki  - \tau D

i - 1\sum 
j=1

aijKj  - 
i - 1\sum 
j=1

\ell ijKj = \tau DEn + \delta i,(2.6)

\delta i = \tau \.U(tn) - \tau g(tn) + \tau g(tn + ci\tau ) + \theta \rho i\tau 
2 \.\scrG (tn).

The update formula of (2.1) becomes

(2.7) En+1 = En +

s\sum 
i=1

biKi  - 
\Bigl( 
U(tn + \tau ) - U(tn)

\Bigr) 
.

Inserting Ki from (2.6) into this formula yields the following result.

Theorem 2.1. The global error (2.3) satisfies the recursion

(2.8) En+1 = REn + Sn, n \geq 0,

where the stability matrix R = R(\tau D1, . . . , \tau Dm) is

R(Z1, . . . , Zm) = I + (b\top \otimes I)
\Bigl( 
I \otimes \Pi (\theta ) - A\otimes Z  - L\otimes I

\Bigr)  - 1

(1 \otimes Z)

with \Pi (\theta ) = (I - \theta Z1)\cdot \cdot \cdot (I  - \theta Zm), Zi = \tau Di, Z = Z1+ \cdot \cdot \cdot + Zm, and the local error
Sn = Sn(\tau D1, . . . , \tau Dm) is

Sn(\tau D1, . . . , \tau Dm) =

s\sum 
i=1

bi\Delta i  - 
\Bigl( 
U(tn + \tau ) - U(tn)

\Bigr) 
,

where \Delta i is recursively defined by \Pi (\theta )\Delta i = \delta i +
\sum i - 1

j=1

\bigl( 
\ell ijI + aij\tau D

\bigr) 
\Delta j .

Example 2.2. For 1-stage methods the stability matrix is given by

(2.9) R(\tau D1, . . . , \tau Dm) = I +\Pi (\theta ) - 1\tau D, D = D1 + \cdot \cdot \cdot +Dm,

with \Pi (\theta ) from (2.5). The local error Sn = Sn(\tau D1, . . . , \tau Dm) is

(2.10) Sn = \Pi (\theta ) - 1
\Bigl( 
\tau \.U(tn) + \theta \tau 2 \.\scrG (tn)

\Bigr) 
 - 
\Bigl( 
U(tn + \tau ) - U(tn)

\Bigr) 
,

with the vector \scrG (t) given by (2.4).

If, for a given norm, the estimates \| R\| \leq 1 + C0\tau and \| Sn\| \leq C1\tau 
p+1 hold, a

standard argument yields convergence of order p, i.e., \| En\| \leq C\tau p on a bounded time
interval 0 \leq n\tau \leq T . If such estimates are not available with suitable constants C0

and C1, it is advised to solve the recursion (2.8):

(2.11) En = RnE0 +

n - 1\sum 
j=0

Rn - 1 - jSj .

The convergence analysis, based on this relation, requires the power-boundedness of
the stability matrix and a careful analysis of the local error. This is the content of
the following sections.
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CONVERGENCE OF AMF-W-METHODS FOR PARABOLIC PDES 1121

3. Power-boundedness of the stability function. We consider the Euclid-
ean space \BbbR nx with nx = nx1

\cdot . . .\cdot nxm
, and vectors U = (Ui1,...,im) and V = (Vi1,...,im),

where ij = 1, . . . , nxj
. We are mainly interested in the Euclidean inner product norm

and in the maximum norm.

3.1. Euclidean \ell \bftwo norm. The weighted inner product

\langle U, V \rangle = \Delta x1 \cdot . . . \cdot \Delta xm

nx1\sum 
i1=1

. . .

nxm\sum 
im=1

Ui1,...,imVi1,...,im for U, V \in \BbbR nx ,

with induced \ell 2 norm

(3.1) \| U\| 2 =
\sqrt{} 
\langle U,U\rangle for U \in \BbbR nx ,

has the advantage that, considering the diagonalization of the stability matrix, its
power-boundedness can be reduced to that of a scalar. In fact, the eigenvectors of
D1, . . . , Dm, and D = D1 + \cdot \cdot \cdot +Dm are all the same (see [12, p. 297]). With

(3.2) \phi 
(xi)
j =

\surd 
2
\bigl( 
sin(j\Delta xi\pi ), sin(2j\Delta xi\pi ), . . . , sin(nxi

j\Delta xi\pi )
\bigr) \top 

they are given by \phi 
(xm)
jm

\otimes \cdot \cdot \cdot \otimes \phi 
(x1)
j1

with eigenvalue

(3.3) \lambda 
(xi)
j =  - 4

\Delta xi
2
sin2

\bigl( 
j\Delta xi

\pi 
2

\bigr) 
\alpha i, j = 1, . . . , nxi

.

We have

Di \phi 
(xm)
jm

\otimes \cdot \cdot \cdot \otimes \phi 
(x1)
j1

= \lambda 
(xi)
ji

\phi 
(xm)
jm

\otimes \cdot \cdot \cdot \otimes \phi 
(x1)
j1

,

D \phi 
(xm)
jm

\otimes \cdot \cdot \cdot \otimes \phi 
(x1)
j1

=
\bigl( 
\lambda 
(x1)
j1

+ \cdot \cdot \cdot + \lambda 
(xm)
jm

\bigr) 
\phi 
(xm)
jm

\otimes \cdot \cdot \cdot \otimes \phi 
(x1)
j1

.

These eigenvectors are orthonormal with respect to the inner product. When expand-
ing a vector U in the basis of eigenvectors

U =

nx1\sum 
j1=1

\cdot \cdot \cdot 
nxm\sum 
jm=1

\widehat Uj1,...,jm \phi 
(xm)
jm

\otimes \cdot \cdot \cdot \otimes \phi 
(x1)
j1

,

we denote the Fourier coefficients by \widehat Uj1,...,jm . This implies that

\| R(\tau D1, . . . , \tau Dm)U\| 22 =

nx1\sum 
j1=1

\cdot \cdot \cdot 
nxm\sum 
jm=1

\bigm| \bigm| \bigm| R\bigl( \tau \lambda (x1)
j1

, . . . , \tau \lambda 
(xm)
jm

\bigr) \widehat Uj1,...,jm

\bigm| \bigm| \bigm| 2,
which is bounded by \| U\| 22, provided that

(3.4)
\bigm| \bigm| R\bigl( \tau \lambda (x1)

j1
, . . . , \tau \lambda 

(xm)
jm

\bigr) \bigm| \bigm| \leq 1 for all \lambda 
(xi)
ji

\leq 0.

Consequently, we have contractivity \| R(\tau D1, . . . , \tau Dm)\| 2 \leq 1, and hence also power-
boundedness of R = R(\tau D1, . . . , \tau Dm) in the Euclidean \ell 2 norm.

Example 3.1. The stability matrix (2.9) of the 1-stage AMF-W-method (2.2) sat-
isfies \| R\| 2 \leq 1 for \theta \geq 1/2. This is a consequence of (3.4), which follows from
(1 - \theta z1) \cdot . . . \cdot (1 - \theta zm) \geq 1 - \theta (z1 + \cdot \cdot \cdot + zm) for real zj \leq 0. Note that (3.4) also
follows from [9, Theorem 2.1], where the more general situation of complex arguments
zj is considered.
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3.2. Maximum norm in dimension \bfitm = 2. We next consider the maximum
norm

(3.5) \| U\| \infty = max
i1,...,im

| Ui1,...,im | for U \in \BbbR nx .

From the inequality \Delta x1 \cdot . . . \cdot \Delta xm \| U\| 2\infty \leq \| U\| 22 \leq \| U\| 2\infty it follows that \| U\| \infty \leq 
h - m/2\| U\| 2 (with h = min\{ \Delta x1, . . . ,\Delta xm\} ) for all vectors U . This implies

\| Rn\| \infty \leq h - m/2\| Rn\| 2

in the corresponding operator norms. Improving this bound for powers of the stability
matrix in the maximum norm is more difficult.

For 1-stage methods the stability matrix is given by (2.9). For \theta = 1/2 and for
m = 2 the stability matrix is a product

R(\tau D1, \tau D2) = Tr(\tau \alpha 2Dx2x2
)\otimes Tr(\tau \alpha 1Dx1x1

),

where Tr(A) =
\bigl( 
I  - 1

2A
\bigr)  - 1\bigl( 

I + 1
2A
\bigr) 
is the stability matrix of the trapezoidal rule

(Crank--Nicolson) applied to the one-dimensional heat equation (see [1, sect. 4.2,
p. 276]). Taking the nth power of this relation and using \| A \otimes B\| \infty = \| A\| \infty \| B\| \infty 
for two matrices A,B, we obtain the relation\bigm\| \bigm\| R(\tau D1, \tau D2)

k
\bigm\| \bigm\| 
\infty =

\bigm\| \bigm\| Tr(\tau \alpha 1Dx1x1
)k
\bigm\| \bigm\| 
\infty 

\bigm\| \bigm\| Tr(\tau \alpha 2Dx2x2
)k
\bigm\| \bigm\| 
\infty .

It is proved in [4] that each of the two factors is bounded by C\infty < 4.325. Larger
bounds for C\infty were stated in [3, p. 52], [17]. Other references about the power-
boundedness of rational functions of matrices Dxjxj

can be found, e.g., in [18, Thm.
6.4.2] and [20]. Hence

(3.6)
\bigm\| \bigm\| R(\tau D1, \tau D2)

k
\bigm\| \bigm\| 
\infty \leq C2

\infty ,

which is independent of k, \tau , and the spatial step size.
For \theta > 1/2 the stability matrix R = R(\tau D1, \tau D2) is no longer the tensor product

of two matrices of lower dimension. To get some insight into the power-boundedness
we consider the situation \alpha 1 = \alpha 2 = 1, nx1

= nx2
= n, and we compute numerically

\| Rk\| \infty for \tau = 1/(n + 1), for different values of \theta , and for n = 8, 16, 32. The result
is shown in Figure 1, where \| Rk\| \infty is plotted as a function of k\tau \leq 1. Thick curves
correspond to \theta = 1/2, middle curves to \theta = 3/4, and thin curves to \theta = 1. The
largest values of \| Rk\| \infty turn out to be for small values of k, and for large n = 32.
These values are 5.96 for \theta = 1/2, 4.35 for \theta = 3/4, and 3.61 for \theta = 1. For large
values of k, \| Rk\| \infty is more or less independent of the number of grid points n.

3.3. Maximum norm in dimension \bfitm = 3. In dimension m \geq 3 (even for
\theta = 1/2) we are no longer in the lucky situation where the stability matrix can be
written as the tensor product of lower-dimensional matrices. For m = 3 and \theta = 1/2
we have

R(\tau D1, \tau D2, \tau D3) = Tr(\tau \alpha 3Dx3x3)\otimes Tr(\tau \alpha 2Dx2x2)\otimes Tr(\tau \alpha 1Dx1x1)

 - 2 s(\tau \alpha 3Dx3x3
)\otimes s(\tau \alpha 2Dx2x2

)\otimes s(\tau \alpha 1Dx1x1
),

where s(A) = 1
2A
\bigl( 
I  - 1

2A
\bigr)  - 1

.
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Fig. 1. \| Rk\| \infty for (2.9) as a function of k\tau with m = 2, \tau = 1/(n+ 1), and n = 8, 16, 32.
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\| Rk\| \infty , \theta = 1/2

k\tau 

Fig. 2. \| Rk\| \infty for (2.9) as a function of k\tau with m = 3, \tau = 1/(n+ 1), and n = 4, 8, 16.

To get a feeling of the power-boundedness of R = R(\tau D1, \tau D2, \tau D3) we rely on
numerical experiments. We consider the diffusion problem with \alpha 1 = \alpha 2 = \alpha 3 = 1 and
nx1

= nx2
= nx3

= n, and we compute numerically \| Rk\| \infty for \theta = 1/2, \tau = 1/(n+1),
and for different values of n. The result is shown in Figure 2. The largest values of
\| Rk\| \infty are again for small values of k. In contrast to the results for dimension m = 2
(Figure 1), we observe that \| Rk\| \infty has significantly different values for large k.

4. Convergence of 1-stage methods. We consider the 1-stage method (2.2)
with parameter \theta . It has classical order p = 1 in general, and classical order p = 2
for \theta = 1/2. The stability matrix and the local error are given in Example 2.2. The
presentation (2.10) of the local error is not practical for an analysis, because for non-
homogeneous boundary conditions the vector functions gi(t) contain elements that
are proportional to \Delta x - 2

i . The same is true for the vectors DiU(t). It is much better
to work with the vector functions

(4.1) \varphi i(t) = DiU(t) + gi(t),

which are bounded (together with their time derivatives) if the spatial mesh size tends
to zero. We remark that \varphi 1(t) + \cdot \cdot \cdot + \varphi m(t) = DU(t) + g(t) = \.U(t).

4.1. Convergence of order 1. We write the local error (2.10) in a form that
is more appropriate for estimates. In the expression \scrG (t) of (2.4) we insert gi(t) =
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1124 S. GONZ\'ALEZ-PINTO, E. HAIRER, AND D. HERN\'ANDEZ-ABREU

\varphi i(t) - DiU(t). Expanding U(tn + \tau ) into a Taylor series (with remainder term), and
using the identity (which is seen by induction on m)

(4.2) I  - \theta \tau 

m\sum 
i=1

\Pi i(\theta )Di = \Pi (\theta ) with \Pi i(\theta ) =

i - 1\prod 
j=1

\bigl( 
I  - \theta \tau Dj

\bigr) 
(note that \Pi 1(\theta ) = I), the local error (2.10) can be written as

(4.3) Sn = \theta \tau 2\Pi (\theta ) - 1
m\sum 
i=1

\Pi i(\theta ) \.\varphi i(tn) - \tau 2
\int 1

0

(1 - s) \"U(tn + s\tau ) ds.

We require that the solution U(t) of the differential equation (1.3) is such that in a
given norm and on a bounded time interval

(4.4)
\| \"U(t)\| \leq C,

\| \.\varphi j(t)\| \leq C for j = 1, . . . ,m.

This requirement is fulfilled in any norm if the solution u(t, \vec{}x) of the linear diffusion
problem is sufficiently differentiable. Moreover, we assume for the method that

\| Rn\| \leq C for n \geq 1,(4.5)

\| (I  - \theta \tau Dj)
 - 1\| \leq C for j = 1, . . . ,m.(4.6)

Note that for the weighted \ell 2 norm (3.1) the conditions (4.5) and (4.6) are satisfied
in any dimension m for \theta \geq 1/2. It is satisfied in dimension m = 2 for the \ell \infty norm
and \theta = 1/2.

Theorem 4.1. Assume that (4.4), (4.5), and (4.6) hold for a given norm, and
consider the 1-stage method (2.2) with \theta \geq 1/2. Then, for an initial value satisfying
\| E0\| = \scrO (\tau ), the global error is bounded by

\| En\| = \scrO (\tau ) for n\tau \leq T,

where the constant symbolized by \scrO (\cdot ) is independent of \tau and the spatial discretiza-
tion, but depends on the constant C in (4.4), (4.5), and (4.6), and on T .

Proof. The assumptions of the theorem imply that the local error (4.3) satisfies
in the given norm Sn = \scrO (\tau 2). The power-boundedness of the stability matrix then
proves convergence of order 1.

The rest of this section considers the case \theta = 1/2, for which the method has
classical order 2. A more refined analysis of the local error is necessary to get improved
error estimates.

4.2. Higher order convergence in the \ell \bftwo norm for \bfittheta = 1/2. Our aim is
to prove second order convergence for the 1-stage method (2.2) with \theta = 1/2. Since

\tau 2
\int 1

0
(1 - s) \"U(tn+ s\tau ) ds = \tau 2

2
\"U(tn)+

\tau 3

2

\int 1

0
(1 - s)2

...
U (tn+ s\tau ) ds and

\sum m
i=1 \.\varphi i(tn) =

\"U(tn), the local error (4.3) can be written as

(4.7) Sn =
\tau 2

2
\Pi 
\bigl( 
1
2

\bigr)  - 1
m\sum 
i=1

\Bigl( 
\Pi i

\bigl( 
1
2

\bigr) 
 - \Pi 

\bigl( 
1
2

\bigr) \Bigr) 
\.\varphi i(tn) - 

\tau 3

2

\int 1

0

(1 - s)2
...
U (tn + s\tau ) ds.
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In the following we require that

(4.8) \| 
...
U (t)\| 2 \leq C

and that the functions \.\varphi j(t) =
\bigl( 
\.\varphi i1,...,im,j(t)

\bigr) 
\in \BbbR nx satisfy, for j = 1, . . . ,m,

(4.9) \.\varphi i1,...,im,j(t) = vj
\bigl( 
t, x

(i1)
1 , . . . , x(im)

m

\bigr) 
,

where vi(t, \vec{}x) is continuously differentiable in all variables. This assumption permits
us to get improved error estimates with the help of Lemma A.2. Observe that each
vector \varphi j(t) defined in (4.1) is a second order approximation on the grid to the partial
derivative \partial xjxj

u at every time t \in [0, T ] if the PDE solution u is at least four times
continuously differentiable in each spatial variable.

The step size restriction (4.10) in the following theorem covers the situation \tau \approx 
\Delta xl, \tau \rightarrow 0, which is often called PDE convergence. Note that under a step size
restriction \tau \leq c0\Delta x2

l we are in the nonstiff situation and classical convergence results
can be applied.

Theorem 4.2. Assume that (4.8) and (4.9) hold, and consider the 1-stage method
(2.2) with \theta = 1/2. Then, for an initial value satisfying \| E0\| 2 = \scrO (\tau 2), and under
the step size restriction

(4.10) c0\Delta x2
l \leq \tau \leq c1\Delta xl, l = 1, . . . ,m

(with positive c0, c1), the global error is bounded by

\| En\| 2 = \scrO (\tau 2) for n\tau \leq T,

where the constant symbolized by \scrO (\cdot ) is independent of \tau and the spatial discretiza-
tion, but depends on the constant C in (4.8), on c0, c1 in (4.10), on T , and on bounds
of the spatial derivatives of vi(t, \vec{}x) in (4.9).

Proof. The local error Sn of (4.7) is a linear combination of terms that fall into
one of the following three categories:

(A) \tau 3

2

\int 1

0
(1 - s)2

...
U (tn + s\tau ) ds,

(B) \tau 3\Pi 
\bigl( 
1
2

\bigr)  - 1
Dl \.\varphi i(tn),

(C) \tau 2+k\Pi 
\bigl( 
1
2

\bigr)  - 1
Dl1Dl2 \cdot \cdot \cdot Dlk \.\varphi i(tn), k \geq 2,

where 1 \leq l1 < l2 < \cdot \cdot \cdot < lk \leq m. By assumption (4.8) the expression (A) is of size
\scrO (\tau 3). Therefore, a standard convergence argument shows that this term leads to a
\scrO (\tau 2) contribution in the global error.

The expressions in (B) and (C) require a refined analysis. To exploit the smooth
dependence of the local error on time, we apply partial summation in (2.11) and write
the global error as (assuming E0 = 0)

En =

\biggl( n - 1\sum 
j=0

Rn - 1 - j

\biggr) 
S0 +

n - 2\sum 
j=0

\biggl( n - 1\sum 
i=j+1

Rn - 1 - i

\biggr) \bigl( 
Sj+1  - Sj

\bigr) 
,

which can also be written as

(4.11) En = (I  - Rn)(I  - R) - 1S0 +

n - 2\sum 
j=0

(I  - Rn - 1 - j)(I  - R) - 1
\bigl( 
Sj+1  - Sj

\bigr) 
.
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1126 S. GONZ\'ALEZ-PINTO, E. HAIRER, AND D. HERN\'ANDEZ-ABREU

Let us denote the expression in (B) by \widehat Sn and its contribution to the global error by\widehat En. Since R - I = \Pi 
\bigl( 
1
2

\bigr)  - 1
\tau D by (2.9), we have

\widehat Sn = \tau 3\Pi 
\bigl( 
1
2

\bigr)  - 1
Dl \.\varphi i(tn) = \tau 2(R - I)D - 1Dl \.\varphi i(tn)

and \widehat Sj+1  - \widehat Sj = \tau 3(R - I)D - 1Dl

\int 1

0

\"\varphi i(tj + s\tau ) ds.

Inserted into (4.11), the factor (R - I) cancels with (I  - R) - 1. Since \| Rn\| 2 \leq 1 and
\| D - 1Dl\| 2 \leq 1, which can be seen by diagonalization of the matrices, the boundedness

of the time derivatives of \varphi i(t) implies that \| \widehat En\| 2 = \scrO (\tau 2).
We next consider terms of the form (C). Without loss of generality we assume

lj = j, so that this term of the local error is

(4.12) \widehat Sn = \tau 2+k\Pi 
\bigl( 
1
2

\bigr)  - 1
D1D2 \cdot \cdot \cdot Dk \.\varphi i(tn)

with 2 \leq k \leq m. We expand the vector \.\varphi i(tn) in the basis of eigenvectors of Dl (see
section 3.1),

(4.13) \.\varphi i(tn) =

nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

\widehat \.\Phi i1,...,im,i(tn)\phi 
(xm)
im

\otimes \cdot \cdot \cdot \otimes \phi 
(x1)
i1

,

so that the norm of (I  - Rn)(I  - R) - 1 \widehat S0 (see (4.11)) becomes

(4.14) \tau 2+k

\left\{   
nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

\biggl( 
1 - rni1,...,im
1 - ri1,...,im

\biggr) 2 \prod k
l=1 | \lambda 

(xl)
il

| 2 | \widehat \.\Phi i1,...,im,i(t0)| 2\prod m
l=1(1 +

1
2\tau | \lambda 

(xl)
il

| )2

\right\}   
1/2

,

where ri1,...,im = R
\bigl( 
\tau \lambda 

(x1)
i1

, . . . , \tau \lambda 
(xm)
im

\bigr) 
. An application of Lemma A.2, which is

justified by assumption (4.9), shows that
\bigl( \prod m

l=1 | \lambda 
(xl)
il

| 
\bigr) 
| \widehat \.\Phi i1,...,im,i(t0)| 2 \leq C2 for all

i1, . . . , im. Consequently, the expression (4.14) is bounded by C\tau 2a(n), where
(4.15)

a(n) = \tau k

\Biggl\{ nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

\biggl( 
1 - rni1,...,im
1 - ri1,...,im

\biggr) 2 \prod k
l=1 | \lambda 

(xl)
il

| \prod m
l=1(1 +

1
2\tau | \lambda 

(xl)
il

| )2

m\prod 
l=k+1

1

| \lambda (xl)
il

| 

\Biggr\} 1/2

.

The same computation can be done for the second summand in (4.11). The only

difference is that n has to be replaced by n  - 1  - j, and \widehat S0 by \widehat Sj+1  - \widehat Sj , which

has the form (4.12) with \tau 
\int 1

0
\"\varphi i(tj + s\tau ) ds instead of \.\varphi i(t0). Applying the triangle

inequality in (4.11), we get the following for all n \geq 1, n\tau \leq T :

(4.16) \| \widehat En\| 2 \leq C\tau 2a(n) + C\tau 3
n - 2\sum 
j=0

a(n - 1 - j).

From Lemma 4.3 below we have under the assumption (4.10) that | a(n)| \leq M for

n\tau \leq T . This implies \| \widehat En\| 2 = \scrO (\tau 2) and completes the proof of the theorem.

Lemma 4.3. Let a(n) be defined by (4.15) for n\tau \leq T and k \geq 2. Then there
exists a constant M = M(T ) such that for all \tau satisfying (4.10) it holds that

a(n) \leq M.
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Proof. Using the fact that

0 \leq 1 - ri1,...,im =
\tau 
\sum m

l=1 | \lambda 
(xl)
il

| \prod m
l=1(1 +

1
2\tau | \lambda 

(xl)
il

| )
\leq 2,

it follows from Lemma A.6 that

a(n)2 \leq (22 - \gamma T \gamma )\tau 2k - 2

nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

\prod k
l=1 | \lambda 

(xl)
il

| 
\prod m

l=k+1 | \lambda 
(xl)
il

|  - 1\prod m
l=1

\bigl( 
1 + 1

2\tau | \lambda 
(xl)
il

| 
\bigr) \gamma \bigl( \sum m

l=1 | \lambda 
(xl)
il

| 
\bigr) 2 - \gamma ,

where \gamma \in [0, 2] is for the moment a free parameter. With the help of the arithmetic-
geometric mean inequality

m\sum 
l=1

| \lambda (xl)
il

| \geq 
k\sum 

l=1

| \lambda (xl)
il

| \geq k \cdot k

\sqrt{} 
| \lambda (x1)

i1
| \cdot . . . \cdot | \lambda (xk)

ik
| ,

this sum of products turns into a product of sums and yields

(4.17) a(n)2 \leq 
\biggl( 
22 - \gamma T \gamma 

k2 - \gamma 

\biggr) 
\tau 2k - 2

k\prod 
l=1

\Biggl( nxl\sum 
il=1

| \lambda (xl)
il

| 1 - (2 - \gamma )/k\bigl( 
1 + 1

2\tau | \lambda 
(xl)
il

| 
\bigr) \gamma 
\Biggr) 

m\prod 
l=k+1

\Biggl( nxl\sum 
il=1

1

| \lambda (xl)
il

| 

\Biggr) 
.

As a consequence of [12, Lem. 6.2, p. 298] the second product is bounded, because

nxl\sum 
il=1

1

| \lambda (xl)
il

| 
=

(\Delta xl)
2

4\alpha l

nxl\sum 
il=1

1

sin2
\bigl( 
il\Delta xl

\pi 
2

\bigr) = \scrO (1).

The first product can be bounded by applying Lemma A.5 with \alpha = 2 - 2(2 - \gamma )
k . With

the choice \gamma = \alpha < 1 for k = 2, and \gamma = 1 for k \geq 3, we have \alpha + 1 - 2\gamma > 0, so that

(4.18) a(n)2 \leq C\tau 2k - 2
k\prod 

l=1

\Bigl( 
\tau  - \gamma \Delta x2\gamma  - \alpha  - 1

l

\Bigr) 
= C

k\prod 
l=1

\Bigl( \tau 

\Delta xl

\Bigr) \alpha +1 - 2\gamma 

,

because 2  - 2
k  - \gamma = \alpha + 1  - 2\gamma for our choices of \gamma . The boundedness of a(n) thus

follows from assumption (4.10).

Although Theorem 4.2 covers the important situation of PDE convergence, we
present a further convergence result under the weaker step size restriction

(4.19) c0\Delta x2
l \leq \tau \leq c2\Delta x\beta 

l , \beta \in (0, 1)

(with positive c0, c2), for l = 1, . . . ,m.

Theorem 4.4. In the situation of Theorem 4.2, where the step size restriction
(4.10) is relaxed to (4.19), the global error is bounded by

\| En\| 2 = \scrO (\tau 2| log h| ) for n\tau \leq T,

where h = minj=1,...,m \Delta xj.
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Proof. The proof is the same as that for Theorem 4.2. The only difference is that
a different bound for a(n) in (4.15) will be obtained.

To get an estimate for a(n) under the assumption (4.19) we follow the proof of

Lemma 4.3. For a parameter \gamma \in [0, 2] we again have \alpha = 2  - 2(2 - \gamma )
k . As long as

\alpha + 1 - 2\gamma > 0 the left inequality in (4.18) holds and we have

(4.20) a(n)2 \leq C\tau 2k - 2
k\prod 

l=1

\Bigl( 
\tau  - \gamma \Delta x2\gamma  - \alpha  - 1

l

\Bigr) 
= C

k\prod 
l=1

\Bigl( \tau 

\Delta x\beta 
l

\Bigr) (\alpha +1 - 2\gamma )/\beta 

,

provided that

(4.21) \alpha + 1 - 2\gamma = \beta 
\Bigl( 
2 - 2

k
 - \gamma 
\Bigr) 
.

Inserting \alpha = 2 - 2(2 - \gamma )
k , we can compute \gamma from this relation. We obtain

\gamma = 1 +
(1 - \beta )(k  - 2)

(2 - \beta )k  - 2
and \alpha + 1 - 2\gamma =

\beta (k  - 2)2

k
\bigl( 
(2 - \beta )k  - 2

\bigr) .
One can check that \gamma \in [1, 2] for k \geq 2, and one sees that \alpha + 1  - 2\gamma > 0 for k \geq 3.
Consequently, (4.20) implies a(n) \leq M for all k \geq 3.

For k = 2, we have \gamma = 1 and \alpha = 1, so that \alpha + 1  - 2\gamma = 0. An application of
Lemma A.5 in (4.17) for the sums

nxl\sum 
il=1

| \lambda (xl)
il

| 1 - (2 - \gamma )/k\bigl( 
1 + 1

2\tau | \lambda 
(xl)
il

| 
\bigr) \gamma 

yields

(4.22) a(n)2 \leq C\tau 2
2\prod 

l=1

\biggl( 
\tau  - 1

\Bigl( 
1 +

\bigm| \bigm| \bigm| log\Bigl( \tau 

\Delta x2
l

\Bigr) \bigm| \bigm| \bigm| \Bigr) \biggr) .
From the step size restriction (4.19) we have c0 \leq \tau /\Delta x2

l \leq c2\Delta x\beta  - 2
l , and conse-

quently \bigm| \bigm| \bigm| log\Bigl( \tau 

\Delta x2
l

\Bigr) \bigm| \bigm| \bigm| \leq C + (2 - \beta )| log\Delta xl| ,

so that a(n)2 \leq M2| log h| 2 follows from (4.22).
The estimates a(n) \leq M for k \geq 3, and a(n) \leq M | log h| for k = 2, together with

(4.16), complete the proof of the theorem.

Remark 4.5. The 1-stage method (2.2) is a simple variant of the Douglas method,
where the difference \theta \tau (gj(tn+1)  - gj(tn)) is replaced by \theta \tau 2 \.gj(tn). For the Douglas
method with \theta = 1

2 , second order of convergence in both the Euclidean and maximum
norms is proved in [1, Thm. 3.1] under the assumption (see [1, (3.16b), p. 271])
(4.23)

\tau k - 1D - 1Dl1Dl2 \cdot \cdot \cdot Dlkv(tn) = \scrO (1), 1 \leq l1 < \cdot \cdot \cdot < lk < i \leq m (v = \.\varphi i, \"\varphi i).

The validity of this condition is discussed for m = 3 in [1, Ex. 3.2, p. 272]. The
same condition is considered in [10, Thm. 3.2] in order to prove convergence for linear

D
ow

nl
oa

de
d 

06
/1

5/
20

 to
 1

93
.1

45
.1

24
.2

52
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF AMF-W-METHODS FOR PARABOLIC PDES 1129

multistep methods with stabilizing corrections applied to split ordinary differential
equations. For general m \geq 3 and k < m one cannot expect better than

\tau k - 1\| D - 1Dl1Dl2 \cdot \cdot \cdot Dlkv(tn)\| 2 \leq c \tau k - 1h(4 - 3k)/2

(see Lemma A.3 below). This shows that for \tau \approx h the expression (4.23) is unbounded
in general for k \geq 3, i.e., for m \geq 4.

The proof of Theorem 4.2 avoids the assumption (4.23). Instead, the closely
related terms of type (C) are estimated directly without splitting them into a product

of \tau 2(R - I) = \tau 3\Pi 
\bigl( 
1
2

\bigr)  - 1
D and the expression in (4.23).

4.3. Higher order convergence in the \ell \infty norm for \bfittheta = 1/2. Convergence
of the 1-stage AMF-W-method (2.2) in the \ell \infty norm is less favorable. Numerical
experiments show that, in general, the order of PDE convergence is not more than 1,
and this is already covered by Theorem 4.1. However, second order convergence can
be proved for linear diffusion problems with time-independent boundary conditions.

Throughout this subsection we assume, in addition to (4.8), that the solution
U(t) and the functions \varphi i(t) of (4.1) satisfy, for k \geq 0,

(4.24)
\| Dl1Dl2 \cdot \cdot \cdot Dlk

\"U(t)\| \leq C for l1 < l2 < \cdot \cdot \cdot < lk,

\| Dl1Dl2 \cdot \cdot \cdot Dlk \.\varphi i(t)\| \leq C for l1 < l2 < \cdot \cdot \cdot < lk < i.

This condition is motivated by the following example.

Example 4.6 (time-independent boundary conditions). For the linear diffusion
problem (1.1) we consider time-independent Dirichlet boundary conditions

u(t, \vec{}x) = b(\vec{}x), \vec{}x \in \partial \Omega , \Omega = (0, 1)m.

The standard second order space discretization yields the ordinary differential equa-
tion (1.3), where the inhomogeneity g(t) = g1(t) + \cdot \cdot \cdot + gm(t) consists of the dis-
cretization of the reaction term c(t, \vec{}x) and of the boundary conditions. We assume
the splitting to be such that c(t, \vec{}x) only contributes to g1(t).

We further assume that the components of the solution vector U(t) equal the
values on the grid (1.2) of a smooth function v(t, \vec{}x) that satisfies the boundary con-
dition v(t, \vec{}x) = b(\vec{}x) for \vec{}x \in \partial \Omega . The time derivative, which we denote by a dot,
therefore yields \.v(t, \vec{}x) = \vec{}0 for \vec{}x \in \partial \Omega . This implies that Dlk

\"U(t) is an approxi-
mation to \partial xlk

xlk
\"v(t, \vec{}x) on the grid. This function is bounded and vanishes on \partial \Omega 

with the exception of the faces where xlk \in \{ 0, 1\} . In a next step, we notice that
Dlk - 1

Dlk
\"U(t) is an approximation to \partial xlk - 1

xlk - 1
\partial xlk

xlk
\"v(t, \vec{}x) on the grid, which is

bounded and vanishes on \partial \Omega , with the exception of the faces where either xlk \in \{ 0, 1\} 
or xlk - 1

\in \{ 0, 1\} . An induction argument proves the first bound of (4.24). To prove

the second bound of (4.24) we just note that \.\varphi i(t) = Di
\.U(t) for i \geq 2, which is a

consequence of the choice of the splitting.

Theorem 4.7. Assume that (4.8) and (4.24) hold, and that the stability matrix
(2.9) is power-bounded, and consider the 1-stage method (2.2) with \theta = 1/2. Then,
for an initial value satisfying \| E0\| \infty = \scrO (\tau 2), the global error is bounded by

\| En\| \infty = \scrO (\tau 2) for n\tau \leq T,

where the constant symbolized by \scrO (\cdot ) is independent of \tau and the spatial discretiza-
tion, but depends on the constant C in (4.8) and (4.24) and on T .
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Proof. The local error (4.3) can be written as

Sn =
\tau 2

2
\Pi 
\bigl( 
1
2

\bigr)  - 1
\biggl( m\sum 

i=1

\Pi i

\bigl( 
1
2

\bigr) 
\.\varphi i(tn) - \Pi 

\bigl( 
1
2

\bigr) 
\"U(tn)

\biggr) 
 - \tau 3

2

\int 1

0

(1 - s)2
...
U (tn + s\tau ) ds.

Since \"U(t) = \.\varphi 1(t) + \cdot \cdot \cdot + \.\varphi m(t), the local error Sn is a linear combination of expres-
sions of the form

(A) \tau 3

2

\int 1

0
(1 - s)2

...
U (tn + s\tau ) ds,

(B) \tau 2+k\Pi 
\bigl( 
1
2

\bigr)  - 1
Dl1Dl2 \cdot \cdot \cdot Dlk \.\varphi i(tn), 1 \leq l1 < \cdot \cdot \cdot < lk < i \leq m,

(C) \tau 2+k\Pi 
\bigl( 
1
2

\bigr)  - 1
Dl1Dl2 \cdot \cdot \cdot Dlk

\"U(tn), 1 \leq l1 < \cdot \cdot \cdot < lk \leq m,

where k \geq 1. By assumption (4.8) the expression (A) is of size \scrO (\tau 3). For the
maximum norm we have \| (I - \tau 

2Dj)
 - 1\| \infty \leq 1 for \tau \geq 0, so that also \| \Pi ( 12 )

 - 1\| \infty \leq 1.
By assumption (4.24) the expressions (B) and (C) are thus bounded by \scrO (\tau 2+k), with
k \geq 1. A standard convergence argument then shows that the global error is bounded
by \scrO (\tau 2).

Remark 4.8. Second order convergence in the maximum norm is also a conse-
quence of [1, Thm. 3.1] under the assumption (4.23). Let us comment on the validity
of this assumption. Example 4.6 shows that, assuming time-independent boundary
conditions, the entries of the vector W (t) = Dl1Dl2 \cdot \cdot \cdot DlkV (t) (for V (t) = \"U(t) or
V (t) = \.\varphi i(t)) can be considered as the values on the grid of a function w(t, \vec{}x) that is
smooth in the spatial variables. This implies that condition (4.24) is satisfied. From
Lemma A.4 (case k = 0) it follows that \| D - 1W (t)\| \infty = \scrO (1), so that also condition
(4.23) is fulfilled (even without the factor \tau k - 1).

5. Convergence of the modified 1-stage method. We consider the modifi-
cation of the 1-stage AMF-W-method (2.2) given by

(5.1)

K
(0)
1 = \tau DUn + \tau g(tn),

(I  - \theta \tau Dj)K
(j)
1 = K

(j - 1)
1 + \theta \tau 2 \.gj(tn + \tau /2), j = 1, . . . ,m,

Un+1 = Un +K
(m)
1 ,

where the derivatives \.gj are evaluated at tn+ \tau /2 and not at tn. We are mainly inter-
ested in the case \theta = 1/2. The modification (5.1) does not change the computational
work, but it provides improved convergence in \ell \infty for m = 2 when time-dependent
boundary conditions are imposed. Observe that the stability function is again (2.9).
The local error Sn = Sn(\tau D1, . . . , \tau Dm) is

(5.2) Sn = \Pi (\theta ) - 1
\Bigl( 
\tau \.U(tn) + \theta \tau 2 \.\scrG (tn + \tau 

2 )
\Bigr) 
 - 
\Bigl( 
U(tn + \tau ) - U(tn)

\Bigr) 
,

where the vector \scrG (t) is given by (2.4). Using the identity (4.2) it can be written as

(5.3)
Sn = \Pi (\theta ) - 1

\biggl( 
\tau 
\bigl( 
\.U(tn) - \.U(tn + \tau 

2 )
\bigr) 
+ \theta \tau 2

m\sum 
i=1

\Pi i(\theta ) \.\varphi i(tn + \tau 
2 )

\biggr) 
 - 
\Bigl( 
U(tn + \tau ) - U(tn) - \tau \.U(tn + \tau 

2 )
\Bigr) 
.
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Under the assumption (4.4) this representation of the local error shows that Sn =
\scrO (\tau 2), which proves convergence of order 1, provided that the norm satisfies (4.5)
and (4.6).

With the aim of improving the convergence order for \theta = 1/2, we expand the
functions in (5.3) into a Taylor series around tn + \tau 

2 . This gives

Sn =
\tau 2

2
\Pi ( 12 )

 - 1

\biggl( m\sum 
i=1

\Pi i(
1
2 ) \.\varphi i(tn + \tau 

2 ) - \"U(tn + \tau 
2 )

\biggr) 
+ S2

n

=
\tau 2

2
\Pi ( 12 )

 - 1

\biggl( m\sum 
i=2

\Bigl( 
\Pi i(

1
2 ) - I

\Bigr) 
\.\varphi i(tn + \tau 

2 )

\biggr) 
+ S2

n,(5.4)

S2
n =  - \tau 3

2

\int 1

0

k(s)
...
U (tn + s\tau ) ds+ \tau 3\Pi ( 12 )

 - 1

\int 1/2

0

s
...
U (tn + s\tau ) ds,

where the kernel k(s) is given by k(s) = min
\bigl( 
s2, (1 - s)2

\bigr) 
. All convergence results of

section 4 can be directly transferred to the modified method.

Theorem 5.1. The statements of Theorems 4.1, 4.2, 4.4, and 4.7 remain true
for the modification (5.1) of the 1-stage W-method.

The advantage of the modified method is that, compared to the representation of
Sn in the proof of Theorem 4.7, the expression containing \"U(t) is no longer present.
This permits us to get an improved convergence result for m = 2 space dimensions in
the maximum norm and for time-dependent boundary conditions.

Theorem 5.2. Let m = 2, assume that (4.5), (4.6), (4.8), (4.9) hold, and con-
sider the modified 1-stage method (5.1) with \theta = 1/2. Then, for an initial value
satisfying \| E0\| \infty = \scrO (\tau 2), and for h = min(\Delta x1,\Delta x2), the global error is bounded
by

\| En\| \infty = \scrO (\tau 2| log h| 2) for n\tau \leq T,

where the constant symbolized by \scrO (\cdot ) is independent of \tau and the spatial discretiza-
tion, but depends on the constant C in (4.5), (4.6), and (4.8) and on T .

Proof. We consider the representation (5.4) of the local error. By assumption
(4.8) we have \| S2

n\| \infty = \scrO (\tau 3), so that its contribution to the global error is of size
\scrO (\tau 2). For m = 2, the remaining term of the local error is

\widehat Sn =  - \tau 3

4
\Pi ( 12 )

 - 1D1 \.\varphi 2(tn + \tau 
2 ).

From Lemma A.4 below (with k = 1 and m = 2) we get that

(5.5) \| D - 1D1\varphi 
(l)
2 (t)\| \infty \leq C| log h| 2 for l = 1, 2.

Using R - I = \Pi ( 12 )
 - 1\tau D, this implies that

\| (I  - R) - 1 \widehat S0\| \infty \leq C1\tau 
2| log h| 2, \| (I  - R) - 1(\widehat Sj+1  - \widehat Sj)\| \infty \leq C2\tau 

3| log h| 2.

The power-boundedness of the stability matrix together with (4.11) then yields the
desired estimate for the global error.

Corollary 5.3. Under the step size restriction (4.19), the estimate of Theorem
5.2 is equivalent to

\| En\| \infty = \scrO (\tau 2| log \tau | 2) for n\tau \leq T,
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where the constant symbolized by \scrO (\cdot ) is independent of \tau and the spatial discretiza-
tion, but depends on the constants c0, c2, and \beta in (4.19), on the constant C in (4.5),
(4.6), and (4.8), and on T .

Proof. It follows from (4.19) that, for c2h
\beta \leq 1,

\widetilde c0| log h| \geq | log t| \geq \widetilde c1| log h| ,

with positive constants \widetilde c0,\widetilde c1 depending on c0, c2, and \beta . This implies the stated
equivalence.

6. Conclusion. In this article we have rigorously proved PDE convergence for 1-
stage AMF-W-methods in the Euclidean \ell 2 norm and in the maximum norm \ell \infty , and
we have obtained optimal rates of convergence. We expect the developed techniques
to be useful for obtaining

\bullet optimal convergence rates in \ell \infty of ADI-type integrators of low order, such
as the Peaceman--Rachford, Craig--Sneid, and Douglas schemes;

\bullet optimal convergence rates in \ell 2 and in \ell \infty for s-stage AMF-W-methods with
s \geq 2.

Further interesting problems are the study of the power-boundedness of the stability
matrix in the \ell \infty norm, and an extension of the convergence estimates to linear
diffusion problems with mixed derivative terms.

Appendix A. This section collects some technical results that have been used
to prove optimal convergence of the 1-stage methods. The estimates for the discrete
sine transform of a grid vector U are an essential ingredient and are related to the
results of [12, pp. 296--300].

A.1. Properties of the discrete sine transform. On the interval [0, 1] we
consider a smooth function u(x), which can have nonzero values at the endpoints. For
n \geq 1 and \Delta x = 1/(n + 1) we put x(i) = i\Delta x for i = 1, . . . , n and Ui = u(x(i)), and

we write U =
\sum n

j=1
\widehat Uj\phi 

(x)
j . By the orthonormality of the eigenvectors \phi 

(x)
j of (3.2),

the coefficient \widehat Uj is given by the discrete sine transform

(A.1) \widehat Uj =
\surd 
2\Delta x

n\sum 
i=1

Ui sin(ij\Delta x\pi ).

Interpreted as a Riemann sum, the values \widehat Uk are seen to be uniformly bounded when
\Delta x \rightarrow 0. The following lemma yields a sharper bound.

Lemma A.1. Let Ui = u(x(i)) (for i = 1, . . . , n) with a continuously differentiable
function u(x). Then the coefficients (A.1) fulfill

\widehat Uj sin
\bigl( 
j\Delta x\pi 

2

\bigr) 
= \scrO (\Delta x), j = 1, . . . , n,

where the constant symbolized by \scrO (\cdot ) is independent of n.

Proof. Using the identity 2 sin\alpha sin\beta = cos(\alpha  - \beta ) - cos(\alpha + \beta ), we get

1

\Delta x
\widehat Uj sin

\bigl( 
j\Delta x\pi 

2

\bigr) 
=  - 

\surd 
2

2

n\sum 
i=1

Ui

\bigl( 
Vi+1  - Vi

\bigr) 
,
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where Vi = cos
\bigl( \bigl( 
i - 1

2

\bigr) 
j\Delta x\pi 

\bigr) 
, i = 1, . . . , n+ 1. Summation by parts of this relation

yields

\surd 
2

\Delta x
\widehat Uj sin

\bigl( 
j\Delta x\pi 

2

\bigr) 
=  - 

\Bigl( 
UnVn+1  - U1V1

\Bigr) 
+

n - 1\sum 
i=1

Vi+1

\bigl( 
Ui+1  - Ui

\bigr) 
,

which is seen to be \scrO (1), because Ui+1  - Ui = \Delta x
\int 1

0
u\prime (x(i) + \tau \Delta x) d\tau contains an

additional factor \Delta x.

Improved bounds can be obtained for the situation, where u(0) = u(1) = 0. The
property stated in Lemma A.1 can be extended to an arbitrary number of spatial
dimensions m. On [0, 1]m we consider a smooth function u(x1, . . . , xm) and a grid

vector U = (Ui1,...,im) \in \BbbR nx with Ui1,...,im = u(x
(i1)
1 , . . . , x

(im)
m ) on the interior of the

grid (1.2). We write it as

(A.2) U =

nx1\sum 
j1=1

\cdot \cdot \cdot 
nxm\sum 
jm=1

\widehat Uj1,...,jm\phi 
(xm)
jm

\otimes \cdot \cdot \cdot \otimes \phi 
(x1)
j1

,

where, from the orthonormality of the eigenvectors \phi 
(xl)
jl

of (3.2), the coefficients\widehat Uj1,...,jm are given by

\widehat Uj1,...,jm = (
\surd 
2)m\Delta x1 \cdot . . . \cdot \Delta xm

nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

Ui1,...,im

m\prod 
l=1

sin
\bigl( 
iljl\Delta xl\pi 

\bigr) 
.

Lemma A.2. Let Ui1,...,im = u(x
(i1)
1 , . . . , x

(im)
m ) (for ij = 1, . . . , nxj

) with a con-
tinuously differentiable function u(x1, . . . , xm). Then we have

\widehat Uj1,...,jm

m\prod 
l=1

sin
\bigl( 
jl\Delta xl

\pi 
2

\bigr) 
= \scrO (\Delta x1 \cdot . . . \cdot \Delta xm), jl = 1, . . . , nxl

,

where the constant symbolized by \scrO (\cdot ) is independent of nxl
, 1 \leq l \leq m.

Proof. The proof follows along the lines of the proof of Lemma A.1 by using
induction on m. Given m \geq 2, assume that the statement holds for m - 1. Then, for

\scrP :=
1

\Delta x1 \cdot . . . \cdot \Delta xm

\widehat Uj1,...,jm

m\prod 
l=1

sin
\bigl( 
jl\Delta xl

\pi 
2

\bigr) 
,

we have that

\scrP =
\Bigl( 
 - 
\surd 
2

2

\Bigr) m nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

Ui1,...,im

m\prod 
l=1

\Bigl( 
V

(xl)
il+1  - V

(xl)
il

\Bigr) 

=
\Bigl( 
 - 
\surd 
2

2

\Bigr) m nxm\sum 
im=1

\widetilde Uim

\Bigl( 
V

(xm)
im+1  - V

(xm)
im

\Bigr) 
,

where V
(xl)
il

= cos
\bigl( \bigl( 
il  - 1

2

\bigr) 
jl\Delta xl\pi 

\bigr) 
, and

\widetilde Uim =

nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm - 1\sum 
im - 1=1

Ui1,...,im

m - 1\prod 
l=1

\Bigl( 
V

(xl)
il+1  - V

(xl)
il

\Bigr) 
.
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Summation by parts in the relation for \scrP yields

\scrP =
\Bigl( 
 - 
\surd 
2

2

\Bigr) m\biggl( \widetilde Unxm
V

(xm)
nxm+1  - \widetilde U1V

(xm)
1  - 

nxm - 1\sum 
im=1

V
(xm)
im+1

\Bigl( \widetilde Uim+1  - \widetilde Uim

\Bigr) \biggr) 
.

The induction hypothesis implies that \widetilde Uim = \scrO (1), im = 1, . . . , nxm
. Furthermore,\widetilde Uim+1  - \widetilde Uim = \scrO (\Delta xm), because u(x1, . . . , xm) is continuously differentiable in the

variable xm. This implies \scrP = \scrO (1) and proves the statement of the lemma.

A.2. Operator estimates in the \ell \bftwo norm and in the \ell \infty norm. Here, we
prove estimates for D - 1Dl1Dl2 \cdot \cdot \cdot DlkU that were used in Remarks 4.5 and 4.8.

We first consider the \ell 2 norm. In this case, negative powers of h may arise when
k \geq 2. Observe that for k = 1 it holds that \| D - 1Dl1\| 2 \leq 1. This follows by

diagonalization and (3.3), because | \lambda (x1)
i1

/(\lambda 
(x1)
i1

+ \cdot \cdot \cdot + \lambda 
(xm)
im

)| \leq 1 for all i1, . . . , im.

Lemma A.3. Let U \in \BbbR nx be the restriction of a continuously differentiable func-
tion u(x1, . . . , xm) to the interior points of the grid (1.2). For the \ell 2 norm, we then
have for distinct indices l1, . . . , lk and 2 \leq k \leq m that

\| D - 1Dl1Dl2 \cdot \cdot \cdot DlkU\| 2 = \scrO 
\bigl( 
h(4 - 3k)/2

\bigr) 
.

Proof. Without loss of generality and for ease of notation, we assume lj = j for
j = 1, . . . , k. Writing U as in (A.2), in the basis of eigenvectors we obtain

E2 := \| D - 1D1D2 \cdot \cdot \cdot DkU\| 22 =

nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

| \widehat Ui1,...,im | 2
| \lambda (x1)

i1
| 2 \cdot . . . \cdot | \lambda (xk)

ik
| 2

(| \lambda (x1)
i1

| + \cdot \cdot \cdot + | \lambda (xm)
im

| )2
.

From Lemma A.2 and (3.3) we get | \widehat Ui1,...,im | 2| \lambda (x1)
i1

| \cdot . . . \cdot | \lambda (xm)
im

| \leq C for all i1, . . . , im.

Neglecting the term | \lambda (xk+1)
ik+1

| + \cdot \cdot \cdot + | \lambda (xm)
im

| in the denominator, and using the arith-

metic mean--geometric mean (AM-GM) inequality

(A.3) | \lambda (x1)
i1

| + \cdot \cdot \cdot + | \lambda (xk)
ik

| \geq k \cdot k

\sqrt{} 
| \lambda (x1)

i1
| \cdot . . . \cdot | \lambda (xk)

ik
| ,

we have that

(A.4) E2 \leq C

nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

| \lambda (x1)
i1

| 1 - 2
k \cdot . . . \cdot | \lambda (xk)

ik
| 1 - 2

k \cdot | \lambda (xk+1)
ik+1

|  - 1 \cdot . . . \cdot | \lambda (xm)
im

|  - 1.

Now, from (3.3) and [12, Lem. 6.2], we get

(A.5)

nxl\sum 
il=1

| \lambda (xl)
il

|  - \beta =

\left\{     
\scrO (h2\beta  - 1) if \beta < 1/2,

\scrO 
\bigl( 
| log h| 

\bigr) 
if \beta = 1/2,

\scrO (1) if \beta > 1/2.

Inserted into (A.4), these estimates give E2 = \scrO 
\bigl( 
(h - 3+ 4

k )k
\bigr) 
, which completes the

proof of the lemma.

For the \ell \infty norm we get the following bounds.
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Lemma A.4. Let U \in \BbbR nx be the restriction of a continuously differentiable func-
tion u(x1, . . . , xm) to the interior points of the grid (1.2). For the \ell \infty norm, we then
have for distinct indices l1, . . . , lk that

\| D - 1Dl1Dl2 \cdot \cdot \cdot DlkU\| \infty =

\left\{     
\scrO (1) if k = 0,

\scrO 
\bigl( 
| log h| m

\bigr) 
if k = 1,

\scrO 
\bigl( 
h2 - 2k| log h| m - k

\bigr) 
if 2 \leq k \leq m.

Proof. As in the proof of Lemma A.3 we assume that lj = j for j = 1, . . . , k, and
we write U in the basis of eigenvectors. This yields

E\infty := \| D - 1D1D2 \cdot \cdot \cdot DkU\| \infty \leq C

nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

| \widehat Ui1,...,im | 
| \lambda (x1)

i1
| \cdot . . . \cdot | \lambda (xk)

ik
| 

| \lambda (x1)
i1

| + \cdot \cdot \cdot + | \lambda (xm)
im

| 
.

As a consequence of | \widehat Ui1,...,im | | \lambda (x1)
i1

| 12 \cdot . . . \cdot | \lambda (xm)
im

| 12 \leq C (for all i1, . . . , im) we have

E\infty \leq C \prime 
nx1\sum 
i1=1

\cdot \cdot \cdot 
nxm\sum 
im=1

| \lambda (x1)
i1

| 12 \cdot . . . \cdot | \lambda (xk)
ik

| 12 \cdot | \lambda (xk+1)
ik+1

|  - 1
2 \cdot . . . \cdot | \lambda (xm)

im
|  - 1

2

| \lambda (x1)
i1

| + \cdot \cdot \cdot + | \lambda (xm)
im

| 
.

For the case k = 0 we use the AM-GM inequality (A.3) for | \lambda (x1)
i1

| + \cdot \cdot \cdot + | \lambda (xm)
im

| and
the bound (A.5) with \beta = 1

2 + 1
m . This yields E\infty = \scrO (1).

For the case k \geq 1 we first bound the denominator | \lambda (x1)
i1

| + \cdot \cdot \cdot + | \lambda (xm)
im

| from
below by | \lambda (x1)

i1
| + \cdot \cdot \cdot + | \lambda (xk)

ik
| and then apply the AM-GM inequality (A.3). The

bounds (A.5), with \beta =  - 1
2 +

1
k for 1 \leq l \leq k and with \beta = 1

2 for k+1 \leq l \leq m, then
yield the statement of the lemma.

A.3. Some auxiliary lemmas.

Lemma A.5. Let \theta > 0, let n \geq 1 be a positive integer, and let h = 1/(n+ 1). If
\tau \geq ch2 for some constant c > 0, then for all \alpha \geq 0 and \gamma \geq 0 there exists a constant
C independent of \tau and h such that
(A.6)

n\sum 
i=1

h - \alpha sin\alpha (ih\pi 
2 )\bigl( 

1 + \theta \tau h - 2 sin2(ih\pi 
2 )
\bigr) \gamma \leq 

\left\{       
C\tau  - \gamma h2\gamma  - \alpha  - 1 if \alpha + 1 - 2\gamma > 0,

C\tau  - \gamma 
\bigl( 
1 +

\bigm| \bigm| log \bigl( \tau 
h2

\bigr) \bigm| \bigm| \bigr) if \alpha + 1 - 2\gamma = 0,

C\tau  - (\alpha +1)/2 if \alpha + 1 - 2\gamma < 0.

Proof. In the denominator of (A.6) the term \theta \tau h - 2 sin2(ih\pi 
2 ) becomes dominant

over 1 when \tau h - 2(ih)2 > 1, i.e., i \gtrsim \tau  - 1/2. We therefore separate the sum in (A.6)
into two terms, \scrS l + \scrS r, where \scrS l denotes the sum over the index set \scrI l = \{ i \in 
\{ 1, . . . , n\} | i \leq \tau  - 1/2\} , and \scrS r is the sum over the remaining indices, \scrI r = \{ 1, . . . , n\} \setminus 
\scrI l.

Since sinx \leq x, for all x \in [0, \pi 
2 ], the sum \scrS l can be bounded by

(A.7) \scrS l \leq h - \alpha 
\sum 
i\in \scrI l

sin\alpha (ih\pi 
2 ) \leq 

\Bigl( \pi 
2

\Bigr) \alpha \sum 
i\in \scrI l

i\alpha \leq Cl\tau 
 - (\alpha +1)/2.

For the other sum we get

\scrS r \leq 
\sum 
i\in \scrI r

h - \alpha sin\alpha (ih\pi 
2 )

(\theta \tau )\gamma h - 2\gamma sin2\gamma (ih\pi 
2 )

= \theta  - \gamma \tau  - \gamma h2\gamma  - \alpha 
\sum 
i\in \scrI r

sin\alpha  - 2\gamma 
\bigl( 
ih\pi 

2

\bigr) 
.
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Using x
2 \leq sinx \leq x, depending on the sign of \alpha  - 2\gamma , we obtain

(A.8) \scrS r \leq Cr\tau 
 - \gamma 
\sum 
i\in \scrI r

i\alpha  - 2\gamma \leq C \prime 
r\tau 

 - \gamma 

\int n+1

\tau  - 1/2

x\alpha  - 2\gamma dx.

If \alpha +1 - 2\gamma > 0, then \scrS r \leq C \prime \prime 
r \tau 

 - \gamma 
\bigl( 
(h - 1)\alpha  - 2\gamma +1  - (\tau  - 1/2)\alpha  - 2\gamma +1

\bigr) 
. As a consequence

of \tau \geq ch2, the term with \tau  - \gamma h2\gamma  - \alpha  - 1 dominates that with \tau  - (\alpha +1)/2, so that \scrS l +
\scrS r \leq C\tau  - \gamma h2\gamma  - \alpha  - 1.

If \alpha + 1  - 2\gamma = 0, it follows from (A.8) that \scrS r \leq C \prime 
r\tau 

 - \gamma log
\bigl( 
h - 1/\tau  - 1/2

\bigr) 
. This

proves the statement for this case.
If \alpha +1 - 2\gamma < 0, we get \scrS r \leq C \prime \prime 

r \tau 
 - \gamma 
\bigl( 
(\tau  - 1/2)\alpha  - 2\gamma +1  - h2\gamma  - \alpha  - 1

\bigr) 
from (A.8). In

this case \tau  - (\alpha +1)/2 dominates \tau  - \gamma h2\gamma  - \alpha  - 1 because of \tau \geq ch2. Therefore, we obtain
\scrS l + \scrS r \leq C\tau  - (\alpha +1)/2, which completes the proof.

Lemma A.6. Let \gamma \in [0, 2]. For all n \geq 1 and x \in [0, 2], it holds that

(1 - (1 - x)n)2 \leq 22 - \gamma (nx)\gamma .

Proof. Consider the function

f(x) := (1 - (1 - x)n)2  - 22 - \gamma (nx)\gamma .

For x \in [0, 2
n ] it follows from Bernoulli's inequality (1 - x)n \geq 1 - nx that

f(x) \leq (nx)2  - 22 - \gamma (nx)\gamma = (nx)\gamma 
\bigl( 
(nx)2 - \gamma  - 22 - \gamma 

\bigr) 
\leq 0.

For x \in [ 2n , 2] we have

22 - \gamma (nx)\gamma \geq 22 - \gamma 2\gamma = 4 and f(x) \leq (1 - (1 - x)n)2  - 4 \leq 0.

This concludes the proof.
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