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CLASSIFICATION OF HIDDEN DYNAMICS IN DISCONTINUOUS
DYNAMICAL SYSTEMS*

Nicola GuglielmiT and Ernst Hairer?

Abstract. Ordinary differential equations with discontinuous right-hand side, where the discontinuity of the
vector field arises on smooth surfaces of the phase space, are the topic of this work. The main
emphasis is the study of solutions close to the intersection of two discontinuity surfaces. There,
the so-called hidden dynamics describes the smooth transition from ingoing to outgoing solution
directions, which occurs instantaneously in the jump discontinuity of the vector field. This article
presents a complete classification of such transitions (assuming the vector fields surrounding the
intersection are transversal to it).

Since the hidden dynamics is realized by standard space regularizations, much insight is obtained
for them. One can predict, in the case of multiple solutions of the discontinuous problem, which
solution (classical or sliding mode) will be approximated after entering the intersection of two dis-
continuity surfaces. A novel modification of space regularizations is presented that permits to avoid
(unphysical) high oscillations and makes a numerical treatment more efficient.
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1. Introduction. In the n-dimensional phase space we consider the hypersurfaces

(1.1) Ya={yeR";a(y) =0} Xg={yeR"; By =0}

where a(y) and B(y) are scalar smooth functions. We assume that both hypersurfaces intersect
transversally, which means that Va(y) and Vj3(y) are linearly independent for y € ¥ =
Yo NXg. In a neighbourhood of y € X, these hypersurfaces divide the phase space into four
regions which we denote by R™" = {y; a(y) > 0, B(y) > 0}, R~ = {y; a(y) > 0, B(y) < 0},

and similarly R~ and R~~. We consider discontinuous ordinary differential equations
[T y) yeR*™
, f~y) yeR™
1.2 = _ _
42 PTY ) wer
f7ly) yeRT

where we assume that f1(y) is sufficiently differentiable and can be smoothly extended to
a neighbourhood of the closure of R™". An analogous property is assumed for the other
three vector fields. For y € ¥, U X3 we follow the approach of Filippov [1, 2] and consider
solutions, for which g is in the convex hull for the adjacent vector fields. Solutions that evolve
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in a discontinuity surface (or in an intersection of them) are called ‘sliding modes’. Recent
monographs on discontinuous differential equations, including interesting applications, are [3]
and [4].

The situation, where a solution of (1.2) enters one of the hypersurfaces (e.g., 3,) is well
understood. Either the vector field of the opposite side permits to continue the solution in
a classical way or the vector fields point from both sides towards the hypersurface. In the
second case there is a unique convex combination of both vector fields lying in the tangent
space of ¥, so that the solution continues as a sliding mode.

The situation is more complicated when the solution enters the intersection of two hy-
persurfaces, because a convex combination of four vector fields has three degrees of freedom,
but there are only two conditions for such a convex combination to lie in the tangent space
of ¥, N Xg. This ambiguity can be avoided by considering only special convex combinations
with two degrees of freedom. Nevertheless, there can be more than one solution and we are
confronted with the following question:

o If the discontinuous differential equation (1.2) has more than one solution (classical or
sliding mode) after entering the intersection ¥, N X3, which is the correct one?

If we define the correct solution as a solution of (1.2) that can be realized as the limit of
a regularization (based on bilinear interpolation), then the classification of Sections 6 and 7
gives an answer to this question. Such a definition of ‘correct solution’ is justified, because
the discontinuity of problems arising in applications can often be considered as the limit of
a sharp but continuous transition from one vector field to another. It is interesting to note
that in the case where classical solutions and sliding modes co-exist, it is more likely that the
correct solution is a sliding mode.

This article considers a regularization, where a linear (bilinear) interpolation of the adja-
cent vector fields is considered in an e-neighbourhood of the hypersurfaces. Such a regular-
ization has been introduced in [5], and is much used [6, 7, 8]. In the present work we address
the following questions:

e If more than one solution (classical or sliding mode) exists, which one will be approx-
imated by the regularization?

o [f there exists an outgoing classical solution, does the solution of the regularized dif-
ferential equation always approximate a classical solution?

e [f there is neither a classical solution nor a codimension-1 sliding mode, does there
exist a codimension-2 sliding mode? Is it unique?

The hypersurfaces (1.1) and the differential equation (1.2) do not change if we replace a(y) by
koa(y) with ko > 0 and S(y) by kgB(y) with kg > 0. However, the regularization is modified
under such a transformation. We study the following questions:

e If the problem (1.2) has more than one stable solution, is it possible to influence which
solution will be approximated by choosing suitably x, and xg?

e In the case, where a codimension-2 sliding mode of (1.2) is approximated by a highly
oscillatory solution of the regularized differential equation, can these oscillations be
damped or eliminated by suitably choosing the x’s?

The classification of the present work gives answers to these questions.

This paper is organized as follows. Section 2 recalls the definition of classical solutions and

that of sliding modes. The connection between sliding modes and the solution of differential-
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algebraic equations of index 2 is discussed. The bilinear regularization (called ‘blending’
in [5]) is introduced in Section 3, and some illustrating numerical experiments are presented.
To better understand the solution of the regularized differential equation, the technique of
asymptotic expansions for singularly perturbed problems is applied in Section 4. The transient
part in the solution is responsible for the transition between the ingoing and outgoing solutions
at the intersection of the discontinuity surfaces. This transition is characterised by a 2-
dimensional dynamical system, which describes the hidden dynamics (a term coined by [9]).
Section 5 discusses initial values for this system, gives an interpretation of its solution when
time tends to infinity, and introduces a geometric representation. The main part of the article
is a classification of the ‘correct’ outgoing solution in terms of the four vector fields around
¥ = X4 NXg. This is presented in Section 6, if the solution enters ¥ through a codimension-1
sliding mode, and in Section 7, if the solution enters in a spiraling way. The final Section 8
explains how unphysical oscillations in the solution of the regularized differential equation can
be suppressed.

2. Classical solutions and sliding modes. If the initial value y(0) = yo lies in R™~, then
the solution of (1.2) is that of y = f~(y) as long as it remains in R™~. Since f~(y) is
assumed to be sufficiently differentiable in a neighbourhood of R™7, this solution is unique
and continuously differentiable. We call it a classical solution. Suppose that at some time
to > 0 with y, = y(ts) it reaches the surface X, in the domain f(y) < 0. Generically there
are then two possibilities: (a) either the values o/ (yo)f™~ (¥o) and o (ya)fT~ (yo) have the
same sign and a classical solution (with a jump in its first derivative) continues in the domain
R, or (b) these values have opposite sign and the initial value y(t,) = yo € X, neither
admits a classical solution in R™~ nor one in R ™. Following Filippov [1, 2], we consider as
weak solution of (1.2) a function y(¢) that stays in the surface ¥, and for which g(t) lies in
the convex combination of f~(y(t)) and f*~(y(t)). Such a solution is called a sliding mode
or, more precisely, a codimension-1 sliding mode. The Filippov approach leads to the system
(1< <1)

= ((L+2) F7 @)+ (1=2a) f ) /2
0 = afy),

(2.1)

which is a differential-algebraic equation (DAE) of index 2 under the generic assumption
& (Wa)(fT7(Wa) — f7 " (Ya))/2 # 0 [10, Section VII.1]. This DAE is solved as follows: differ-
entiating the algebraic constraint yields 0 = o/(y)y, and inserting the differential equation for
7, permits to express the Lagrange multiplier A\, as a function of y. Substituting the resulting
expression A\, (y) into (2.1) yields an ordinary differential equation for y, for which classical
theory can be applied. The case, where a classical solution enters the surface ¥z is treated
similarly.

Consider next the situation, when a classical solution or a codimension-1 sliding mode
enters the intersection X = ¥, N X3. The Filippov approach is ambiguous, because a convex
combination of four vector fields contains three parameters, but we have only two conditions
for staying in X. We restrict ourselves to a vector field (introduced in [5]; called bilinear
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interpolation in [8] and convex canopy in [11]) which leads to the system (—1 < Xy, Ag < 1)

o= (0 2) (14 29) F7H) + (14 20) (1= X9) £+ ()
(1= 2a) (14 A0) S5 ) + (1= 2a) (1= 2) S () /4

0 = ay)

0 = B(y).

This is again a DAE of index 2, if a certain 2-dimensional matrix is invertible. Consistent
initial values satisfy a(y2) = 8(y2) = 0 with Lagrange parameters determined by 0 = o/(y)y
and 0 = '(y)y. These are two quadratic equations (hyperbolas with horizontal and verti-
cal asymptotes) for A, and Ag. They can have zero, one or two intersections in the unit
square [—1,1] x [—=1,1]. This shows that there can exist more than one codimension-2 sliding
modes. In addition to them, there can co-exist codimension-1 sliding modes and even classi-
cal solutions. The study of all possible solutions, their stability, and their relation to space
regularizations is one of the aims of the present article.

(2.2)

2.1. Definitions. The terms “classical solution” and “sliding modes” are important con-
cepts in this work. We therefore collect here their precise definition:

classical solution is a continuously differentiable function y(¢) defined on an intervall I
which, except of the end points, stays in one of the four regions R™", RT—, R, R~
and satisfies there the differential equation (1.2);

codimension-1 sliding mode along ¥, in the region S(y) < 0 is a continuously differen-
tiable function y(¢) defined on an intervall I which, except of the end points, stays in
Yo N{y; B(y) < 0} and satisfies there the differential-algebraic system (2.1) with a
continuous function A, (t). The sliding modes in the region (y) > 0 and along ¥ are
defined analogously;

codimension-2 sliding mode is a continuously differentiable function y(t) defined on an
intervall I which stays in the intersection X, N Xz and satisfies there the differential-
algebraic system (2.2) with continuous functions A, (t) and Ag(t).

Since the right-hand sides of (2.1) and (2.2) represent a convex combination of the adjacent
vector fields, our definition of sliding modes corresponds to Filippov solutions. Note, however,
that in (2.2) we consider only a special 2-parameter family of convex combinations. We thus
avoid the continuum of Filippov solutions, and generically we have locally unique sliding mode
solutions.

2.2. Some recent literature. In the recent literature there has been a significant re-
search on the analysis and numerical approximation of discontinuous differential equations.
A seminal reference is the monograph by Acary and Brogliato [3], which extensively dis-
cusses event-driven methods and considers several interesting applications, like non-smooth
mechanical systems, frictional contact problems, and electronic circuits (see also [12]). Filip-
pov solutions are considered also in the case of codimension-2 sliding manifolds, in which case
a certain convex combination of the vector fields is selected a priori, in order to bypass the
non-uniqueness of a Filippov solution. This is indeed the bilinear interpolation we consider in
this article (see e.g. [8] and [11]).
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A number of interesting articles addresses gene regulatory networks which is a very im-
portant class of discontinuous systems, describing the interactions of genes and proteins (see
e.g. [13], [14], [12]). Quoting the interesting article by Plahte and Kjoglum [15], in these mod-
els the rates of change of gene product concentrations are expressed as a sum of regulatory
switches in terms of sums of products of sigmoid functions, turning gene activity on and off.
These equations are usually transformed by replacing the sigmoid functions by step functions,
i.e. leading to discontinuous differential equations. Interestingly this is indeed the opposite
idea to that of regularization which is explored in this paper, which in fact would produce
the reverse transition from the discontinuous system to the original one with sigmoid switch-
ing functions. In [15] the singularly perturbed problem associated with the use of sigmoidal
functions is addressed. A fast (stretched) time and a slow time scale (the standard time) is
introduced and a so-called Z-cube is considered, where the fast scale can be studied. This is
in analogy to the unit square () we introduce in the present article. Our analysis of the hid-
den dynamics, which is the main objective, is new and represents an achievement in this line
of research. In [16], the authors present a general methodology to analyse models involving
switchings (modeled by sigmoid functions) and give a significant insight into qualitative and
quantitative aspects of the dynamics, in particular, for stationary points and their stability.
Our research is complementary to this work.

In [17], according to the common replacement of sigmoid functions by step functions, the
authors study some properties of piecewise linear discontinuous differential systems describing
gene regulatory networks. The global existence and uniqueness of Filippov solutions are
studied, and the concept of Filippov stationary point is extensively exploited. The analysis
focuses on stationary points so that the obtained results have little overlap with those obtained
in the present work where the emphasis is on general discontinuous systems and on general
solutions. In [18] the authors compare the Filippov theory of differential inclusions and the
singular perturbation techniques, still on gene regulatory networks, and follow the approach
presented in [15]. The results presented by the authors, in particular Lemma 5.1, make use
of tools which are similar to the one we consider although they do not provide a complete
classification of the hidden dynamics that we present here. An extension to gene regulatory
systems with delays is studied in [19], where the authors use a technique to remove delays
which determines a system of singularly perturbed differential equations.

Finally let us mention the recent publication [7], where the authors model gene regulatory
networks by a system of ordinary differential equations for the concentrations where the right-
hand side is piecewise linear. They show that the classical Utkin’s approach (see e.g. [20]) and
the sigmoidal regularization are equivalent in the case of codimension-2 manifolds which are
locally attractive (this means that all vector fields are directed towards the sliding manifold).

3. Numerical approaches. There are several possibilities to solve numerically discontin-
uous differential equations.

e An interesting survey on direct difference methods for differential inclusions, naturally
associated to discontinuous differential equations, is given in [21] and [22]. The authors
study convergence, the use of implicit methods, and localisation procedures that permit
to get higher-order methods. The application of implicit Runge-Kutta methods to
differential inclusions satisfying a one-sided Lipschitz condition is studied in [23].
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e [t is also possible to localize the time instants when the solution enters one of the
surfaces (event detection, see for example [24]). Then one investigates if classical
solutions and/or sliding modes exist, one decides which solution should be computed
and, for the case that one wants to follow a sliding mode, one switches to a different
solver that is able to treat differential-algebraic equations of index 2.

e Another possibility is to regularize the discontinuous system, and to solve the result-
ing stiff differential equation by a suitable code (for example, by Radau5 of [10]).
The present work is devoted to this approach which is appealing, because like direct
methods it does not require a switching between codes and it automatically selects a
solution if more than one solution co-exists. The use of a non-differentiable interpola-
tion, like that of (3.2), does not make any difficulties for codes with step size strategies.
They propose small step sizes close to a point where the solution has a jump in the
derivative, and keep the local error everywhere below the user defined tolerance.

3.1. Regularization. The idea is to smooth out the discontinuities of the vector field (1.2).
We assume that the functions f™, f7—, ... are defined and smooth on an e-neighbourhood
of R, R*~,.... Motivated by the choice (2.2) for a convex combination of the four vector
fields, we consider the differential equation

y = ((1 + W(u)) (1 + w(v)) T (y) + (1 + W(u)) (1 — w(v)) T (y)

(3.1)
+ (=) (14 7)) fH ) + (1= (W) (1= () S () /4
where u = a(y)/e, v = B(y)/e, and € > 0 is a small regularization parameter. Here, m(u)
is a (scalar, continuous) sigmoid function, which takes the value —1 for an argument < —1,
the value +1 for an argument > 41 and which interpolates the values monotonically on the
interval [—1, 1]. Throughout this article we use

-1 u<-1
(3.2) m(u)=<¢ u |u/ <1
1 u>1

but other interpolation functions can be considered as well.

We note that outside the stripes |a(y)| > ¢ and |5(y)| > ¢, the system (3.1) coincides with
(1.2). Within these stripes the vector field of (3.1) is a convex combination of the two (or four
in the intersection of the two stripes) vector fields of the adjacent regions of (1.2). Due to the
factor € in the denominator of u and v the differential equation is of singular perturbation
type. For a numerical treatment one has to apply codes that are suitable for stiff differential
equations.

3.2. Numerical experiments. We present three numerical experiments to study the effect
of regularization on a solution of (1.2) that has entered the intersection ¥ = ¥, N ¥5. The
first example illustrates that the solution of (3.1) can follow a codimension-2 sliding mode
even if (1.2) possesses a classical solution leaving . The other two examples show the effect
of replacing a(y) by reo(y) with £, > 1 and B(y) by xgB(y) with kg > 1, min(kqa,kg) = 1.

Note that such a transformation does not change the surfaces ¥, and g, and has therefore
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Figure 1. Ezample 1 of Section 3.2. The small picture shows the vector fields (grey) and the solution in the
phase space. The big picture shows the solution of the regularized differential equation as a function of time.

no influence on the solutions of (1.2). Since we are interested in the behaviour of solutions
close to the codimension-2 manifold 3, it is not restrictive to assume the four vector fields in
(1.2) to be constant.

Example 1: Codimension-2 sliding mode is stronger than a classical solution. In the 2-dimen-
sional phase space we consider the surfaces (1.1) with a(y) = y1 and S(y) = y2, and the
differential equation (1.2) with constant vector fields

ay = () =) = (o) = (6))

These vector fields are indicated as grey arrows in the small picture of Figure 1. With initial
values y1(0) = —0.5, y2(0) = —0.2 the solution of (1.2) starts in R ™~ and enters the surface X,
at y1(t1) = 0, yo(t1) = —0.16875 with ¢t; = 0.0625. The solution continues as a sliding mode
along ¥, until it reaches the manifold ¥ = ¥, N Xg. Inspecting the vector fields one sees that
there is an outgoing classical solution into the region R~". There is no codimension-1 sliding
mode, but there are two codimension-2 sliding modes: one for A, ~ 0.1692 and \g ~ —0.4497,
the other for A\, ~ —0.4579 and A3 ~ 0.3672.

For the solution of the regularized differential equation (3.1) one could expect that the
classical solution is stronger than the sliding modes, so that the solution of (3.1) approaches
the classical solution. That this is not the case is shown in the left picture of Figure 1 for a
computation with € = 0.01. Due to the regularization the solutions are not exactly on the
surfaces ¥, and Xz but O(e) close to them. This is explained by the asymptotic expansion
analysis of Section 4. A theoretical explanation of the fact that the codimension-2 sliding mode
and not the classical solution is approximated by the regularization, is given in Section 6.4
below.

Example 2: Stabilization of codimension-2 sliding modes. With the same surfaces as in the
previous example we consider the differential equation (1.2) with (see Figure 2)

(34)  ftt— <_;5> L= <_I§.5> A <4%5> = <7%5> '

With initial values y1(0) = —0.1, y2(0) = —2 the solution of (1.2) starts in R~ ~, enters the
surface ¥, at y1(0.1) = 0, y2(0.1) = —1.25, and continues as a sliding mode along ¥, until it
reaches X = X, N Xg. Since there is no classical solution and no codimension-1 sliding mode
that starts in X, the solution stays there as a codimension-2 sliding mode.
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Figure 2. Ezample 2 of Section 3.2. The small pictures show the vector fields (grey) and the solution in the
phase space. The big pictures show the solution of the regularized differential equation as a function of time.

For the regularized differential equation (3.1) we again choose ¢ = 0.01. We study the
influence of scaling for the functions a(y) and S(y) with s, and kg, respectively. The upper
picture of Figure 2 shows the solution with the standard choice k., = kg = 1. Unphysical
oscillations of amplitude O(¢) and of frequency O(e~!) can be observed. These oscillations
force a numerical method to take small steps of size O(e) (natural output points by the code
Radaub are indicated by small circles) and makes the integration inefficient. For the choice
kg = 1 and Kk, > 1.5 (lower picture of Figure 2) one has only a few oscillations that are rapidly
damped. The numerical integrator can soon take large step sizes.

Example 3: Switching between a classical solution and a codimension-2 sliding mode. With
the surfaces of Example 1 we consider the differential equation (1.2) with

(3.5) A (0%5) T = (—_235> A <0%5> A <1%5>

(see the grey arrows in the small pictures of Figure 3). The solution starts at y1(0) = —0.5,
y2(0) = —1, enters the surface X, at y1(0.5) = 0, y2(0.5) = —0.25, and finally enters ¥ =
Yo MNXg. From the picture we can see that there exists a classical solution in the region R,
and an investigation of the DAE (2.2) shows that there is also a codimension-2 sliding mode.

Which solution will be selected by the regularization? As before we put ¢ = 0.01 and
consider scaled functions a(y) and S(y). For the standard choice ko = kg = 1 (upper picture
of Figure 3) the solution follows the codimension-2 sliding mode. Similar as in Example 1, it
comes as a surprise that in the presence of a classical solution, a sliding mode is selected by the
regularization. Numerical experiments with s, = 1 and different values of g have shown that
there exists £* ~ 1.703 such that for kg < x* the solution of (3.1) follows the codimension-2
sliding mode, whereas for kg > k* it follows the classical solution in R*" (compare both
pictures of Figure 3).

The theoretical analysis of Section 6 permits us to explain the behaviour of all three

examples (see Section 6.4).

4. Asymptotic expansion of the solution of the regularized problem. To understand the
behaviour of the solution of the regularized differential equation (3.1), the study of asymptotic
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Figure 3. Ezample 3 of Section 3.2. The small pictures show the vector fields (grey) and the solution in the
phase space. The big pictures show the solution of the regularized differential equation as a function of time.

expansions gives much insight. We present the main ideas without going into details. The
aim of this section is to motivate the differential equations describing the hidden dynamics,
and not to present rigorous error estimates. For the codimension-1 case the techniques are
closely related to that of [25], where state-dependent neutral delay equations are considered.

4.1. Entering a codimension-1 surface. We first consider the situation where the solution
of (1.2) enters transversally the hypersurface 3, sufficiently far away from 5. Without
loss of generality we assume that it enters from a(y) < 0 at a point y, € X, for which
&' (Ya)f~ (ya) > 0. In this situation the regularized differential equation takes the form

(4.1) = (1 +7@) @)+ (0 -rw) W) /2 u=a)/e

where we suppress the index corresponding to 3, so that f*(y) is the vector field in the region
a(y) > 0and f~(y) in a(y) < 0. This equation coincides with (3.1) as long as |B(y)| > e. In
the stripe |a(y)| < e we are concerned with a singularly perturbed differential equation. We
denote by tp(e) the time instant when the solution enters from «a(y) < —e this stripe, i.e.,

(4.2) a(y(to(e))) = —¢.

Since o (yYo) [~ (yYa) > 0, the Implicit Function Theorem guarantees that to(¢) can be expanded
into a series in powers of €. We therefore also have an expansion y(to(a)) = Yo +ear + O(£?).

To study the behaviour of the solution of (4.1) close to 3, we consider in addition to the
slow time t also a fast time 7 = ¢ /e, and we make the ansatz

(4.3) y(to(e) +t) = yo(t) +e(y1(t) + mo(t/e)) + O(e),

where yo(t),y1(t) describe the smooth part of the solution and the function 7o(7) captures
the transient part. For ¢ = 0, this expansion has to match the expansion for y(to(a)), which
means that yo(0) = yo and y1(0) + 70(0) = a;. In the differential equation (4.1) the division
by € occurs only in the definition of u. We expand this expression around the e-independent
term and obtain (with 7 = t/¢)

(14) ~ a(yltofe) +6) = = au(®) + o (30(8)) (5(8) + (7)) + OC).
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To avoid the singularity for e — 0, we have to determine a function yo(¢) that satisfies

(4.5) a(yo(t)) =0.

We aim in getting a small defect for the solution approximation (4.3). For this we insert (4.3)
and (4.4) into (4.1), we replace all appearances of ¢t with e7, and then we put ¢ = 0. This
yields the differential equation

(46) () = ((L+ () wa) + (1= 7 () () /2 = G0(0)

with the scalar function u(7) = o/(ya)(y1(0) + 10(7)). To obtain a relation for the func-
tion u(7), we multiply (4.6) with o/(y,) and notice that, by differentiation of (4.5), we have
' (Ya)y0(0) = 0. This yields the differential equation for u(7)

(4.7) o = (L) fa + (1= 7)) /2,

where f = o/ (yo)fT(ya) and f; = &/ (Ya)f ™ (Ya). The initial value u(0) = —1 is obtained
from (4.2), because a(y(to(€))) = a(ya +ear +...) = ed/ (ya)ar + O(e?) = eu(0) + O(?). For
this initial value we have u/(0) = f, > 0, so that the solution is monotonically increasing.
It is either bounded and converges to a stationary point, or it tends to infinity. We thus
distinguish between the following two (generic) situations:

Codimension-1 sliding mode. Suppose that the solution of (4.7) converges to a stationary
point u* € (—1,1). In this case we consider the differential equation

(48) go(t) = ((1+AM)FF (3o(®) + (1= A®) (1)) ) /2

together with a(yo(t)) = 0 from (4.5). This is a DAE, for which yo(0) = yo and A(0) = u* are
consistent initial values, i.e, a(ys) = 0 and & (ya)((1 + w*)f T (ya) + (1 — u*) f~ (ya)) /2 = 0.
We therefore have a unique function y(t) on an e-independent non-empty interval which, as
discussed in Section 2, is a codimension-1 sliding mode of (1.2).

The function 7(7) is obtained by simple integration from (4.6), where the integration
constant is chosen such that 7 (7) converges (exponentially fast) to zero for 7 — oo. Conse-
quently, the transient term in (4.3) is rapidly damped out and visible only on a small interval
of length O(e). Beyond this interval the solution (4.3) of the regularized equation (3.1) ap-
proximates (for ¢ — 0) a codimension-1 sliding mode of (1.2).

Classical solution. Suppose that the solution of (4.7) satisfies u(1) — oo for 7 — oco. In
this case it is not possible to define yo(t) as a codimension-1 sliding mode, because there is
no consistent initial value A\(0) € (—1,1) for (4.8). We thus define yo(t) = ya, so that (4.5)
is satisfied, and we arbitrarily put y1(¢) = 0. The monotonic function wu(7) will reach the
value +1 at some (fast) time 7, and then it is linear with slope fF > 0. For u(7) > 1 also the
vector field of (4.6) is constant, so that 79(7) = no(7a) + (7 — 7o) [ (ya) for 7 > 7,. Inserted
into (4.3) and using the known e-expansion for t = 0 we obtain

y(to(e) +1) = ya +ear +tf 1 (ya) + O(?)
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on intervals of length O(g). On such intervals, this solution of (3.1) approximates the classical
solution defined by § = f*(y) passing through y(0) = y,.

We insist that it is not our intention to give rigorous error estimates for the asymptotic
expansions. This can be done by estimating the defect of the approximation, when inserted
into (3.1), and by using Gronwall-type estimates (see for example [26] and [27]). Our aim is to
highlight the importance of the differential equation (4.7). In the situation, where the solution
enters the intersection of two hypersurfaces, this equation is the so-called ‘hidden dynamics’
which is the central theme of the present work.

4.2. Entering a codimension-2 manifold. An extension of the approach of asymptotic
expansions to the situation, where the solution of (1.2) enters a codimension-2 manifold, is
nearly straight-forward. We denote the entering point by yo, and we let to(¢) be the time
instant, when the solution enters the region {y; |a(y)| < ¢, |B(y)| < e}. Under generic
assumptions, to(¢) and also y(to(¢)) = yo + a1 + O(e?) can be expanded into powers of e.
Following the approach of Section 4.1 we make the ansatz (4.3) and compute the critical
expressions «a(y)/e and B(y)/e as in (4.4). To avoid the singularity for ¢ — 0 the function
yo(t) has to satisfy

(4.9) a(yo(t)) =0, B(yo(t)) = 0.

As before we insert (4.3) into (3.1), we replace all appearances of ¢ with e7, and then we put
¢ = 0. This yields the differential equation

() = (147 () (147 (0(7)) 5 (o) + (1+ 7 (u(r)) (1 = 7 (o)) f (o)
b (1= ) 1+ 7o) 7o) + (11— 7)) (L 7o) S () /4
— 90(0)

with the scalar functions u(r) = &' (y0)(y1(0) + no(7)) and v(r) = B'(yo)(y1(0) + 10(7))
which, when multiplied with e, represent the distance of the solution to the manifolds >,
and Xg, respectively. To obtain relations for the functions u(7) and v(7), we multiply the
differential equation for 79(7) once with o/(yg) and a second time with 8’(yo), and notice that
by differentiation of (4.9) we have o/(yo)yo(0) = 0 as well as 8'(yo)90(0) = 0. This yields the
2-dimensional dynamical system

o = (V) (1 7(@) S35+ (14 m(w) (1= 7(0) £~

) + (L= m@) (1 m(w) fo o (1= () (1= 7)) fo ) /4
o = (L) (14 7)) F + (L4 m(w) (1= () 5

+ (L= m@) (L4 7)) [+ (1= 7w) (- m() f77) /4,

where we use the abbreviation f* = o/(y0)f ™" (v0), - - - fa = B'(y0)f~ " (yo). Initial values
are determined by the incoming solution, and the behaviour for 7 — oo tells us which solution
(classical or sliding mode) is approximated by the regularization (3.1). This will be explained
in detail in Section 5. This system can already be found in the publication [5]. The name
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Figure 4. Different possibilities of entering the codimension-2 manifold ¥ = ¥, N X3.

‘hidden dynamics’ has recently been proposed in [9]. In fact, this dynamical system is not
visible in the original equation (1.2), but it is determined by the choice of regularization. It
informs us, how the incoming derivative vector ¢(0—) changes into the outgoing vector 7(0+),
when the solution crosses or enters a discontinuity manifold.

5. Hidden dynamics. The solution of (1.2) is continuous, but its derivative has jump
discontinuities when crossing or entering one of the manifolds 3, and ¥g. For the regularized
problem this discontinuity is smoothed out by a rapid transition from one state to the other.
In the limit, where the regularization parameter tends to zero, this transition is described by
the hidden dynamics (4.10), which takes place instantaneously.

In the following, we abbreviate the right-hand side of (4.10) by g(u,v) = (ga (u,v), gs(u, v)) ,
so that the dynamical system becomes

U = ga(u,v)

(5.1) = gﬁ(uvv)'

Note that by definition of the function m(u) we have g,(u,v) = go(—1,v) for u < —1,
9a(u,v) = ga(Lv) for u > 1, ga(u,v) = ga(u,—1) for v < -1, ga(u,v) = ga(u,1) for
v > 1, and similarly for gg.

5.1. Initial values determined by incoming solution. The initial values for the dynamical
system (5.1) are obtained from the solution that enters the codimension-2 manifold 3. We
distinguish between three different situations (see Figure 4):

Classical solution enters ¥. If it enters from the region R~ ", then we have u(0) = —1 and
v(0) = —1 (left picture of Figure 4); if it enters from R~ we have u(0) = —1 and v(0) = +1,
etc. The initial values are on the corners of the square @@ = [—1,1] x [—1, 1], which we call

unit square.

Codimension-1 sliding mode enters 3. If it enters along ¥, from the region where 5(y) < 0,
then there exists ug € (—1,1) such that g(up,—1) = 0 and gg(ug, —1) > 0, and the initial
values are u(0) = ug and v(0) = —1; if it enters from the region 5(y) > 0, all values —1 have
to be replaced by +1. If the sliding is along X3, the roles of u and v have to be interchanged.

Approaching 3. by spiraling around it. If there is neither a classical solution nor a codimen-
sion-1 sliding mode that enters X, the solution can spiral around ¥ and finally enter it at
finite time. In this situation all values on the border of the unit square () are potential initial
values, and none of them is highlighted.

We don’t elaborate the first situation, because it is not generic for a given initial condition
and can be studied similar to the second one. The other two situations will be studied in
detail in the following sections.
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5.2. Different outgoing solutions. The behaviour, for 7 — oo, of the solution of (5.1)
with initial values from Section 5.1 determine the kind of solution of (1.2) which will be
followed by the regularization (3.1) after the codimension-2 manifold ¥ has been entered. We
distinguish again between three different situations:

Classical solution. If u(r) — +o00 and v(7) — 400, which requires that g,(1,1) > 0 and
gp(1,1) > 0, a classical solution in the region R™* will be followed; if u(r) — 400 and
v(T) — —o0 there will be a classical solution in R*~, etc.

Codimension-1 sliding mode. If u(t) — u* € (—1,1) and v(7) — 400, which requires
that go(u*,1) = 0 and gg(u*,1) > 0, a codimension-1 sliding mode along ¥, into the region
B(y) > 0 will be followed. If u(r) — u* but v(r) — —oo, the codimension-1 sliding will be
along ¥, into the region f(y) < 0. For sliding modes along X3, the roles of u and v have to
be interchanged.

Codimension-2 sliding mode. If u(t) — u* € (—1,1) and v(1) — v* € (—1,1), which
requires that go(u*,v*) = gg(u*,v*) = 0, the solution of (1.2) will follow a codimension-2
sliding mode. It can also happen that the stationary point (u*,v*) is unstable, and that the
hidden dynamics (5.1) has a limit cycle around it. This situation translates into high frequency
oscillations of small amplitude in the approximation of a codimension-2 sliding mode of (1.2).

To investigate the asymptotic stability of the stationary solution of (5.1) we consider the
Jacobi matrix

Muga  Ovga
5.2 G(u,v) = U, V).
(52 (u,0) (au% a@gﬁ)( )

Asymptotic stability of a stationary point is equivalent to det G > 0 and trace G < 0.

5.3. Geometric study. The differential equation (5.1) is a 2-dimensional dynamical sys-
tem and much insight can be obtained by geometric considerations. The nontrivial dynamics
takes place on the unit square @ = [—1,1] x [—1,1]. We collect here the most important
properties. They are illustrated in the figures of Section 6.

e The vectors g(—1,—1),¢9(1,-1),9(1,1),9(—1,1) are indicated by arrows attached to
the corners of the unit square @). They take the values (f; ~, fgf), (fi—, fgf), etc.,
corresponding to the four vector fields surrounding .

e Since we work with bilinear interpolation, the curve defined by g¢,(u,v) = 0 and
restricted to () represents a hyperbola with vertical and horizontal asymptotes. It is
plotted in black with an arrow indicating that the region g, (u,v) > 0 lies to the left
of the curve. On this curve the vector g(u,v) is vertical.

e The curve defined by gg(u,v) = 0 is also a hyperbola (plotted in grey) and the arrow
has the meaning as before. On this curve the vector g(u,v) is horizontal.

e Stationary points of (5.1) are the intersections of the hyperbolas g, (u,v) = 0 and
gs(u,v) = 0. There can be two, one, or zero intersections in the unit square.

e The initial value corresponding to an incoming codimension-1 sliding mode is indicated
by a thick arrow pointing to an element of the border of @). If it comes through sliding
along 3, from S(y) < 0 it is characterised by gq(up, —1) = 0.

Lemma 5.1. If, at a stationary point (u*,v*) of (5.1), the arrow for gg(u,v) = 0 points
into the region where go(u,v) > 0, then we have det G(u*,v*) > 0.
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Proof. The row vectors of the matrix G are the gradients of the functions g, and gg. They
are orthogonal to the level curves g, (u,v) = 0 and gg(u,v) = 0, respectively, and point into
the region where the function is positive. If the arrow for gg(u,v) = 0 points into the region
where go(u,v) > 0, then the direction of the gradient Vgg(u*,v*) is obtained from that of
Vgao(u*,v*) by a rotation of an angle between 0 and 180°. This proves the statement. B

The question that we shall address in the following sections is to find simple criteria that
permit to decide in advance which solution will be followed. The surprising fact is that, even
in the case where classical solutions exist it is more likely for the solution of the regularized
equation (3.1) to follow a codimension-2 sliding mode.

6. Analysis of hidden dynamics: solution enters as a codimension-1 sliding mode.
Probably the most important situation is, where the solution enters the codimension-2 man-
ifold ¥ through a codimension-1 sliding. Without loss of generality we can assume that the
sliding is along 3, from the region f(y) < 0, and that

ga(_la _1) > 07 gﬁ(_17_1) > 07 ga(17_1) < 07

(6.1) _
there exists ug € (—1,1) such that g, (up, —1) = 0 and gg(ug, —1) > 0

(this corresponds to the picture in the middle of Figure 4). In the following we treat the
situations 0,ga(ug, —1) < 0 (left turning) and 0,ga(up, —1) > 0 (right turning) separately.
We do not consider the non-generic situation, where 0,4 (ug, —1) vanishes.

6.1. Left turning situation. In this section we assume 9,94 (up, —1) < 0. This means that
the branch of the hyperbola g, (u,v) = 0 starting at (ug,—1) lies in the region u < wug (hence
“left turning”). We shall see that in this case the solution either stays in ¥, or continues in
the region a(y) < 0. In the following we use the notation vg = {(u,v) € Q; gz(u,v) = 0} for
the hyperbola defined by gg restricted to the unit square @), and

Yo = {(u,v) € Q5 galu,v) =0, u < ug}

for the branch of the hyperbola g, (u,v) = 0 starting at (ug, —1).

Theorem 6.1. In addition to assumption (6.1) let Oyga(ug, —1) < 0.
(a) Assume that v, intersects transversally v inside the unit square, and denote (u*,v*)
the intersection point closest to (ug, —1).
(al) If gs(1,u*) <0, then (u*,v*) is an asymptotically stable equilibrium of (5.1), and
we have u(t) — u* and v(1) = v* for T — oo.
(a2) If gg(1,u*) > 0, then (u*,v*) is also asymptotically stable, but the solution either
converges to (u*,v*) or it approaches a limit cycle.
(b) Assume that v, N~z = 0.
(b1) If go(—1,1) > 0, then there exists u* € (—1,1) such that go(u*,1) = 0 and the
solution of (5.1) is such that u(t) — u* and v(17) = 400 for T — 0.
(b2) If go(—1,1) < 0 and gg(—1,1) < 0, then there exists v* € (—1,1) such that
g3(—1,v*) = 0 and the solution of (5.1) is such that u(t) — —oo and v(r) — v*
for T — .
(€) If vz Nyg =0, ga(—1,1) < 0, and gs(—1,1) > 0, then the solution of (5.1) is such
that u(t) — —oo and v(1) = 400 for T — 0.
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Figure 5. Vector fields for the situations of Theorem 6.1; the hyperbola go (u,v) = 0 (black curve) is oriented
such that the region ga(u,v) > 0 is to the left; the gray curve corresponds to the hyperbola gg(u,v) = 0; the
vector field (5.1) at the corners of the unit square is indicated by arrows.

Remark. This theorem covers all possible generic situations. In the case (a), the solution of
the system (3.1) follows the codimension-2 sliding mode corresponding to (u*,v*). In the case
(b1), it follows the codimension-1 sliding mode along ¥, into the region f(y) > 0, whereas in
the case (b2) it follows the codimension-1 sliding mode along ¥4 into the region a(y) < 0. In
the case (c), it follows the classical solution into the region R™.

Proof. The assumption 0,¢q(ug, —1) < 0 implies that the branch ~y, of the hyperbola ~,,
which passes through (ug,—1), turns left (see Figure 5). Since g, (ug,v) < 0 for all v (also
outside the unit square), the solution of (5.1) with initial value (ug, —1) remains in the half
plane u < uy. Moreover, we have gg(u,—1) > 0 for u < g, so that the solution also stays in
the half-plane v > —1.

(a) Let (u*,v*) be the intersection of 7, with 75 which is closest to (ug,—1). Since
ga(u,v) > 0 to the left of (u*,v*) and gg(u,v) > 0 below it, the diagonal elements of G(u*, v*)
are strictly negative. Moreover, det G(u*,v*) > 0 by Lemma 5.1, so that this equilibrium is
asymptotically stable.

(al) If gg(1,v*) < 0, an (oriented) branch of vz starts on the border of @ in the region
u > up and v < v* and passes through the equilibrium (u*,v*) (first picture of Figure 5). It
can have one or two intersection points with 7, . The solution of (5.1), starting at (ug, —1),
has to stay to the right of 7, and below vg, so that it converges straight ahead (without
spiraling) to the equilibrium (u*,v*).

(a2) If gg(1,v*) > 0, an (oriented) branch of vz starts on the border of @ in the region
u > u* and v > v*, and this branch has only one intersection point with =, (second picture
of Figure 5). Since the solution with initial value (ug, —1) remains bounded, which follows by
an inspection of the vector field, the Theorem of Poincaré-Bendixson (see, e.g., [28]) implies
that the solution either converges to the equilibrium or to a limit cycle around it.

(b1) The assumptions g,(—1,—1) > 0 and go(—1,1) > 0 imply that the branch ~, cannot
intersect the left side of the unit square (), and therefore it intersects the upper side at some
point (u*, 1), where —1 < u* < ug (third picture of Figure 5). Since v, N~z = 0, the solution
of (5.1) cannot cross the branch ~, , and therefore it increases monotonically from (ug, —1) to
some point (ug, 1), where u* < u; < wg is such that gg(ui,1) > 0. From there, the solution
remains outside ) and tends to infinity like u(7) — u* and v(7) — 400 for 7 — oc.

(b2) Assume that v, Nys = 0, go(—1,1) < 0, and gg(—1,1) < 0. Consequently, the
hyperbola 7, intersects the left side of the unit square at some point (—1,v,), and the
hyperbola 73 intersects it at a point (—1,v*) with v, < v* < 1 (fourth picture of Figure 5).
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By inspecting the vector field, one sees that the solution of (5.1) has to end up in the region
u < —1 and vy < v < 1, where it tends to infinity like u(7) = —oo0 and v(7) — v* for 7 — 0.

(c) Finally, assume that v, N3 =0, go(—1,1) <0, and gg(—1,1) > 0. This implies that
v, intersects the left side of the unit square at some point (—1,v,), and g neither intersects
v, nor the left side of @ (last picture of Figure 5). Since the vector field is vertical (upwards)
on 7y, and horizontal (left directed) on s (provided that vz intersects @), the solution of
(5.1) has to stay between them and it has to end up in the region v < —1, v > 1. There the
vector field is constant and the solution tends to infinity like u(7) — —oo and v(7) — +o0 for
T—o00.

Remark. The situation (a2) of the previous theorem needs a comment. We believe that
in this situation the solution of (5.1) always converges to the equilibrium (u*,v*). This is
motivated by numerical experiments. Under additional assumptions, the existence of a limit
cycle can be excluded as follows. If (5.1) has a periodic solution §(t) = (6a(t),ds(t)), then
Green’s Theorem (divergence theorem) implies

(6.2) //D <8uga(u,v) + &,gg(u,v)) dudv = jg(ga(u,v) dv — gs(u,v) du),

where D is the interior of the closed curve §. The right-hand side of (6.2) vanishes, because
du = o (t)dt = go(u,v)dt and dv = d5(t)dt = gz(u,v)dt. If one can prove that the left-hand
side of (6.2) is non zero, we get a contradiction to the assumption of the existence of a limit
cycle. At the equilibrium (u*,v*), which is in the interior of d, the expressions 9,94 (u,v) and
0y93(u,v) are both negative. Note that 0,9, changes sign only at the horizontal asymptote of
the hyperbola v,, and 0,93 changes sign only at the vertical asymptote of the hyperbola 3.
Therefore, the left-hand side of (6.2) is strictly negative, if the horizontal asymptote of 7, is
outside the stripe —1 < v < 1, and the vertical asymptote of v3 is outside of —1 < u < ug.

6.2. Right turning situation. We next consider the situation, where 9,g4(ug, —1) > 0, so
that the branch of the hyperbola g,(u,v) = 0 starting at (ug,—1) lies in the region u > wg
(hence “right turning”). We shall see that the solution then stays either in ¥, or continues in
the region a(y) > 0. If gg(1, —1) > 0, then a simple symmetry argument (exchanging u <> —u
and g, <> —g,) brings us back to the situation covered by Theorem 6.1. We thus assume
gs(1,—1) < 0 in the following theorem. Furthermore, we use the notation

vE = {(u,v) € Q3 ga(u,v) =0, u > up}

for the branch of the hyperbola g, (u,v) = 0 starting at (ug, —1).

Theorem 6.2. In addition to assumption (6.1) let Oyga(uo, —1) > 0 and gg(1,—1) < 0.
(a) Assume that v intersects transversally g inside the unit square, and denote (u*,v*)
the intersection point closest to (ug, —1). We further denote by 7; the oriented branch
of vg that passes through (u*,v*).
(al) If v5 ends up at the left side of Q below v*, then (u*,v*) is an asymptotically
stable equilibrium of (5.1), and u(t) — u* and v(T) = v* for T — oco.
(a2) If v intersects v+ only in (u*,v*) and ends up at the left side of Q above v* or
at the upper side of Q, then the solution of (5.1) either converges to (u*,v*) or it
approaches a limit cycle around it.
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Figure 6. Vector fields for the situations of Theorem 6.2 and of Theorem 7.1 (spiral); the interpretation of
curves and arrows is the same as in Figure 5.
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(a3) If vj intersects v twice and if go(1,1) < 0 so that there ewists @ € (ug, 1) with
9o, 1) = 0, then the solution of (5.1) either converges to (u*,v*) or it approaches
a limit cycle around it, or it satisfies u(1) — @ and v(T) — 400 for T — 0.
(ad) If V5 ends up at the right side of Q above v* and if 9a(1,1) > 0, then the solution
of (5.1) either converges to (u*,v*) or it approaches a limit cycle around it, or it
satisfies u(t) — 400 and v(T) — 400 for T — 0.
(b) If vt Ny =0 and go(1,1) < 0, then there exists u* € (uo, 1) such that go(u*,1) =0
and the solution of (5.1) is such that u(t) — u* and v(7) = 400 for T — 0.
(¢) If v Ny = 0 and go(1,1) > 0, then the solution of (5.1) is such that u(t) — 400
and v(T) = 400 for T — o0.

Remark. Again, all possible generic situations are covered by this theorem. Note that for
the cases (a2)—(a4) the branch 7 necessarily starts at the bottom line of Q. As in Theorem 6.1
the different cases characterize the type of solutions of the regularized differential equation
(3.1) that is followed after entering the codimension-2 manifold ¥. A particular situation
arises in the case (a4), where a codimension-1 sliding mode exists along X3 into a(y) > 0, but
this solution is unstable and separates the basins of attraction for a classical solution and for
a codimension-2 sliding mode.

Proof. The proof is similar to that of Theorem 6.1. The assumption 0,gq(ug,—1) > 0
implies that the branch 7 of the hyperbola 7, which passes through (ug,—1), turns right
(see Figure 6). Since g, (ug,v) > 0 for all v (also outside the unit square), the solution of (5.1)
with initial value (ug, —1) remains in the half plane u > uy. The assumptions gg(ug, —1) >0
and gg(1,—1) < 0 imply that a branch of the hyperbola 74 starts at the bottom side of the
unit square at (uy, —1) with uy < u; < 1.

(al) By assumption, the branch of v3 passing through (u*,v*) hits the left side of the
square at some point (—1,v1) with —1 < v; < v* (first picture of Figure 6). The same
argument as in the situation (al) of Theorem 6.1, after exchanging left and right, shows that
the solution of (5.1) converges straight ahead to the equilibrium (u*,v*).
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(a2) For the cases (a2)-(a4) the branch v} starts at the bottom side of @ at (u1,—1). In
the situation (a2), we have det G(u*,v*) > 0 by Lemma 5.1 and 9,9, (u*,v*) < 0, but the trace
of G(u*,v*) can be positive or negative (second and third pictures of Figure 6). Therefore, the
stationary point (u*,v*) can be asymptotically stable or unstable. Since 'yg does not traverse
the right side of the unit square, an inspection of the vector field shows that the solution
of (5.1) with initial value (ug,—1) is bounded. As a consequence, the Poincaré-Bendixson
Theorem implies that the solution either converges to (u*,v*) or to a limit cycle surrounding
this equilibrium.

(a3) Since gq(up, 1) > 0 and go(1,1) < 0, there exists @ € (ug, 1) with g, (@, 1) = 0 (fourth
picture of Figure 6). The solution of (5.1) either remains bounded and turns around (u*,v*)
or it hits the upper side of @ at some point between ug and @. In the first case the Poincaré—
Bendixson Theorem implies that the solution either converges to the equilibrium or to a limit
cycle around it. In the second case we have u(7) — @ and v(7) — oo for 7 — oo.

(a4) By assumption, the branch 72 turns right and intersects the right side of the unit
square at a point (1,v1). Since go(1,1) > 0, also 7 ends up at the right side of the unit
square Q. There can be two or one intersections with v (fifth and sixth pictures of Figure 6).
If the solution of (5.1) starting at (ug, —1) touches the border of @) at some point with v > vy,
then it leaves the unit square and enters the region, where v > 1 and v > 1. Otherwise, the
solution is bounded and the Poincaré-Bendixson Theorem completes the proof.

(b) The proof for this situation (seventh picture of Figure 6) is essentially the same as
that for the situation (bl) of Theorem 6.1.

(c) The last situation (eigth picture of Figure 6) is treated as the situation (c) of Theo-
rem 6.1. W

Remark. In the situation (a2) of Theorem 6.2 the derivative d,gg(u*,v*) can be negative
(second picture of Figure 6) or positive (third picture of Figure 6). If it is negative, the
equilibrium is asymptotically stable and the remark after the proof of Theorem 6.1 applies.

6.3. Solution of the regularized differential equation. With the interpretation of Sec-
tion 5.2 all results of the previous two subsections can be reinterpreted as statements for the
solution of the regularized differential equation (3.1). Since the results of Theorems 6.1 and 6.2
give a complete classification, we get even more information. Let us start with interpreting
the condition 0,gq(ug, —1) < 0 in terms of the vector fields of (1.2), see also (4.10).

Lemma 6.3. Assume that go(—1,—1) > 0 and that there exists ug € (—1,1) such that
Ja(ug,—1) = 0. Then, we have

o Oygaluo,—1) <0 if and only if [+ [~ — [+~ >0.
o 0ugaluo,—1) >0 if and only if f,*f+ — ff <0,
The statement remains true if the argument (ug, —1) of Oyga is replaced by an arbitrary point
of the branch of the hyperbola g (u,v) = 0 passing through (ug, —1).
Proof. If 0yga(ug, —1) # 0, we can write the function g, (u,v) as

(6.3) Ga(u,v) = co(u —un)(v —vq) — dqy
with ¢, # 0, so that u = u, and v = v, represent the asymptotes of the hyperbola. A simple
algebraic argument shows that the expression f,*fF~ — fFf+f = written in terms of the

function g, as go(—1,1)ga(1,—1) — ga(1,1)ga(—1,—1), is equal to 4cydy.



CLASSIFICATION OF HIDDEN DYNAMICS IN DISCONTINUOUS SYSTEMS 19

For the case, where c,d, > 0, the hyperbola g, (u,v) = 0 consists of a left lower and a
right upper branch. By our assumptions g,(—1,—1) > 0 and g4 (up, —1) = 0, we see that g,
takes positive values left to the point (ug, —1). Consequently, it takes negative values above
(ug, —1) implying that 9yga(ug, —1) < 0. On the other hand, for a point (ug,—1) on the
hyperbola, we can have positive values to the left and negative values above only if c,d, > 0.

For c,d, < 0, the hyperbola g, (u,v) = 0 consists of a left upper and a right lower branch.
Since g, takes positive values left to the point (ug, —1), it takes in this case also positive values
above (ug, —1) which is possible only if 9,gq(ug, —1) > 0.

Since 0,94 (u, v) does not change sign on a branch of the hyperbola, the argument (ug, —1)
can be replaced by any point of the branch passing through (ug,—1). B

Theorem 6.4. Assume that the solution enters ¥ as sliding mode along ¥ from B(y) < 0.
If there is no outgoing codimension-1 and no codimension-2 sliding mode, then we have:

o if foTfIT — fItf, >0, there exists a classical solution of (1.2) in R™" and the
solution of the reqularized equation (5.1) follows this classical solution.
o if foTfIT — fItf, <0, there exists a classical solution of (1.2) in RT" and the

solution of the regularized equation (5.1) follows this classical solution.

Proof. The assumption on how the solution enters the intersection ¥ = ¥,NX 3 implies that
ga(—1,—-1) > 0, go(1,—1) < 0, and that there exists ug € (—1,1) such that g,(ug,—1) = 0
and gg(ug, —1) > 0.

Consider first the situation f, T fF~ — ff*f.~ > 0 which, by Lemma 6.3, is equivalent
to Opga(uo, —1) < 0. If gg(—1,—1) > 0, condition (6.1) is satisfied, so that Theorem 6.1 can
be applied. Only in the situation (c) there is neither an outgoing codimension-1 sliding mode
nor a codimension-2 sliding mode. In this case we have a classical solution in R~ and the
solution of the regularized problem follows this solution.

It fotfd— = fiTfy~ > 0, but gg(—1,—1) < 0, the assumption gg(up, —1) > 0 implies
gs(1,—1) > 0. Consequently, the transformation u <+ —u together with a(y) <+ —a(y), which
induces the transformation g, (u,v) <> —ga(—u,v), implies that all assumptions of Theo-
rem 6.2 are satisfied. Only the situation (c) has neither a codimension-1 nor a codimension-2
sliding mode, but there is a classical solution in the region, where 3(y) > 0 and —a(y) > 0.
This proves the existence of a classical solution in R~+.

The statement for f, T fF~ — fI*f,~ < 0 follows from the first statement by exchanging
u < —u and a(y) < —a(y). A

Theorem 6.5. Assume that the solution enters ¥ as a sliding mode along ¥, from B(y) < 0.
If there is no outgoing classical solution and no codimension-2 sliding mode, then we have:
o if foNfIT—fItfoT >0 and f,; T <0, there exists a codimension-1 sliding mode of
(1.2) along X3 in the region a(y) < 0.
o if foNfIT—fItfoT <0 and fI >0, there exists a codimension-1 sliding mode of
(1.2) along X3 in the region a(y) > 0.
o if fotfdiT (It T >0and fut >00rif fTfaT —fITfaT <0 and fIT <0,
there exists a codimension-1 sliding mode of (1.2) along X in the region B(y) > 0.
In all cases the solution of the reqularized differential equation (3.1) follows the corresponding
codimension-1 sliding mode.
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Proof. The assumption on the incoming solution implies go(—1,—1) > 0, go(1,—1) < 0,
and that there exists ug € (—1,1) such that go(ug, —1) = 0 and gg(ug, —1) > 0.

If forfr — fItf7~ > 0, it follows from Lemma 6.3 that 0,94(ug,—1) < 0. The
assumption that there is no outgoing classical solution together with f;* < 0 imply that
gp(—1,1) < 0. The nonexistence of codimension-2 sliding modes implies 7, Nz = 0, so that
the sign of gg(u,v) does not change on v, . Consequently, we have gg(—1,v1) > 0, where
v € (—1,1) is defined by go(—1,v1) = 0, and therefore also gg(—1,—1) > 0. We are now in
the position to apply Theorem 6.1. Only the situation (b2) is possible. This proves the first
statement of the theorem. The second statement follows from the first one by exchanging
u <+ —u and a(y) < —a(y).

The assumptions for the last statement imply that the hyperbola for g, (u,v) = 0, starting
at (ug,—1), traverses the upper side of the unit square. Since there is no codimension-2
sliding mode, the only possible situations are (bl) of Theorem 6.1 and (b) of Theorem 6.2.
The discussion of Section 5.2 concludes the proof. B

6.4. Explanation of the examples of Section 3.2. Theorem 6.1 and Theorem 6.2 permit
us to understand and to explain the behaviour of the regularized solution for the examples of
Section 3.2.

Example 1. For the vector field (3.3) of Example 1 we have

ga(u,v) = 0.95uv —04u—0.2v+ 0.05
gg(u,v) = —uv—0.7u—0.65v—0.25

Condition (6.1) is satisfied with ug = 5/27, and we have 9,94 (ug, —1) < 0, so that Theorem 6.1
applies. There are two intersection points of the hyperbolas 7, and ~z in the unit square,
exactly as drawn in the first picture of Figure 5, situation (al). This explains, why the solution
of Figure 1 approaches a codimension-2 sliding mode without any oscillations.

Example 2. For the vector field (3.4) of Example 2 we have (note that a(y) and B(y) are
scaled by ko and kg = 1, respectively)

u, V) = Kq(duv —4u + 4v —
9o (u,v) ol ) G(0,0) = < 4 Kq 4/£a>
gg(u,v) = 6(2uv —4u +v) —24 6

Condition (6.1) is satisfied with ug = —1/2. The only intersection of the hyperbolas v, and 73
is (u*,v*) = (0,0). Moreover, we have 0ygn(ug, —1) > 0, gg(1,—1) < 0, and gg(1,1) < 0, so
that 75 does not traverse the right side of the unit square. We are therefore in the situation (a2)
of Theorem 6.2. The determinant of G(0,0) is always positive, but its trace is negative only
for ko > 1.5. Consequently, we have a limit cycle for the hidden dynamics for 1 < x, < 1.5
resulting in the high frequency oscillations observed in Figure 2. For k, > 1.5 we observe
asymptotic convergence to a codimension-2 sliding mode.

Example 3. For the vector field (3.5) of Example 3 we have (with xk, = 1)

) = duv—4du+4 _
go(u,v) uv — du + 4v G(0,0) = < 4 4 >
gp(u,v) kg(duv — 4u + 2v) —4dKrg 2kp
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which corresponds to the situation (a4) of Theorem 6.2. There exists a value £* ~ 1.703, such
that for kg = ~* the solution follows a codimension-1 sliding mode along ¥z into the region
a(y) > 0. However, this situation is not generic (unstable), because for kg < £* the solution
approaches a codimension-2 sliding mode and for kg > k* a classical solution in R.

7. Analysis of hidden dynamics: solution enters in spiral mode. It remains to consider
the situation where the solution spirals inwards to approach the codimension-2 manifold X.
Without loss of generality we assume that it spirals counterclockwise as illustrated in the
picture to the right of Figure 4. This fixes uniquely the sign pattern at the corners as

ga(_lv _1) > 07 ga(lv _1) > 07 ga(lv 1) < 07 ga(_lv 1) < 07

7.1
WD 1 -1) <0, go(L—-1)>0, gs(L1)>0, gs(=1,1) <o.

Let us investigate, what it means that the solution spirals inwards. Starting in the region
R~ at a value which satisfies f(y) ~ 0 and a(y) = —e with small € > 0, the solution satisfies
a(y(t)) = —e+tga(—1,—1) and S(y(t)) ~ tgp(—1,—1) until a(y(t)) vanishes. This happens for
t = e/ga(—1,-1), where a(y) =~ 0 and S(y) = egg(—1,—1)/ga(—1,—1). Proceeding similarly
in the remaining three regions, we obtain that after a complete round the solution satisfies
B(y) =~ 0 and a(y) = —ve where, in the case of inwards spiraling solutions, the contraction
factor v is asymptotically given by

gg(—1,-1) . ga(l,—1) ' g5(1,1) 'ga(—l,l

7.2 0<vy<l1 with =
(72) v 7T L) 951 1) ga(L1) ga(-1L1

~— [ —

Theorem 7.1. Under assumptions (7.1) and (7.2) there exists a unique equilibrium (u*,v*)
of the dynamical system (5.1). At this equilibrium point we have that det G(u*,v*) > 0 and
at least one among the derivatives O0ygo(u*,v*) and 0,g5(u*,v*) is negative. The solution of
(5.1) either converges to (u*,v*) or it approaches a limit cycle around this equilibrium.

Proof. Tt follows from the sign pattern (7.1) that the hyperbola for g, (u,v) = 0 goes from
the right to the left side of the unit square, and the hyperbola for gs(u,v) = 0 from the
top to the bottom (see the picture with label “spiral” of Figure 6). Lemma 5.1 thus implies
det G(u*,v*) > 0 at the unique stationary point.

The condition (7.2) implies that at least one of the expressions

ga(la_l)ga(_lal)‘ ‘gﬁ(lal)gﬁ(_la_l)
ga(=1,—1)ga(1,1) | 95(=1,1)gs(1,-1)
is strictly smaller than 1. Assume first that this is true for the first expression of (7.3). From

assumption (7.1) on the sign pattern at the corners of the unit square we see that this is
equivalent to

(7.3)

(7'4) ga(la_l) ga(_lvl) >goc(_17_1)goc(171)'

As in the proof of Lemma 6.3 we write the function g, (u, v) as go (u, v) = co(u—ug)(V—v4)—dy
with ¢, # 0, so that the inequality (7.4) becomes equivalent to ¢, d, > 0. In this situation
the hyperbola g, (u,v) = 0 consists of a left lower and a right upper branch. If ¢, > 0 (and
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hence also d, > 0), the sign pattern of g, at the corners of the unit square and the fact that
go < 0 on the asymptotes imply that the stationary point (u*,v*) lies on the left lower branch
of the hyperbola. Consequently, v* < v, and 9y gq(u*, v*) = co (v —vy) < 0. For ¢4 < 0 (and
do < 0), the stationary point (u*,v*) has to be on the right upper branch of the hyperbola,
implying v* > v, and again 0,9, (u*,v*) = co(v* —v4) < 0.

If the second expression of (7.3) is strictly smaller than 1, we have cg dg < 0 (the constants
cs and dg are defined by gg(u,v) = cg(u—ug)(v—vg)—dy), so that the hyperbola gg(u,v) =0
consists of a left upper and a right lower branch. The same arguments as in the first case then
show that 0,gs(u*,v*) = cg(u* —ug) < 0.

Since the solutions of (5.1) are bounded and (u*,v*) is the only stationary point, an
application of the Poincaré-Bendixson Theorem completes the proof. H

Remark. The statement of Theorem 7.1 remains true under milder assumptions. It is not
necessary to require that the solution enters in spiral mode. It is sufficient to assume that
there is no outgoing classical solution and no outgoing codimension-1 sliding mode. This is
a consequence of situation (a) of Theorem 6.1 (second picture of Figure 5) and of situations
(al) and (a2) of Theorem 6.2 (second and third pictures of Figure 6).

8. Stabilization. As an interesting outcome of our theoretical investigation we obtain a
modification of the standard regularization that permits us to avoid unphysical oscillations
around codimension-2 sliding modes.

Corollary 8.1. Whenever the solution of the hidden dynamics (5.1) tends to a limit cycle
around an unstable equilibrium, then there exists a scaling a(y) — ko (y), B(y) = KB(Y)
with min(kq, kg) = 1, which makes the equilibrium (u*,v*) asymptotically stable.

Proof. By our classification the only possible situations are (a2), (a3), and (a4) of Theo-
rem 6.2, for which we have 9,9, (u*,v*) < 0, and the situation of Theorem 7.1, for which at
least one among the derivatives 0,9q(u*,v*) and 0,g5(u*, v*) is negative. It is therefore always
possible to choose ko, > 1 and kg > 1 such that the trace ko0yga(u*, v*)+K50,g95(u*,v*) of G
for the scaled problem is negative. Since the scaling does not change the sign of det G(u*, v*)
(in fact, this determinant is positive for all occurring situations), we get an asymptotically
stable equilibrium. H

Corollary 8.1 tells us that the situation of Example 2 of Section 3.2 is generic. Whenever
the solution of the regularized equation (3.1) oscillates around a codimension-2 sliding mode,
it is possible to make the equilibrium (u*,v*) asymptotically stable with a suitable choice
of ko and kg. In all our numerical experiments (see also the remark after the proof of
Theorem 6.1) we observed that such a scaling rapidly damps the oscillations and makes a
numerical treatment efficient. Note, however, that the matrix G(u*,v*) depends on the point
Yo € Xq M X, so that also the parameters k., and kg depend on yy € ¥X. Theoretically, this
does not cause any problems, because our analysis is local.

Ideally, one would like to fix in advance the parameters s, (y) and x(y) (for y € ¥), which
avoid unphysical oscillations in the solution of the regularized differential equation (3.1). For
realistic problems this seems to be a challenging question, which is not addressed in the present
work.
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9. Conclusions. This article considers ordinary differential equations with discontinuous
vector field. Our main interest is the study of solutions close to the intersection of two dis-
continuity surfaces. To avoid the continuum of solutions in Filippov’s approach, we restrict
our considerations to a 2-parameter family of convex combinations of the adjacent vector
fields. Using singular perturbation techniques, we interpret the solution of the discontinuous
differential equations as the limit of the solutions of a regularized problem. This leads to a
2-dimensional dynamical system (the so-called hidden dynamics) which determines the tran-
sition between the solution entering the intersection of the two surfaces and its continuation.

In the present work we study the hidden dynamics and we give a complete characterisation
of such transitions. In the presence of more than one solution (classical or sliding modes) this
provides a natural selection procedure of the most meaningful solution. The surprising new
insight is that in the co-existence of classical and codimension-2 sliding mode solutions, in most
cases the codimension-2 sliding mode is the correct solution. A byproduct of our analysis is
a modification of space regularizations that permits to avoid artificial high oscillations and
makes the numerical treatment more efficient.

Understanding escape conditions, when a codimension-2 sliding mode leaves the intersec-
tion of the discontinuity surfaces, is an interesting open research problem.
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