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Abstract
The Boris algorithm, a closely related variational integrator and a newly proposed
filtered variational integrator are studied when they are used to numerically integrate
the equations of motion of a charged particle in a mildly non-uniform strong magnetic
field, taking step sizes that are much larger than the period of the Larmor rotations.
For the Boris algorithm and the standard (unfiltered) variational integrator, satisfactory
behaviour is only obtained when the component of the initial velocity orthogonal to
the magnetic field is filtered out. The particle motion shows varying behaviour over
multiple time scales: fast gyrorotation, guiding centre motion, slow perpendicular
drift, near-conservation of the magnetic moment over very long times and conserva-
tion of energy for all times. Using modulated Fourier expansions of the exact and
numerical solutions, it is analysed to which extent this behaviour is reproduced by
the three numerical integrators used with large step sizes that do not resolve the fast
gyrorotations.
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1 Introduction

The time integration of the equations of motion of charged particles is a basic algo-
rithmic task for particle methods in plasma physics [2]. In this paper we consider
the case of a non-uniform strong magnetic field in the asymptotic scaling known as
maximal ordering [4, 21], with a small parameter ε � 1 whose inverse corresponds to
the strength of the magnetic field. The particle motion then shows different behaviour
over multiple time scales:

– fast Larmor rotation over the time scale ε,
– guiding centre motion over the time scale ε0,
– slow drift perpendicular to the magnetic field over the time scale ε−1,
– near-conservation of the magnetic moment over time scales ε−N with arbitrary

N > 1,
– and energy conservation for all times.

In this paper we are interested in using numerical integrators with step sizes h that
are much larger than the quasi-period 2πε of the Larmor rotation. We thus have the
two small parameters h and ε, which we will assume to be related by

0 < ε ≤ h2 � 1. (1.1)

We study the behaviour of the numerical integrators over the time scales ε0, ε−1, and
ε−N for N > 1.

The papers [23, 26] are similarlymotivated by the objective to numerically integrate
charged-particle dynamics accuratelywhile stepping over the fast time scale of Larmor
rotation. We are, however, not aware of any rigorous analysis of the error behaviour
of numerical integrators in a large-stepsize regime in the existing literature. With an
emphasis on different aspects, recent papers on numericalmethods for charged-particle
dynamics in a strong magnetic field include [5–7, 10–12, 15, 16, 24].

In Section 2 we formulate the equations of motion in the scaling considered here
and illustrate the solution behaviour over various time scales.

In Section 3 we describe the three numerical integrators studied in this paper:
the Boris algorithm [3, 9, 14, 22], a closely related variational integrator [15, 25],
and a newly proposed filtered variational integrator, which only requires a minor
algorithmic modification of the standard variational integrator and can be interpreted
as the standard variational integrator for a Lagrangianwith an anisotropicallymodified
kinetic energy term.

In Section 4 we give modulated Fourier expansions of the exact solution and of the
numerical solutions of the three numerical methods used with step sizes (1.1). The dif-
ferential equations for the dominant modulation functions are the key to understanding
the method behaviour over the times scales ε0 and ε−1 for all three methods. For the
Boris algorithm and the standard (unfiltered) variational integrator, the initial velocity
needs to be modified such that its component perpendicular to the magnetic field is
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O(ε)-small. The complete modulated Fourier expansion will be used for studying
the long-time near-conservation of the magnetic moment and energy for the filtered
variational integrator.

In Section 5 we obtain O(h2) error bounds uniformly in ε for all three (formally
second-order) numerical methods over the time scale ε0. This is not an obvious result
for large step sizes (1.1) but here it follows directly froma comparison of themodulated
Fourier expansions of the exact and numerical solutions.

In Section 6we show that all threemethods reproduce the perpendicular driftwith an
O(h2) or O(h) error over the time scale ε−1. This is again obtained via the modulated
Fourier expansions, which also yield an O(ε) approximation to the perpendicular drift
by the solution of a slow differential equation over times O(ε−1).

In Section 7 we consider the long-term energy behaviour. For the standard varia-
tional integrator with the modified starting velocity we prove near-conservation of the
total energy up to time O(ε−1). For the filtered variational integrator we prove near-
conservation of magnetic moment and energy over times ε−N with arbitrary N > 1
for non-resonant step sizes, using the Lagrangian structure of the modulation system.
Moreover, we show results of numerical experiments for the energy behaviour of the
three methods over long times.

The conclusion of our investigation is that the new filtered variational integrator
with non-resonant large step sizes (1.1) reproduces the characteristic features well
over all time scales, and this is fully explained by our theory. The Boris algorithm and
the standard (unfiltered) variational integrator also work remarkably well for large
stepsizes (1.1) on the time scales ε0 and ε−1 in accordance with our theory, provided
that the initial velocity is modified such that the component perpendicular to the
magnetic field is reduced to size O(ε). With this filtering of the starting velocity, the
long-time energy behaviour of the Borismethod and the standard variational integrator
appears to be better in our numerical experiments than we can explain by theory.

2 Multiple time scales in the continuous problem

We study the time integration of the equations of motion of a charged particle in a
strong magnetic field, with position x(t) ∈ R3 and velocity v(t) = ẋ(t) at time t ,

ẍ(t) = ẋ(t) × B(x(t)) + E(x(t))

with B(x) = 1

ε
B0 + B1(x) for 0 < ε � 1,

(2.1)

where B0 is a fixed vector in R3 of unit norm, |B0| = 1. The non-constant magnetic
field B1(x) is assumed to have a known vector potential A1(x), i.e. B1(x) = ∇x ×
A1(x). This gives B(x) = ∇x × A(x)with the vector potential A(x) = − 1

2 x×B0/ε+
A1(x). We always assume that B1 : R3 → R3 and E : R3 → R3 are smooth with
derivatives bounded independently of ε on bounded subsets of R3. The above scaling
corresponds to what is known as maximal ordering in the literature; see [4, 21].
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For the initial position and velocity we always assume boundedness independently
of ε:

|x(0)| ≤ C0, |ẋ(0)| ≤ C1. (2.2)

For studying the perpendicular drift, we need further assumptions on B1 and E that
are specified in Section 6. When it comes to studying the long-time energy behaviour,
we further assume that the force field has a scalar potential, E(x) = −∇φ(x). The
total energy is then

H(x, v) = 1
2 |v|2 + φ(x), (2.3)

which is conserved along every trajectory and is bounded independently of ε under
condition (2.2). We further consider the magnetic moment (rescaled with ε),

I (x, v) = 1

2ε

|v × B(x)|2
|B(x)|3 . (2.4)

We note that, with v⊥ denoting the velocity component orthogonal to B(x),

I (x, v) = 1

2

|v × B0 + O(ε)|2
1 + O(ε)

= 1
2 |v⊥|2(1 + O(ε)) + O(ε2), (2.5)

for (x, v) in any region that is bounded independently of ε. The magnetic moment is
an adiabatic invariant: it is conserved up to O(ε) over very long times t ≤ ε−N with
arbitrary N > 1; see e.g. [1, 15, 19, 20].

In Figure 1 we illustrate the solution behaviour on various time scales. We show the
fast Larmor rotation of angular frequency ε−1 and amplitude O(ε) on the time scale ε

and the guiding centre motion on the time scale ε0 in the first picture, and in addition
the slow drift perpendicular to the magnetic field on the time scale ε−1 in the second
picture (here: horizontal drift for the magnetic field in vertical direction). Finally,
the third picture shows the long-time near-conservation of the magnetic moment and
the conservation of energy. Our objective is to understand how the behaviour on the
various time scales can be replicated by numerical methods with large time steps that
do not resolve the fast Larmor rotations.

In Figure 1 we take the electromagnetic fields and the vector and scalar potentials
as

B(x) = 1

ε

⎛
⎝
0
0
1

⎞
⎠ +

⎛
⎝
x1(x3 − x2)
x2(x1 − x3)
x3(x2 − x1)

⎞
⎠ with A(x) = −1

2

⎛
⎝

x2
−x1
0

⎞
⎠ + x1x2x3

⎛
⎝
1
1
1

⎞
⎠ ,

E(x) = −x with φ(x) = 1
2 |x |2,

and the initial values x(0) = (0.3, 0.2,−1.4)� and ẋ(0) = (−0.7, 0.08, 0.2)�.
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Fig. 1 Trajectories of the particle for t ≤ π/2 (top left) and t ≤ 5/ε (top right), both with ε = 10−2.
Energy and magnetic moment for t ≤ ε−4 (bottom) for ε = 10−1. The analogous picture for ε = 10−2

instead of ε = 10−1 would show the magnetic moment as a horizontal straight line

Remark 2.1 The results of this paper pertain to the above situation (2.1) – (2.2) of a
mildly non-uniform strong magnetic field. For a strongly non-uniform magnetic field
B(x) = B̃(x)/ε with B̃(x) independent of ε with non-vanishing gradient, different
numerical phenomena arise, which require a different analysis; cf. [15] for a long-time
analysis of a variational integrator in a small-stepsize regime and [26] for numerical
results for an ingeniously modified Boris method used with large step sizes. The
modification of the force field proposed in [26] is not needed for the mildly non-
uniform situation (2.1) studied in this paper, but it is essential in the case of strongly
non-uniform strong magnetic fields.

3 Three numerical integrators

We now describe the three numerical integrators for (2.1) that are studied in this paper
when applied with large step sizes h 	 ε.

3.1 Boris algorithm

TheBorismethod, introduced in [3], is the standard integrator for particle-in-cell codes
for plasma simulation; see e.g. [2, 8]. Given the position and velocity approximation

123



E. Hairer et al.

(xn, vn−1/2), the algorithm computes (xn+1, vn+1/2) as follows, with Bn = B(xn)
and En = E(xn):

v
n− 1

2+ = v
n− 1

2 + h

2
En

v
n+ 1

2− − v
n− 1

2+ = h

2
(v

n+ 1
2− + v

n− 1
2+ ) × Bn

v
n+ 1

2 = v
n+ 1

2− + h

2
En

xn+1 = xn + hv
n+ 1

2 , (3.1)

where the starting value is chosen as v1/2 = v0 + h
2v0 × B0 + h

2 E
0.

The method has the equivalent two-step formulation

xn+1 − 2xn + xn−1

h2
= xn+1 − xn−1

2h
× Bn + En, (3.2)

with the velocity approximation

vn = xn+1 − xn−1

2h
. (3.3)

It is known from [9] that the Boris algorithm is not symplectic unless B is a constant
magnetic field. The energy behaviour over long times, which is not fully satisfactory,
has been studied in [14] for step sizes with h|B| � 1, which in our case (2.1) would
read h � ε in contrast to (1.1).

In the large-stepsize regime (1.1) the starting velocity needs to be modified. Instead
of setting v0 equal to the initial data ẋ(0) we choose v0 such that its component v0⊥
orthogonal to the magnetic field is O(ε)-small. We propose to take v0 = v0‖ +v0⊥ with

v0‖ = P0 ẋ(0), v0⊥ = ε
(
v0‖ × B1(x

0) + E(x0)
) × B0, (3.4)

where P0 = B0B�
0 is the orthogonal projection in the direction of B0. (This choice of

v0⊥ will be explained in Section 4 right after Theorem 4.2.)Without such amodification
of the starting velocity, the Boris algorithm shows highly oscillatory behaviour with a
large amplitude proportional to (h2/ε)|v0⊥|; cf. [23].

Since the Boris method with large step size (1.1) and the proposed filtering of
the initial velocity will give an approximation to the guiding centre rather than to
the oscillatory trajectory, it is reasonable to take the guiding centre approximation
x(0) + εẋ(0) × B0 instead of x(0) as the starting position x0.

We note that while the one-step map (xn, vn−1/2) �→ (xn+1, vn+1/2) is volume-
preserving [22], the starting-value map (x(0), ẋ(0)) �→ (x0, v0) and also the map
(x0, v0) �→ (x1, v1/2) are far from volume-preserving for step sizes (1.1).
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3.2 Standard variational integrator

The variational integrator to be studied here is constructed in the same way as is
done in the interpretation of the Störmer–Verlet method as a variational integrator; see
e.g. [17,Chap.VI, Example 6.2] and [25]. The integral of the Lagrangian L(x, v) =
1
2 |v|2 + A(x)�v − φ(x) over a time step is approximated in two steps: the path x(t)
of positions is approximated by the linear interpolant of the endpoint positions, and
the integral is approximated by the trapezoidal rule. This approximation to the action
integral is then extremized. With the derivative matrix A′(x) = (∂ j Ai (x))3i, j=1 and

its transpose A′(x)�, this variational integrator becomes the following:

xn+1 − 2xn + xn−1

h2
=

A′(xn)� xn+1 − xn−1

2h
− A(xn+1) − A(xn−1)

2h
+ En, (3.5)

or equivalently, written as a perturbation to the Boris algorithm and using that v ×
B(x) = A′(x)�v − A′(x)v,

xn+1 − 2xn + xn−1

h2
= xn+1 − xn−1

2h
× Bn + En

+ A′(xn) x
n+1 − xn−1

2h
− A(xn+1) − A(xn−1)

2h
. (3.6)

We note that the correction to the Boris method as given in the second line vanishes
for linear A(x). In the situation of the magnetic field of (2.1), we can therefore replace
A by A1 in (3.6). The variational integrator coincides with the Boris algorithm in the
case of a constant magnetic field (B1 ≡ 0).

This method is again complemented with the velocity approximation (3.3). It can
be given a one-step formulation similar to the Boris algorithm, with the correction
term of (3.6) added in the second line of (3.1). It is, however, an implicit method,
because the vector potential A is evaluated at the new position xn+1.

For the case of a strong magnetic field and for step sizes with h|B| ≤ Const., the
variational integrator has been shown to have excellent near-preservation of energy
and magnetic moment over very long times [15].

For large step sizes (1.1), the variational integrator requires the same modification
of the starting velocity as the Boris method in order to suppress high oscillations of
large amplitude in the numerical solution.
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3.3 Filtered variational integrator

As a new method to be studied here, we propose the following modification of the
variational integrator: with the filter functions

ψ(ζ ) = tanch(ζ/2) = tanh(ζ/2)

ζ/2
, ϕ(ζ ) = 1

sinch(ζ )
= ζ

sinh(ζ )
,

which are even functions and take the value 1 at ζ = 0, and with the skew-symmetric
matrix B̂0 defined by −B̂0v = v × B0 for all v ∈ R3, we define the filter matrices

	 = ψ
(
−h

ε
B̂0

)
= I +

(
1 − tanc

( h

2ε

))
B̂2
0 ,


 = ϕ
(
−h

ε
B̂0

)
= I +

(
1 − sinc

(h
ε

)−1
)
B̂2
0 ,

where the rightmost expressions are obtained from a Rodriguez formula; see
[16,Appendix]. Here, tanc(ξ) = tan(ξ)/ξ and sinc(ξ) = sin(ξ)/ξ . The filter matrices
	 and 
 are symmetric and act as the identity on vectors in the direction of B0.

We put the filter matrix 	 in front of the right-hand side of (3.5):

xn+1 − 2xn + xn−1

h2
=

	
(
A′(xn)� (xn+1 − xn−1)

2h
− A(xn+1) − A(xn−1)

2h
+ En

)
. (3.7)

This is combined with the velocity approximation

vn = 

xn+1 − xn−1

2h
+ ε

(
1 − sinc

(h
ε

)−1
)
En × B0. (3.8)

This filtered variational integrator coincides with the filtered Boris algorithm of [16]
for the special case of a constant magnetic field B(x) = B0/ε. If additionally also E
is constant, then this method yields the exact position and velocity, as was shown for
the filtered Boris algorithm.

For stepsizeshwith tan(h/(2ε)) ≥ c > 0, thefiltermatrix	 is positive definite. The
above integrator can then be interpreted as a variational integrator corresponding to a
discrete Lagrangian where the kinetic energy term has the modified mass matrix	−1.
Its eigenvalues corresponding to the eigenvectors orthogonal to B0 are 1/ tanc(h/(2ε))
and are thus proportional to h/ε, which is greater than h−1 under condition (1.1). The
discrete Lagrangian reads

Lh(x
n, xn+1) = h

2
(vn+1/2)�	−1vn+1/2

+ h
A(xn)� + A(xn+1)�

2
vn+1/2 − h

φ(xn) + φ(xn+1)

2
,
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where vn+1/2 = (xn+1 − xn)/h. The standard (unfiltered) variational integrator has
the same discrete Lagrangian except for the identity matrix in place of the matrix	−1.

The filtered variational integrator for (2.1) can be written and implemented as the
following implicit one-step method:

v
n− 1

2+ = vn− 1
2 + h

2
	En

v
n+ 1

2− − v
n− 1

2+ = h	

(
1

2
(v

n+ 1
2− + v

n− 1
2+ ) × Bn

+ A′
1(x

n)
1

2
(v

n+ 1
2− + v

n− 1
2+ ) − A1(xn+1) − A1(xn−1)

2h

)

v
n+ 1

2 = v
n+ 1

2− + h

2
	En

xn+1 = xn + hv
n+ 1

2 .

This can be solved by a fixed-point iteration for xn+1, where a good starting iterate
is obtained from a Boris step. The first velocity is chosen as follows: we set v1/2 =
v̄ + 1

2δv with hv̄ = 1
2 (x

1 − x−1) and h δv = x1 − 2x0 + x−1 , where in view of (3.8)
for n = 0,

v̄ = 
−1
(
v0 − ε

(
1 − sinc

(h
ε

)−1
)
En × B0

)

and δv is implicitly determined (and computed via fixed-point iteration) from (3.7)
with n = 0, i.e. from the equation

δv = h	
(
v̄ × B(x0) + A′

1(x
0)v̄ − A1(x1) − A1(x−1)

2h
+ E(x0)

)
,

where x±1 = x0 ± hv̄ + 1
2h δv.

In contrast to the Boris algorithm and the unfiltered variational integrator, we here
take the original initial data v0 = ẋ(0) and x0 = x(0).

4 Modulated Fourier expansions

We give modulated Fourier expansions of the exact solution of (2.1) and the numerical
solutions of the three integrators for large step sizes h2 ≥ c ε (in the following we
set the irrelevant positive constant c equal to 1 for simplicity). Analogous expansions
for step sizes h ≤ Cε were previously given in [13, 15, 16]; see also [17,Ch.XIII]. In
particular, we explicitly state the differential equations for the dominant modulation
functions up to O(ε2) for the exact solution, and up to O(h2) for the numerical
solutions.
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4.1 Modulated Fourier expansion of the exact motion

We write the solution of (2.1) as

x(t) ≈
∑
k

zk(t) eikt/ε (4.1)

with coefficient functions zk(t) for which all time derivatives are bounded indepen-
dently of ε.

We diagonalize the linear map v �→ v × B0, which has eigenvalues λ1 = i, λ0 = 0
and λ−1 = −i (recall the normalization |B0| = 1). The normalized eigenvectors are
denoted v1, v0 = B0, v−1 = v1. We let Pj = v jv

∗
j be the orthogonal projections onto

the eigenspaces. We write the coefficient functions of (4.1) in the basis (v j ),

zk = zk1 + zk0 + zk−1, zkj (t) = Pj z
k(t).

The following theorem is a variant of Theorems 4.1 in [15, 16], proved by the same
arguments but in a technically simplified way, since here we have the constant fre-
quency 1/ε and constant projections Pj , as opposed to the state-dependent frequency
and projections in [15, 16].

Theorem 4.1 Let x(t) be a solution of (2.1) with an initial velocity bounded indepen-
dently of ε (|ẋ(0)| ≤ C1), which stays in a compact set K for 0 ≤ t ≤ T (with K
and T independent of ε). For an arbitrary truncation index N ≥ 1 we then have an
expansion

x(t) =
∑

|k|≤N

zk(t) eikt/ε + RN (t)

with the following properties:

(a) The modulation functions zk together with their derivatives (up to order N) are
bounded as z0j = O(1) for j ∈ {−1, 0, 1}, z11 = O(ε), z−1

−1 = O(ε), and for the
remaining (k, j) with |k| ≤ N,

zkj = O(ε|k|+1).

They are unique up to O(εN ) and are chosen to satisfy z−k
− j = zkj . Moreover, ż0±1

together with its derivatives is bounded as ż0±1 = O(ε).
(b) The remainder term and its derivative are bounded by

RN (t) = O(t2εN ), ṘN (t) = O(tεN ) for 0 ≤ t ≤ T .
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(c) The functions z00, z
0±1, z

1
1, z

−1
−1 satisfy the differential equations

z̈00 = P0
(
ż0 × B1(z

0) + E(z0)
) + 2P0 Re

( i

ε
z1 × B ′

1(z
0)z−1

)
+ O(ε2),

ż0±1 = ±iεP±1
(
ż0 × B1(z

0) + E(z0)
) + O(ε2),

ż±1
±1 = P±1

(
z±1
±1 × B1(z

0)
) + O(ε2).

All other modulation functions zkj are given by algebraic expressions depending

on z0, ż00, z
1
1, z

−1
−1.

(d) Initial values for the differential equations of item (c) are given by

z0(0) = x(0) + εẋ(0) × B0 + O(ε2),

ż00(0) = P0 ẋ(0) − εP0
(
(ẋ(0) × B0) × B1(x(0))

) + O(ε2),

z±1
±1(0) = ∓iεP±1 ẋ(0) + O(ε2).

The constants symbolized by the O-notation are independent of ε and t with0 ≤ t ≤ T ,
but depend on N, on the velocity bound M, on bounds of derivatives of B1 and E on
the compact set K , and on T .

4.2 Resonant modulated Fourier expansion of the Boris algorithm and the
standard variational integrator for h2 ≥ "

When the Boris method is applied to the linear differential equation ẍ = ẋ × B0/ε

with |B0| = 1 (that is, B1 and E are not present in (2.1)), then diagonalization of B0
shows that xn is a linear combination (with coefficients independent of n) of terms 1,
nh and e±inhω , where

hω = 2 arctan
( h

2ε

)
.

If h/ε is large, then hω is close to π . In particular, if h2 ≥ ε, then hω = π − γ h with
γ > 0 bounded independently of h and ε with h2 ≥ ε, and so e±inhω = (−1)ne∓inhγ ,
where we note that e∓itγ is a smooth function of t all of whose derivatives are bounded
independently of ε and h. In the general case of (2.1), we have the following result.

Theorem 4.2 Let xn be the numerical solution obtained by applying either the Boris
algorithm or the variational integrator to (2.1) with a stepsize h satisfying

h2 ≥ ε. (4.2)

We assume that the starting velocity v0 is bounded independently of ε and h and that
its component orthogonal to B0, i.e. v0⊥ = (I − P0)v0, is small:

|v0⊥| ≤ c1ε. (4.3)
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We further assume that the numerical solution xn stays in a compact set K for 0 ≤
nh ≤ T (with K and T independent of ε and h). For an arbitrary truncation index
N ≥ 2, we then have a decomposition

xn = y(t) + (−1)nz(t) + RN (t), t = nh, (4.4)

with the following properties:

(a) The functions y(t) and z(t) together with their derivatives (up to order N) are
bounded as y = O(1), z = O(h2). They are unique up to O(hN ). Moreover, we
have ẏ × B0 = O(ε) and z · B0 = O(h4).

(b) The remainder term is bounded by

RN (t) = O(t2hN ) for 0 ≤ t ≤ T .

(c) The functions y j = Pj y ( j = 0,±1) and z±1 = P±1z satisfy the differential
equations

ÿ0 = P0
(
ẏ × B1(y) + E(y)

) + O(h2),

ẏ±1 = ±iεP±1
(
ẏ × B1(y) + E(y)

) + O(εh2),

ż±1 = ∓4i
ε

h2
z±1 + O(εh2).

The function z0 = P0z is given by an algebraic expression depending on y, ẏ0 and
z±1.

(d) Initial values for the differential equations of item (c) are given by

y(0) = x0 + O(h2),

ẏ0(0) = P0(x
0)v0 + O(h2),

z±1(0) = ∓ ih2

4ε
P±1

(
v0 ∓ iε

(
P0v

0 × B1(x
0) + E(x0)

)) + O(h4).

The constants symbolized by the O-notation are independent of ε, h and n with 0 ≤
nh ≤ T , but depend on the velocity bound, on bounds of derivatives of B1 and E on
the compact set K , and on T .

We note that the differential equations for y agree with those for z0 of the exact
solution up to O(h2). The differential equations for z±1 and for z±1

±1 of the exact
solution differ, but we still have

d

dt
|z±1|2 = 2Re z∗±1 ż±1 = O

(
ε|z±1|2

) + O(εhN ) = O(εh4),

which is to be compared with

d

dt
|z±1

±1|2 = 2Re (z±1
±1)

∗ ż±1
±1 = O(ε3).
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To obtain an O(h2) approximation to the guiding centre z0(t) over bounded time
intervals, we run the Boris algorithm with the modified initial velocity v0 = P0 ẋ(0)
instead of ẋ(0), or even better, determine P±1v

0 such that z±1(0) = O(h4), which
holds true with the proposed choice (3.4).

Proof The bounds of parts (a) and (b) are proved as in previous proofs of modulated
Fourier expansions; see e.g. [15] and [17,Ch.XIII]. Here we just show (c) and (d),
assuming that the bounds of (a) and (b) are already available.

To derive the differential equations of (c), we insert (4.4) into the two-step formu-
lation of the numerical method, expand y(t ± h) and z(t ± h) into Taylor series at t ,
expand the nonlinear functions B1 and E at y(t) and separate the terms without and
with the factor (−1)n . This gives us the equations

ÿ + O(h2) = ẏ × B0

ε
+ ẏ × B1(y) + E(y) + O(h2)

− 4

h2
z − z̈ + O(h2) = −ż × B0

ε
+ ż × B1(y) + ẏ × B ′

1(y)z + E ′(y)z + O(h2).

In the equation for z we note that also z̈ and the last three terms on the right-hand side
are O(h2) as z and its derivatives are O(h2), and the indicated O(h2) terms are then
actually O(h4).

Taking the projection P0 on both sides of the differential equation for y yields
the stated second-order differential equation for y0 on noting that P0(ẏ × B0) = 0.
Moreover, since P±1(ẏ × B0) = ±i ẏ±1, we obtain

∓ i

ε
ẏ±1 = −ÿ±1 + P±1

(
ẏ × B1(y) + E(y)

) + O(h2).

Differentiating this equation and multiplying with iε yields ÿ±1 = O(ε), which is
O(h2) under condition (4.2). So we obtain the stated first-order differential equation
for y±1.

Taking the projection P0 in the above equation for z yields − 4
h2
z0 = O(h2), and

hence z0 = O(h4). Taking the projections P±1 yields

− 4

h2
z±1 = ∓ i

ε
ż±1 + O(h2),

which can be rearranged into the stated differential equation for z±1.
In view of (4.4) for n = 0 and z(0) = O(h2), we have y(0) = x0 + O(h2). Since

we obtain by inserting (4.4) for n = −1, 1

v0 = x1 − x−1

2h
= ẏ(0) − ż(0) + O(h2),

we obtain the stated expression for ẏ0(0) on taking the projection P0. Taking the
projections P±1 and using the differential equations for y±1 and z±1, we arrive at the
stated expression for z±1(0). ��

123



E. Hairer et al.

4.3 Non-resonant modulated Fourier expansion of the filtered variational
integrator for h2 ≥ "

As the filtered integrator is exact for the linear equation ẍ = ẋ × B0/ε, it has the same
high frequency 1/ε. When this integrator is applied to (2.1), it has a modulated Fourier
equation that is very similar to that of the exact solution given in Theorem 4.1.

Theorem 4.3 Let xn be a solution of the filtered variational integrator applied to (2.1)
with a stepsize h satisfying

h2 ≥ ε (4.5)

and, for some N ≥ 1, the non-resonance conditions

∣∣∣sin
(kh
2ε

)∣∣∣ ≥ c > 0,
∣∣∣cos

(kh
2ε

)∣∣∣ ≥ c > 0 (k = 1, . . . , N ),

∣∣∣tan
(kh
2ε

)
− tan

( h

2ε

)∣∣∣ ≥ c > 0 (k = 2, . . . , N ),

(4.6)

where c is a positive constant. We assume that the initial velocity v0 = ẋ(0) is bounded
independently of ε and h, as in (2.2). We further assume that the numerical solution
xn stays in a compact set K for 0 ≤ nh ≤ T (with K and T independent of ε and h).
We then have an expansion, at t = nh,

xn =
∑

|k|≤N

zk(t)eikt/ε + RN (t) (4.7)

with the following properties:

(a) The bounds of parts (a) of Theorem 4.1 for the modulation functions are valid also
in this case, except zk0 = O(hε|k|) for |k| ≥ 1.

(b) The remainder at t = nh is bounded, for arbitrary M > 1, by

P0RN (t) = O(t2hM ) + O(t2εN ), P±1RN (t) = O(t2εhM−1) + O(t2εN ).

(c) The functions z00, z
0±1, z

1
1, z

−1
−1 satisfy the differential equations

z̈00 = P0
(
ż0 × B1(z

0) + E(z0)
) + O(h2),

ż0±1 = ±iεP±1
(
ż0 × B1(z

0) + E(z0)
) + O(εh),

ż±1
±1 = ε

h
sin

(h
ε

)
P±1

(
z±1
±1 × B1(z

0)
) + O(ε2).

All other modulation functions zkj are given by algebraic expressions depending

on z0, ż00, z
1
1, z

−1
−1.
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(d) Initial values for the differential equations of item (c) are given by

z0(0) = x0 + O(h2),

ż00(0) = P0v
0 + O(h2),

z±1
±1(0) = ∓iεP±1v

0 + O(εh).

The constants symbolized by the O-notation are independent of ε and t with0 ≤ t ≤ T ,
but depend on M and N, on the velocity bound (2.2), on bounds of derivatives of B1
and E on the compact set K , and on T .

Proof Parts (a) and (b) are again proved as in previous proofs of modulated Fourier
expansions; see e.g. [15] and [17,Ch.XIII]. Here we only show (c) and (d), assuming
that the bounds of (a) and (b) are already available.

To derive the differential equations of (c), we insert (4.7) into the two-step for-
mulation (3.7) (or equivalently (3.6) with an extra factor 	 on the right-hand side),
expand zk(t ± h) into a Taylor series at t , use Lemma 5.1 of [16] to expand the first
and second-order difference quotients for zk(t)eikt/ε for 0 < |k| ≤ N , and expand B1
and E at z0(t). We then separate the terms multiplying eikt/ε for |k| ≤ N . Moreover,
we consider the components zkj = Pj zk for j = 0,±1.

For k = 0, j = 0 we obtain

z̈00 + O(h2) = P0
(
(ż0 + O(h2)) × B1(z

0) + E(z0) + O(ε2/h)
)
,

where the O(h2) terms result from the Taylor expansions of the second and first order
difference quotients of z0, and the (smaller) O(ε2/h) term results from the Taylor
expansion of B1 and E at z0 and the bound zk = O(ε|k|). This yields the first equation
of (c).

For k = 0, j = 1 we obtain

z̈01 + O(εh2) = 2ε

h
tan

( h

2ε

)(
i

ε
(ż01 + O(h2))

+P1
(
(ż0 + O(h2)) × B1(z

0) + E(z0) + O(ε2/h)
))

.

We solve this equation for ż01, which appears in the dominant term with a factor h−1,
and recall that | tan(h/(2ε))| ≥ c > 0 by the non-resonance condition (4.6). Using
that z̈01 and its higher derivatives are O(ε) by part (a), this yields

ż01 = iεP1
(
ż0 × B1(z

0) + E(z0)
)

+ O(εh),

which is the differential equation for z01 stated in (c). The case j = −1 is obtained by
taking complex conjugates.
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For k = 1, j = 1 we find for y11(t) = z11(t)e
it/ε, using Lemma 5.1 of [16] and the

O(ε) bound for z11 and its derivatives of part (a),

y11(t + h) − 2y11(t) + y11(t − h)

h2

= eit/ε
(

− 4

h2
sin2

( h

2ε

)
z11(t) + 2 i

h
sin

(h
ε

)
ż11(t) + O(ε)

)

and

y11(t + h) − y11(t − h)

2h
= eit/ε

(
i

h
sin

(h
ε

)
z11(t) + cos

(h
ε

)
ż11(t) + O(εh)

)
.

The latter formula yields

P1 tanch
( h

2ε
B̂0

)(
y11(t + h) − y11(t − h)

2h
× B0

ε

)

= 2ε

h
tan

( h

2ε

) i

ε
eit/ε

( i

h
sin

(h
ε

)
z11(t) + cos

(h
ε

)
ż11(t) + O(εh)

)

= eit/ε
(

− 4

h2
sin2

( h

2ε

)
z11(t) + 2 i

h
tan

( h

2ε

)
cos

(h
ε

)
ż11(t) + O(ε)

)

and similarly

P1 tanch
( h

2ε
B̂0

)(
y11(t + h) − y11(t − h)

2h
× B1(z

0(t))

)

= eit/ε
2ε

h
tan

( h

2ε

)
P1

( i

h
sin

(h
ε

)
z11(t) × B1(z

0(t)) + O(ε)
)
.

We insert the modulated Fourier expansion (4.7) into the two-step formulation of the
filtered variational integrator, which we wirte as (3.6) with the extra filter factor 	

on the right-hand side, and we collect the terms with the factor eit/ε. The dominant
terms after projecting with P1 are given by the above formulas. The remaining term
on the right-hand side (as in the second line of (3.6) but multiplied with 	) is of size
(2ε/h) tan(h/2ε) · O(ε + h2) = O(hε) for h2 ≥ ε under condition (4.6). We thus
obtain

− 4

h2
sin2

( h

2ε

)
z11(t) + 2 i

h
sin

(h
ε

)
ż11(t) + O(ε)

= − 4

h2
sin2

( h

2ε

)
z11(t) + 2 i

h
tan

( h

2ε

)
cos

(h
ε

)
ż11(t) + O(ε)

+ 2ε

h
tan

( h

2ε

)
P1

( i

h
sin

(h
ε

)
z11(t) × B1(z

0(t)) + O(ε)
)
.

Here the dominant terms are the first terms on the left-hand and the right-hand sides,
which are the same and thus cancel. The dominant terms then become the terms
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containing the factor (2 i/h)ż11(t). Since a calculation shows that we have, with ξ =
h/(2ε) for short,

sin(2ξ) − tan(ξ) cos(2ξ) = (tan(2ξ) − tan(ξ)) cos(2ξ) = tan(ξ),

the above equation yields the differential equation for z11 as stated in part (c) of the
theorem. The result for z−1

−1 is obtained by taking complex conjugates.
The formulae for the initial values are obtained by the same arguments as in the

proof of Theorem 4.2, using here that (x1 − x−1)/(2h) is related to v0 by (3.8) for
n = 0. ��

5 Time scale "0: error bounds for position and parallel velocity

Comparing the modulated Fourier expansions of the numerical solution with that of
the exact solution, we obtain the following error bounds from Theorems 4.1–4.3.

Theorem 5.1 Consider applying the Boris method, the variational integrator and the
filtered variational integrator to (2.1) over a time interval 0 ≤ t ≤ T (with T inde-
pendent of ε) using a stepsize h with

h2 ≥ ε.

Suppose that the conditions of Theorem 4.2 are satisfied in the case of the Boris method
and the variational integrator (in particular, small perpendicular starting velocity:
v0⊥ = O(ε)), and that the conditions of Theorem 4.3 are satisfied in the case of the
filtered variational integrator (in particular, the non-resonance conditions (4.6) and
bounded initial velocity (2.2)). For each of the three methods, the errors in position x
and parallel velocity v‖ = P0v at time tn = nh ≤ T are then bounded by

|xn − x(tn)| ≤ Ch2, |vn‖ − v‖(tn)| ≤ Ch2 (tn ≤ T ),

where C is independent of ε, h and n with h2 ≥ ε and nh ≤ T (but depends on T ).

Proof The result is obtained by representing the exact and numerical solutions by
their modulated Fourier expansions and using the bounds and differential equations
of the modulation functions as given in Theorems 4.1–4.3. Note that the differential
equations of the dominating modulation functions for the three methods and for the
exact solution coincide up to defects of size O(h2), which lead to an O(h2) error in the
positions. Inserting the modulated Fourier expansion of the numerical solution into
the formula for the approximate velocity vn for each method and comparing with the
time-differentiated modulated Fourier expansion of the exact solution then yields the
O(h2) error bound for the parallel velocity. ��
Remark 5.2 For h2 ∼ ε, the above error bounds are thus O(ε). For all three methods,
the error bounds remain in general O(ε) also for smaller stepsizes h ∼ ε. This can be
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Fig. 2 Global error vs. ε (ε = 1/2 j , j = 6, · · · 17) with different h for the Boris algorithm with starting
values x(0), v(0) (top row), with modified starting values (3.4) (centre row), and for the filtered variational
integrator with starting values x(0), v(0) (bottom row)

shown by comparing the modulated Fourier expansions for such stepsizes, as given
in [15] for the standard variational integrator. The filtered Boris method of [16], used
with h ∼ ε, has an O(ε2) error in the position and the parallel velocity, and an O(ε)

error in the perpendicular velocity.

Numerical experiment. For the example of Section 2, Figure 2 shows the relative
errors in x , v‖ and v⊥ at time t = π/2 versus ε for various step sizes h for three
numerical approaches:
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(i) in the top row for the Boris algorithm with the original initial data as starting
values,

(ii) in the centre row for the Boris algorithm with modified starting values (3.4),
(iii) in the bottom row for the filtered variational integrator with the original initial data

as starting values.

For any step size h, the errors in x and v‖ increase roughly proportionally to h2/ε
when ε → 0 in case (i), whereas in cases (ii) and (iii) the errors tend to a constant
error level proportional to h2.

6 Time scale "−1: perpendicular drift

6.1 Perpendicular drift of the exact motion

We let P‖ = P0 = B0B�
0 be the orthogonal projection onto the span of B0, and

P⊥ = P1 + P−1 = I − P‖ the orthogonal projection onto the plane orthogonal to B0.
We decompose x ∈ R3 as

x = x‖ + x⊥ with x‖ = P‖x, x⊥ = P⊥x .

We assume that (with slight abuse of notation for B1)

B1(x) = B1(x⊥) + εB2(x), E(x) = E⊥(x⊥) + E‖(x) + εE2(x), (6.1)

with E⊥ · B0 = 0 and E‖ × B0 = 0, and where the functions B1, B2 and E⊥, E‖, E2
on the right-hand side and all their derivatives are bounded independently of ε. We
thus only allow aweak dependence of themagnetic field and the perpendicular electric
field on x‖. We then have the following result.

Theorem 6.1 Let x(t) be a solution of (2.1) with (6.1), with an initial velocity bounded
independently of ε (|ẋ(0)| ≤ M), which stays in a compact set K for 0 ≤ t ≤ c ε−1

(with K and c independent of ε). Then, the solution y⊥(t) of the initial-value problem
for the slow differential equation

ẏ⊥(t) = εE⊥(y⊥(t)) × B0, y⊥(0) = x⊥(0), (6.2)

remains O(ε)-close to the perpendicular component of x(t) over times O(ε−1):

|x⊥(t) − y⊥(t)| ≤ Cε, 0 ≤ t ≤ c/ε. (6.3)

The constant C is independent of ε and t with 0 ≤ t ≤ c/ε, but depends on the initial
velocity bound M, on bounds of derivatives of B1 and E on the compact set K , and
on c.

Remark 6.2 It is well known in the physical literature (going back to [20,Eq. (13)]) that
the perpendicular velocity is largely determined by the E × B term, as is justified by
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averaging techniques; see also, e.g., [10,Eq. (6)] in the numerical literature. An O(ε)

bound over times O(ε−1) as in (6.3) was recently proved in [12] in the more restricted
setting of a constant magnetic field (B1 ≡ 0) and an electric field with E‖ ≡ 0.

Proof The proof uses the modulated Fourier expansion of Theorem 4.1, in particular
the differential equations for z0±1 and z±1

±1 in part (c), and the familiar argument of
Lady Windermere’s fan [18]. We structure the proof into four parts (a)–(d).

(a) Over the (short) time interval 0 ≤ t ≤ 1, Theorem 4.1 yields that

x⊥(t) = z0⊥(t) + z11(t)e
it/ε + z−1

−1(t)e
−it/ε + O(ε2),

where z0⊥(t) = z01(t) + z0−1(t) and z±1
±1(t) satisfy the differential equations

ż0⊥ = ε
(
(ż0‖ + ż0⊥) × B1(z

0⊥) + E⊥(z0⊥)
)

× B0 + O(ε2),

ż11 = P1
(
z11 × B1(z

0⊥)
) + O(ε2),

and z−1
−1 = z11. We note that ż0‖ = ż00 = ẋ‖ + O(ε), because we have d

dt

(
z10e

i t/ε
) =

(iz10/ε + ż10)e
i t/ε = O(ε). Moreover, the implicit differential equation for z0⊥ can be

solved for ż0⊥ to yield

ż0⊥ = ε
(
ż0‖ × B1(z

0⊥) + E⊥(z0⊥)
)

× B0 + O(ε2).

(b) On every time interval n ≤ t ≤ n + 1 (with n ≤ c/ε) we can do the same and,
denoting by y[n]

⊥ the function z0⊥ on this interval and by z[n]
1 the function z11, we have

x⊥(t) = y[n]
⊥ (t) + 2Re

(
z[n]
1 eit/ε

) + O(ε2), n ≤ t ≤ n + 1,

where y[n]
⊥ and z[n]

1 solve the initial value problems

ẏ[n]
⊥ = ε

(
ẋ‖ × B1(y

[n]
⊥ ) + E⊥(y[n]

⊥ )
)

× B0,

y[n]
⊥ (n) = x⊥(n) − 2Re

(
z[n]
1 (n)ein/ε

)
,

and

ż[n]
1 = P1

(
z[n]
1 × B1(y

[n]
⊥ )

)
,

z[n]
1 (n) = −iεP1 ẋ(n).

We consider these initial value problems on the time interval n ≤ t ≤ c/ε. By
the error bound of the modulated Fourier expansion on the interval [n, n + 1] (in
particular at t = n + 1) as stated by Theorem 4.1 (b), by the essential uniqueness
of the coefficient functions of the modulated Fourier expansion and their bounds as
stated by Theorem 4.1 (a), and by the approximation of the modulation functions z0⊥
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and z11 on the interval [n, n + 1] by the functions y[n]
⊥ and z[n]

1 defined above, which
has an O(ε2) error because of Theorem 4.1 (c) and (d), we obtain

y[n]
⊥ (n + 1) = y[n+1]

⊥ (n + 1) + O(ε2),

z[n]
1 (n + 1) = z[n+1]

1 (n + 1) + O(ε2).

In view of the factor ε in front of the right-hand side of the differential equations for
y[n+1]
⊥ and y[n]

⊥ , this estimate implies that

y[n+1]
⊥ (t) − y[n]

⊥ (t) = O(ε2), n + 1 ≤ t ≤ c/ε.

Moreover, taking the inner product of the differential equation for z[n]
1 with z[n]

1 shows
that

d

dt
|z[n]
1 |2 = 2Re z[n]

1

�
ż[n]
1 = 0,

and hence

|z[n]
1 (t)| = |z[n]

1 (n)|, n ≤ t ≤ c/ε.

(c) Next we study the difference between y[0]
⊥ (t) and y⊥(t) of (6.2). We have

y[0]
⊥ (t) − y⊥(t) =

(
y[0]
⊥ (0) − y⊥(0)

)
+ ε

∫ t

0

(
E⊥(y[0]

⊥ (s)) − E⊥(y⊥(s))
)

× B0 ds

+ ε

∫ t

0

(
ẋ‖(s) × B1(y

[0]
⊥ (s))

) × B0 ds.

The difference of the initial values is O(ε), and the last integral term is bounded using
partial integration:

ε

∫ t

0

(
ẋ‖(s) × B1(y

[0]
⊥ (s))

) × B0 ds

= ε
(
x‖(t) × B1(y

[0]
⊥ (t)) − x‖(0) × B1(y

[0]
⊥ (0))

)
× B0

− ε

∫ t

0

(
x‖(s) × ∂B1

∂x⊥
(y[0]

⊥ (s)) ẏ[0]
⊥ (s)

)
× B0 ds.

This is O(ε) for 0 ≤ t ≤ c/ε, because x‖ is bounded by assumption and ẏ[0]
⊥ (s) =

O(ε). With a Lipschitz bound of E and the Gronwall lemma, this yields that the
difference between y[0]

⊥ (t) and y⊥(t) of (6.2) is bounded by

y[0]
⊥ (t) − y⊥(t) = O(ε), 0 ≤ t ≤ c/ε.
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(d) With the above estimates we obtain, for n ≤ t ≤ n + 1 ≤ c/ε,

x⊥(t) − y⊥(t) =
(
x⊥(t) − y[n]

⊥ (t) − 2Re
(
z[n]
1 (t)eit/ε

)) + 2Re
(
z[n]
1 (t)eit/ε

)

+
n−1∑
j=0

(
y[ j+1]
⊥ (t) − y[ j]

⊥ (t)
)

+
(
y[0]
⊥ (t) − y⊥(t)

)

= O(ε) + O(ε) + O(nε2) + O(ε) = O(ε),

which is the stated result. ��

6.2 Perpendicular drift of numerical approximations

For the Boris algorithmwith large step size (1.1) and a small perpendicular component
of the starting velocity we obtain the following result from Theorem 4.2.

Theorem 6.3 Under the assumptions of Theorem 4.2 (in particular (4.2)–(4.3)), and
provided that the numerical solution xn of the Boris method stays in a compact set K
for 0 ≤ t ≤ c ε−1 (with K and c independent of ε and h), the solution y⊥(t) of the
initial-value problem for the slow differential equation (6.2) remains O(h2)-close to
the perpendicular component of xn over times O(ε−1):

|xn⊥ − y⊥(tn)| ≤ Ch2, 0 ≤ tn = nh ≤ c/ε. (6.4)

The constant C is independent of ε and h and n with 0 ≤ nh ≤ c/ε, but depends on
the initial velocity bound, on bounds of derivatives of B1 and E on the compact set
K , and on c.

Proof The proof uses Theorem 4.2 and Lady Windermere’s fan in the same way as
in the proof of Theorem 6.1, without any additional difficulty. We therefore omit the
details. ��

Analogous results hold true also for the standard and filtered variational integra-
tors, for the latterwith non-resonant stepsizes (4.6), using the correspondingmodulated
Fourier expansions as given in Theorems 4.2 and 4.3 .We note that for the filtered vari-
ational integrator we do not need the smallness assumption (4.3) for the perpendicular
component of the velocity required for the Boris and standard variational integrators,
but the mere boundedness of the initial velocity suffices for the filtered variational
integrator. However, in view of the O(εh) remainder term (instead of O(εh2)) in the
differential equation for z0±1 in part (c) of Theorem 4.3, the error bound of xn⊥ for the
filtered variational integrator is only O(h) instead of O(h2).

Numerical experiment. For the example of Section 2 and for the methods (i)–(iii) of
the numerical experiments of Section 5, Figure 3 shows the projection of the computed
particle trajectory onto the plane perpendicular to B0 = e3 up to time T = 5/ε,
for the fixed step size h = 10−2 and three values of ε. The exact solution has a
gyroradius of O(ε), which is too small to be visible in the figure. It is observed
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Fig. 3 Particle trajectory for times t ≤ 5/ε projected onto the perpendicular plane as computed by the
Boris algorithm with starting values x(0), v(0) (top row), with modified initial values (3.4) (centre row),
and by the filtered variational integrator with starting values x(0), v(0) (bottom row). The step size used is
h = 10−2 in all cases

that the Boris algorithm with the original initial velocity as starting velocity shows a
substantially enlargedgyroradius for h 	 ε,while aftermodifying the starting velocity
to (3.4), the Boris algorithm shows correct results. The same behaviour is observed
also for the standard variational integrator (not shown here, since the pictures are
indistinguishable). In contrast, the filtered variational integrator shows correct results
both for the original initial values (as shown) and for the modified starting velocity
(not shown here).

7 Long-term near-conservation of magnetic moment and energy

7.1 Time scale "−1: Standard variational integrator

For the standard (unfiltered) variational integratorwith step sizes (1.1) and themodified
starting velocity (3.4) we can show energy conservation up to O(h2) over time ε−1,
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provided that h6 ≤ ε. We do not have, and do not expect, such a result for the Boris
algorithm in a non-uniform magnetic field (2.1).

Theorem 7.1 Under the assumptions of Theorem 4.2 , and provided that the numerical
solution xn of the variational integrator with step size (1.1) and starting velocity
(3.4) stays in a compact set K for 0 ≤ t ≤ c ε−1 (with K and c independent of ε

and h), the total energy (2.3) remains O(h2)-close to the initial energy over times
cmin(ε−1, h−6):

|H(xn, vn) − H(x0, v0)| ≤ Ch2, 0 ≤ nh ≤ cmin(ε−1, h−6). (7.1)

Moreover, with the modified initial velocity, the magnetic moment (2.4) remains O(ε2)

small over times c ε−1:

|I (xn, vn)| ≤ Cε2, 0 ≤ nh ≤ c ε−1. (7.2)

The constants C are independent of ε and h and n with 0 ≤ nh ≤ c/ε, but depend on
bounds of derivatives of B1 and E on the compact set K , and on c.

Proof The proof uses Theorem 4.2 and arguments from the proof of Proposition 6.2
in [13]. We first consider the energy behaviour over a short time interval of length
1, over which we can apply Theorem 4.2. With D = d/dt and the shift operator
ehD , with δ(ζ ) = ζ − ζ−1 and ρ(ζ ) = ζ − 2 + ζ−1, and with the expansions
δ(eh)/(2h) = (1 + α2h2 + α4h4 + . . . ) and ρ(eh)/h2 = (1 + β2h2 + β4h4 + . . . ),
we insert the decomposition (4.4) into the two-step formulation (3.2) of the numerical
method and obtain the equation for the function y(t) in (4.4) as

ÿ + β2h
2y(4) + β4h

4y(6) + . . . = (ẏ + α2h
2y(3) + α4h

4y(5) + . . .) × B0

ε

+ A′
1(y)

� δ(ehD)

2h
y − δ(ehD)

2h
A1(y) − ∇φ(y) + O(|z|2) + O(hN ), (7.3)

where the left-hand side contains only even-order derivatives of y, and the right-hand
side contains only odd-order derivatives of y. We multiply both sides of (7.3) with
ẏ�. The multiplied left-hand side is the time derivative of an expression in which the
appearing second and higher derivatives of y can be substituted as functions of (y, ẏ)
via the differential equation for y in part (c) of Theorem 4.2; cf. [14]. On the right-hand
side we have

− ẏ�ε−1 B̂0(α2h
2y(3) + α4h

4y(5) + . . .)

+ ẏ� 1

2h

(
A′
1(y)

�δ(ehD)y − δ(ehD)A1(y)
)

− d

dt
φ(y) + O(|z|2) + O(hN ). (7.4)

The first term is O(h2) because ẏ⊥ = ẏ1 + ẏ−1 and its derivatives are O(ε) by
Theorem 4.2. Since B̂0 is a skew-symmetric matrix, the first term is again the time
derivative of an expression in which the appearing second and higher derivatives of y
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can be substituted as functions of (y, ẏ); cf. [14]. The same holds true for the second
term, as is shown in the proof of Proposition 6.2 of [13].

We have thus found a function Hh(x, v) with the properties that uniformly for all
x in a bounded domain and all bounded v with v⊥ = O(ε) we have

Hh(x, v) = H(x, v) + O(h2), (7.5)

d

dt
Hh(y(t), ẏ(t)) = O(|z(t)|2) + O(hN ). (7.6)

We now consider the equation for z. With the starting velocity (3.4) we have |z(0)| ≤
c0h4 for some constant c0; see part (d) of Theorem 4.2. The differential equation for
z⊥ = z1 + z−1 can be written as

ż⊥ = 4ε

h2
z⊥ × B0 + O(ε|z⊥|) + O(εhN ).

Multiplying this equation with 2(z⊥)� and noting that 2(z⊥)� ż⊥ = (d/dt)|z⊥|2, we
obtain

d

dt
|z⊥|2 ≤ Cε|z⊥|2 + O(εhN ),

which shows that |z⊥(t)| ≤ ec̃εt |z⊥(0)| + O(tεhN ). Moreover, from the proof of
Theorem 4.2 we have |z0(t)| ≤ Ch2|z⊥(t)|. Patching many short time intervals of
length 1 together as in part (b) of the proof of Theorem 6.1, we find that on each
of these intervals up to time c ε−1 (but not on longer time intervals ε−α with α > 1
because of the ec̃εt exponential growth of our bound of z⊥), we can apply Theorem 4.2
and the oscillatory component z on the interval remains of size O(h4). By (7.6) we
thus have

Hh(y(t), ẏ(t)) = Hh(y(0), ẏ(0)) + O(th8).

(Different to Section 6, we now do not put a superscript on y and z to designate the
interval of length 1 in which t lies). Together with

H(xn, vn) = Hh(x
n, vn) + O(h2) = Hh(y(tn), ẏ(tn)) + O(h2),

this yields the stated result for the energy.
The long-term smallness of themagneticmoment follows from (2.5) and the relation

vn⊥ = ẏ⊥(tn) − (−1)n ż⊥(tn) + O(εh2). This yields vn⊥ = O(ε) by the differential
equations in part (c) of Theorem 4.2 for y±1 and z±1, which contain a factor ε on the
right-hand side. These functions are again patched together over many short intervals
as is done in the proof of Theorem 6.1. ��
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7.2 Time scale "−N for N > 1: Filtered variational integrator

We have the following result on the long-term near-conservation of magnetic moment
and energy by the filtered variational integrator with non-resonant large step sizes (4.5)
with (4.6).

Theorem 7.2 Let M > N be arbitrary positive integers. Under the assumptions of
Theorem 4.3 (in particular (4.5)–(4.6) and an initial velocity bounded independently
of ε), and provided that the numerical positions xn of the filtered variational integrator
stay in a compact set K for 0 ≤ t ≤ c ε−N (with K and c independent of ε and h), the
magnetic moment and the total energy along the numerical solution (xn, vn) remain
almost conserved over such long times:

| I (xn, vn) − I (x0, v0) | ≤ Ch

|H(xn, vn) − H(x0, v0)| ≤ Ch
for 0 ≤ t ≤ c min(h−M , ε−N ).

The constant C is independent of ε and h and n with 0 ≤ nh ≤ c min(h−M , ε−N ),
but depends on the initial velocity bound, on bounds of derivatives of B1 and E on the
compact set K , on c, and on the choice of M and N.

Proof The proof uses arguments that are very similar to the proofs of Theorems 2.2 and
2.3 of [15] on the long-term near-conservation properties of the standard variational
integrator for step sizes h ≤ cε. We therefore only indicate the main steps in the proof,
which are marked as items (i)-(iv) below.

To simplify the expressions for the remainder terms, we assume in the following
the mild stepsize restriction hm ≤ ε for some fixed m > 2 and we choose M ≥ mN .
This is only done for ease of presentation and allows us to cover the time scale ε−N .
Without this assumption we arrive at the stated time scale min(h−M , ε−N ).

(i) (Lagrangian structure of the modulation equations; cf. [15,(5.23)]) Over a time
interval of length 1 we consider the modulation functions zk(t) of Theorem 4.3 mul-
tiplied with the corresponding highly oscillatory exponentials:

yk(t) = zk(t)eikt/ε for |k| ≤ N and yk(t) = 0 for |k| > N .

We write y = (yk)k∈Z and define the extended potentials

U(y) =
∑

0≤m≤N
s(α)=0

1

m! φ(m)(y0)yα

A(y) = (Ak(y))k∈Z =

⎛
⎜⎜⎝

∑
0≤m≤N
s(α)=k

1

m! A
(m)(y0)yα

⎞
⎟⎟⎠

k∈Z

,

where the sums are taken over all multi-indices α = (α1, . . . , αm) with α j ∈ Z \
{0} with prescribed sum s(α) = α1 + . . . + αm , and where we use the notation
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φ(m)(y0)yα = φ(m)(y0)(yα1
, . . . , yαm

) for the m-linear mth derivative of φ evaluated
at (yα1

, . . . , yαm
), and analogously for A(m)(y0)yα . The terms for m = 0 are to be

interpreted as φ(y0) and A(y0).
The system of modulation equations of the filtered variational integrator can then

be written, up to O(εN ), as the discrete Euler-Lagrange equations corresponding to
the discrete Lagrangian

Lh(yn, yn+1) = h

2
(vn+1/2)∗(	−1 ⊗ I )vn+1/2

+ h

2

(A(yn) + A(yn+1)
)∗vn+1/2 − h

2

(U(yn) + U(yn+1)
)

with vn+1/2 = (yn+1 − yn)/h, which differs from that of the standard variational
integrator only by the modified kinetic energy term with 	−1. We thus have

	−1δ2h y
k =

∑
j∈Z

(
∂A j

∂ yk
(y)

)∗
δ2h y

j − δ2hAk(y) −
(

∂U
∂ yk

(y)
)∗

+ O(εN ), (7.7)

where δ2h f (t) = ( f (t + h) − f (t − h))/(2h) and δ2h f (t) = ( f (t + h) − 2 f (t) +
f (t − h))/h2 denote the first-order and second-order symmetric difference quotients,
respectively.

(ii) (Almost-invariant close to the magnetic moment; cf. [15,Theorem 5.2]) With
the group action S(λ)y = (eikλyk)k∈Z (for λ ∈ R), we have

U(S(λ)y) = U(y), A(S(λ)y) = S(λ)A(y) for all λ.

Differentiation with respect to λ (at λ = 0) yields

∑
k∈Z

ik
∂U
∂ yk

(y)yk = 0

∑
j∈Z

i j
∂Ak

∂ y j
(y)y j = ikAk(y) for k ∈ Z.

Multiplying (7.7) with−ik(yk)∗, summing over k and using these relations yields that
the function

Ih[y](t) = − i

εh

∑
k

kyk(t)∗	−1yk(t + h)

+ i

2ε

∑
k

k
(
Ak(y(t))∗yk(t + h) − yk(t)∗Ak(y(t + h))

)

satisfies

Ih[y](t) − Ih[y](t − h) = O(hεN+1) (7.8)
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and is thus an almost-invariant of the modulation system. Using the bounds of the
modulation functions, we find that

Ih[y](t) = − i

εh

(
y1(t)∗	−1y1(t + h) − y−1(t)∗	−1y−1(t + h)

)

+ i

2ε2

(
y1(t)∗(y1(t + h) × B0) − y−1(t)∗(y−1(t + h) × B0)

)
+ O(ε).

Here, a calculation shows that the first term equals (1 + cos(h/ε))|z11|2/ε2 + O(h),
and the second term equals − cos(h/ε)|z11|2/ε2 + O(h). So we obtain

Ih[y](t) = 1

ε2
|z11(t)|2 + O(h).

On the other hand, since

vn = 

xn+1 − xn−1

2h
+ O(ε)

=
(
I + (1 − sinc(h/ε)−1)B̂2

0

) xn+1 − xn−1

2h
+ O(ε)

= ż0(t) + i

ε

(
z11(t)e

it/ε − z−1
−1(t)e

−it/ε
)

+ O(h) at t = nh

and ż0(t) × B0 = O(ε), we find that

I (xn, vn) = 1
2 |vn × B0|2 + O(ε) = 1

ε2
|z11(t)|2 + O(h).

So we obtain that the magnetic moment along the numerical solution is O(h)-close to
the almost-invariant:

I (xn, vn) = Ih[y](nh) + O(h). (7.9)

(iii) (Almost-invariant close to the total energy; cf. [15,Theorem 5.3]) Multiplying
(7.7) with (ẏk)∗ and summing over k gives

∑
k

(ẏk)∗	−1δ2h y
k −

∑
k

(
d

dt
Ak(y)∗δ2h yk − (ẏk)∗δ2hAk(y)

)
+ d

dt
U(y)

= O(εN ). (7.10)

The arguments in the proof of Theorem 5.3 in [15] show that each of the three terms
on the left-hand side is a total differential up to O(εN ). So there exists a function

Hh[y](t) = Kh[y](t) + Mh[y](t) + U[y](t),
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where the time derivatives of the three terms on the right-hand side equal the three
corresponding terms on the left-hand side of (7.10), and we have

d

dt
Hh[y](t) = O(εN ).

We now determine the dominant part ofHh[y]. We find

Kh[y] = 1
2 (ż

0)∗	−1 ż0 + 2(z1)∗	−1z1

h2

(
h

ε
sin(h/ε) − 2 sin2(h/2ε)

)
+ O(h)

= 1
2 |ż0|2 + 2|z11|2

tanc(h/2ε)h2

(
h

ε
sin(h/ε) − 2 sin2(h/2ε)

)
+ O(h)

= 1
2 |ż0|2 + |z11|2

ε2
(1 + cos(h/ε)) + O(h)

Mh[y] = − cos(h/ε)
|z11|2
ε2

+ O(h)

U[y] = φ(z0) + O(h).

Thus we have

Hh[y](t) = 1
2 |ż0(t)|2 + |z11(t)|2

ε2
+ φ(z0(t)) + O(h). (7.11)

On the other hand, from the formula for vn in (ii) we have, at t = nh,

1
2 |vn|2 = 1

2 |ż0(t)|2 + |z11(t)|2
ε2

+ O(h).

The energy along the numerical solution is therefore

H(xn, vn) = 1
2 |vn|2 + φ(xn) = 1

2 |ż0(t)|2 + |z11(t)|2
ε2

+ φ(z0(t)) + O(h).

and hence we have

H(xn, vn) = Hh[y](t) + O(h).

(iv) (From short to long time intervals; cf. [15,Section 4.5], [17,Section XIII.7]).
The stated long-time near-conservation results are now obtained by patching together
the short-time near-conservation results of (ii) and (iii) over many intervals of length
1, via an often-used argument that involves the uniqueness up to O(εN+1) of the
modulation functions. ��
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Fig. 4 Energy error H(xn , vn) − H(x0, v0) along the numerical solutions of the Boris algorithm (top), of
the standard variational integrator (centre) and of the filtered variational integrator (bottom), obtained with
ε = 10−4 and h = 10−2

Numerical experiment.We illustrate the energy behaviour of the numerical methods
for the magnetic field

B(x) = 1

ε

⎛
⎝

1
0
0.5

⎞
⎠ +

⎛
⎝
x2 − x3
x1 + x3
x2 − x1

⎞
⎠

and the scalar potential φ(x) = x31 − x32 + 1
5 x

4
1 + x42 + x43 . We take the initial values

x(0) = (0, 1, 0.1)�, v(0) = (0.09, 0.05, 0.2)�.

We apply the three numerical integrators of Section 3 with ε = 10−4, step size h =
10−2, and final time T = 107. Figure 4 shows the energy error H(xn, vn)−H(x0, v0)
along the numerical solutions of theBoris algorithm, the standard variational integrator
and the filtered variational integrator, taking the initial values x(0), v(0) as starting
values for all three methods.
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Fig. 5 Energy error H(xn , vn) − H(x0, v0) along the numerical solutions of the Boris algorithm (top)
and of the standard variational integrator (bottom) obtained with modified initial values (3.4) and step size
h = 10−2, for ε = 10−4

The energy errors of the Boris algorithm and the variational integrator (top and
centre picture) appear to behave randomly. Running several trajectories corresponding
to random perturbations of the initial data of magnitude 10−14 showed energy errors
that look like random walks with a deviation of magnitude 10 for t ≤ 106. For
larger times, some of the trajectories showed blow-up behaviour. A similar random
walk behaviour was observed also for the deviation of the magnetic moment, but the
deviation was less than 10−1 for t ≤ 107.

In contrast, the energy error of the filtered variational integrator oscillates with
a small amplitude without drift (bottom picture of Figure 4). The error I (xn, vn) −
I (x0, v0) of the magnetic moment along the numerical solution of the filtered varia-
tional integrator has a very similar behaviour (not shown here).

If we apply theBoris algorithm and the standard variational integrator withmodified
initial values (3.4), then the magnetic moment remains small over very long time,
oscillating between 0 and approximately 2 · 10−6 over the whole time interval. In this
case of modified initial velocity, we observe very good near-conservation of energy for
the variational integrator while there is a linear drift for the Boris algorithm. However,
this drift becomes dominant over the small oscillations in the energy only for times
∼ 107; see Figure 5.
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