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Abstract. There exist excellent codes for an efficient numerical treatment of stiff and differential-
algebraic problems. Let us mention Radau5 which is based on the 3-stage Radau IIA collocation
method, and its extension to problems with discrete delays Radar5. The aim of the present work is
to present a technique that permits a direct application of these codes to problems having a right-
hand side with an additional distributed delay term (which is a special case of an integro-differential
equation). Models with distributed delays are of increasing importance in pharmacodynamics and
pharmacokinetics for the study of the interaction between drugs and the body.

The main idea is to approximate the distribution kernel of the integral term by a sum of exponen-
tial functions or by a quasi-polynomial expansion, and then to transform the distributed (integral)
delay term into a set of ordinary differential equations. This set is typically stiff and, for some
distribution kernels (e.g., Pareto distribution), it contains discrete delay terms with constant delay.
The original equations augmented by this set of ordinary differential equations can have a very large
dimension, and a careful treatment of the solution of the arising linear systems is necessary.

The use of the codes Radau5 and Radar5 is illustrated at three examples (two test equations and
one problem taken from pharmacodynamics). The driver programs for these examples are publicly
available from the homepages of the authors.
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1. Introduction. The motivation of the present work is in dealing numerically
with mathematical models consisting of delay integro-differential equations, as those
arising in pharmacokinetics and pharmacodynamics, where the interaction between
drugs and the body is studied (e.g., [16, 11, 5]). The problem is usually modeled by or-
dinary or delay, differential or differential-algebraic equations, which typically contain
integral terms of convolution type (also termed distributed delay). Differential equa-
tions with a distributed delay term are a special case of Volterra integro-differential
equations. There is a large literature on the numerical discretization of such problems,
and their accuracy and stability is well investigated. Let us mention the monographs
by H. Brunner [3, 4]. A different approach for problems with weakly singular kernel
is the use of discretized fractional calculus by C. Lubich [13] (see also [8]), and the
oblivious convolution quadrature [14, 12] for more general kernels. Available codes
mostly make use of constant step size.

Implementing an integration method for the considered class of problems is more
or less straight-forward, if constant time steps are used. However, in realistic situa-
tions one is often confronted with initial layers (like the problem of Section 6.3) and/or
fast transitions between different states, so that flexibility in the choice of step size is
an essential ingredient for efficiency. Although there exist excellent codes for solving
nonstiff and stiff ordinary differential equations, codes for differential-algebraic equa-
tions, and codes for delay differential equations equipped with sophisticated step size
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strategies, we are not aware of a code based on a variable step size time integrator
that can efficiently treat problems with distributed delays.

Instead of extending a numerical integrator for Volterra integro-differential equa-
tions to a variable step size code, we propose to change the problem in such a way that
any code for stiff and differential-algebraic (delay) equations can be applied. The idea
is to approximate the distribution kernel of the integral term by a sum of exponential
functions (multiplied by a polynomial) and then to transform the integral delay term
into a set of differential equations. The use of an approximation by a sum of expo-
nential functions is not new in numerical analysis. In [2] it is applied for an efficient
computation of high-dimensional integrals. In [12] it is used for developing a variable
step size integrator that is applied to interesting problems like a blow-up problem for
a nonlinear Abel integral equation and a fractional diffusion-reaction system. New in
the present work is that we do not propose another time integrator, but we show that
a large class of problems with distributed delay can be solved by standard software
for stiff and differential-algebraic (delay) equations. This is illustrated at the hand of
Radau5 [9] for stiff and differential-algebraic equations, and its extension Radar5
[6, 7] for problems including delay arguments. New is also an application to problems
in pharmacokinetics and pharmacodynamics.

Outline of the paper. Section 2 introduces the class of problems that can be treated
with the codes presented in this work. It comprises nonstiff, stiff, differential-algebraic,
and delay differential equations, with the additional feature that distributed delay
terms are included. In approximating the kernel of a distributed delay term by a sum
of exponential functions multiplied by a polvnomial, the problem is transformed into
a system without distributed delay terms. Since the resulting system is typically of
a much larger dimension than the original problem, Section 3 presents an algorithm
that reduces considerably the complexity of the required solution of linear systems.
Furthermore, the stability of the proposed algorithm and the determination of the
accuracy parameters are discussed. Section 4 describes the approach by Beylkin and
Monzón [1] for approximating the factor t−α (typically present in weakly singular
kernels) by a sum of exponential functions. Parameters in the approximation are
selected to keep the approximation error under a given level. Section 5 presents
important examples of distributed delays (the gamma distribution and the Pareto
distribution) commonly used in pharmacodynamics and pharmacokinetics. Finally,
Section 6 provides numerical evidence of the efficiency of the proposed approach by
applying the codes Radau5 and Radar5 to two test examples and to an example
from chemotherapy-induced myelosuppression. The codes together with drivers for
problems with distributed delays are made publicly available.

2. Differential equations with distributed delay. We consider differential
equations of the form

Mẏ(t) = f
(
t, y(t), y(t− τ), I(y)(t)

)
, y(0) = y0, y(t) = η(t) for t < 0, (2.1)

where y ∈ Rd, M is a constant d× d matrix, the delay satisfies τ ≥ 0, and

I(y)(t) =

∫ t

0

k(t− s)g
(
s, y(s)

)
ds (2.2)

is a distributed delay term. The vector functions η(t), f(t, y, v, I), and the scalar
functions k(t), g(t, y) are assumed to be smooth. The kernel k(t) is allowed to have
an integrable singularity at the origin.
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This formulation contains ordinary differential equations, differential-algebraic
equations (for singular M), delay differential equations, and integro-differential equa-
tions as special cases. All considerations of the present work extend straight-forwardly
to the case, where the delay τ = τ(t, y(t)) ≥ 0 is time and state dependent, and where
several delay terms and several integral terms Ii(t)(y) (with different kernels ki(t)
and different functions gi(t, y)) are present. For notational convenience we restrict
our study to the formulation (2.1). We focus on the situation, where at least one
integral term (2.2) is present in (2.1).

Assume that we have at our disposal a reliable code for solving differential equa-
tions of the form (2.1), where no integral term is present. Let us mention the code
Radau5 of [9] for stiff and differential-algebraic equations and its extension Radar5
of [6] for delay differential-algebraic equations. Our aim is to demonstrate how such
codes can be applied to the solution of (2.1) with integral terms included, without
changing them. The main idea is to approximate the kernel k(t) by a finite sum of
exponential functions multiplied by a polynomial. We thus assume that

k(t) =

n∑
i=1

pi(t) e
−γit, pi(t) =

mi∑
j=0

ci,j t
j (2.3)

with real coefficients ci,j and γi, so that the distributed delay term (2.2) can be written
as

I(y)(t) =

n∑
i=1

mi∑
j=0

ci,jzi,j(t), zi,j(t) =

∫ t

0

(t− s)j e−γi(t−s)g
(
s, y(s)

)
ds. (2.4)

Differentiation of zi,j(t) with respect to time yields, for i = 1, . . . , n,

żi,j(t) = − γi zi,j(t) +

{
g
(
t, y(t)

)
j = 0

j zi,j−1(t) j = 1, . . . ,mi.
(2.5)

We insert (2.4) into the differential equation (2.1), we denote zi =
(
zi,0, . . . , zi,mi

)⊤
,

and we add these differential equations for zi,j(t) to the original equations. This gives
the augmented system of differential equations

Mẏ(t) = f
(
t, y(t), y(t− τ),

n∑
i=1

mi∑
j=0

ci,jzi,j(t)
)
,

y(0) = y0

y(t) = η(t) for t < 0

ż1(t) = J1z1(t) + e1g
(
t, y(t)

)
z1(0) = 0

· · · · · ·
żn(t) = Jnzn(t) + eng

(
t, y(t)

)
zn(0) = 0

(2.6)

for the super vector
(
y, z1, . . . , zn

)
of dimension d+ (m1 + 1) + . . .+ (mn + 1). Here,

we use the notation

Ji =


−γi 0 · · · · · · 0

1 −γi
. . .

...

0 2 −γi
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 mi −γi

 ∈ Rmi+1,mi+1, ei =


1
0
...
...
0

 ∈ Rmi+1

for the lower bidiagonal matrix and the first unit vector, both of dimension mi + 1.
This gives a formulation, where also those codes can be applied, that are not adapted
to the treatment of distributed delays (2.1).
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3. Solving distributed delay equations via the augmented system. For
the case that the original system (2.1) is nonstiff and the exponents γi in (2.3) are of
moderate size, any code for nonstiff ODEs or DDEs can be applied to the augmented
system (2.6). However, in important applications (see Section 4) some of the γi can
be very large, so that the augmented system is stiff independent of the behaviour of
(2.1). Therefore, a stiff solver (e.g., Radau5 for the case of ODEs, and Radar5 in
the presence of retarded arguments) has to be applied to (2.6). Stiff solvers are in
general implicit and require an efficient solution of linear systems of the form (see [9,
Section IV.8]) (

(γh)−1M−J
)
u = a, (3.1)

where a = (a0, a1, . . . , an)
⊤ is a given vector and u = (u0, u1, . . . , un)

⊤ is the solution
of the system. Here, γ is a real or complex parameter of the stiff integrator, h is the
time step size, M = Diag

(
M, I1, · · · , In

)
is a block diagonal matrix with Ii being

the identity matrix of dimension mi + 1, and the Jacobian matrix of the augmented
system is

J =



J C1 C2 · · · Cn

B1 J1 0 · · · 0

B2 0 J2
. . .

...
...

...
. . .

. . . 0

Bn 0 · · · 0 Jn

 , (3.2)

where J = (∂f/∂y)(t, y, v, I) is a square matrix of dimension d, and the rank-one
matrices Bi and Ci are given as follows: Bi = eig

⊤
y with gy = (∂g/∂y)(t, y), and

Ci = fIc
⊤
i with fI = (∂f/∂I)(t, y, v, I) and ci = (ci,0, ci,1, . . . , ci,mi

)⊤. All derivatives
are evaluated at the current integration point.

3.1. Efficient solution of the linear system (3.1). The linear system (3.1)
is of dimension d+N , where N = (m1 +1)+ . . .+ (mn +1) can be much larger than
d, the dimension of the original problem. Without exploiting the special structure of
(3.1) its solution costs O

(
(d + N)3

)
flops. We propose to solve the linear system in

the following way.

The first block of (3.1) is equivalent to

(
(γh)−1M − J

)
u0 = a0 +

n∑
i=1

Ciui, (3.3)

and the other blocks give (
(γh)−1Ii − Ji

)
ui = ai +Biu0. (3.4)

This equation permits to express ui in terms of u0. Inserted into (3.3) yields

(
(γh)−1M − J

)
u0 = a0 +

n∑
i=1

Ci

(
(γh)−1Ii − Ji

)−1(
ai +Biu0

)
, (3.5)



Applying codes for ODEs and DDEs to problems with distributed delays 5

which can be written as(
(γh)−1M − Ĵ

)
u0 = a0 + fI

n∑
i=1

c⊤i

(
(γh)−1Ii − Ji

)−1

ai,

Ĵ = J + fIg
⊤
y

n∑
i=1

c⊤i

(
(γh)−1Ii − Ji

)−1

ei. (3.6)

Note that Ĵ is a rank-one perturbation of J . Since
(
(γh)−1Ii − Ji

)
is a lower bidi-

agonal matrix of dimension mi + 1, the computation of the constant in the rank-one
perturbation and the computation of the right-hand side of the linear system (3.6)
require not more than O(N) flops. Having computed u0, the ui are obtained from
(3.4). All in all, this gives an algorithm that has a cost of O(d3) +O(N) flops.

3.2. Stable approximation of the distributed delay term: exponential
case. It may happen that several γn in the kernel approximation (2.3) are very large
and positive, so that the summands are not well scaled. Consider, for example,
the kernel (5.1) defined by a gamma distribution (see Section 5.1 below), which is
approximated by

k(t) ≈ ch

N−1∑
n=M

eαnhe−(enh+κ)t. (3.7)

For large positive n (nh can be of size 50 or more), the exponent γn = enh+κ as well
as the coefficient eαnh are very large, and the computation has to be done with care.
For the kernel approximation above, the integral term (2.2) is approximated as

I(y)(t) =

∫ t

0

k(t− s)g
(
s, y(s)

)
ds ≈ ch

N−1∑
n=M

eαnhzn(t),

zn(t) ≈
∫ t

0

e−γn(t−s)g
(
s, y(s)

)
ds, (3.8)

where zn(t) is the solution of the differential equation (see Section 2)

żn(t) = −γnzn(t) + g
(
t, y(t)

)
, zn(0) = 0.

It is discretized numerically by a time integrator, typically a Runge–Kutta method.
For example, the θ-method, gives the approximation zkn ≈ zn(tk) via

zk+1
n = zkn−γn∆t

(
θzk+1

n +(1−θ)zkn

)
+∆tgk+1

n , gk+1
n = g

(
tk+θ∆t, θyk+1

n +(1−θ)ykn

)
,

which can also be written as

zk+1
n = R(−γn∆t)zkn +∆tS(−γn∆t)gk+1

n , R(µ) =
1 + (1− θ)µ

1− θµ
, S(µ) =

1

1− θµ
.

Solving this recursion and using z0n = 0 yields

zk+1
n = ∆t

k∑
j=0

R(−γn∆t)jS(−γn∆t)gk+1−j
n . (3.9)
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Assuming |g
(
t, y(t)

)
| ≤ G to be bounded, and |R(−γn∆t)| < 1 we obtain (with

µ = −γn∆t)

|zk+1
n | ≤ ∆t

∣∣S(µ)∣∣1− |R(µ)|k+1

1− |R(µ)|
G ≤

∆t
∣∣S(µ)∣∣G

1− |R(µ)|
. (3.10)

Any other Runge–Kutta method will lead to a similar recursion, where R(µ) is its
stability function, and S(µ) is a rational function bounded by O(µ−1). This shows
that for a stable approximation of the integral term (3.8), A0-stability (i.e., |R(µ)| < 1
for µ < 0) is a necessary condition, and |R(∞)| < 1 is recommended. These conditions
imply that |zk+1

n | ≤ O(∆t|µ|−1|) = O(γ−1
n ).

Let us go back to the question of large coefficients in the approximation (3.8).
In the exact solution, a large coefficient eαnh is compensated by the small factor

e−(enh+κ)t in (3.7). In the numerical approximation, it is compensated by γ−1
n ≤ e−nh.

3.3. Quasipolynomial case. Consider now the situation, where some of the
polynomials in (2.3) have a degree at least 1. In this case zn(t) is a vector and
satisfies the differential equation

żn(t) = Jnzn(t) + eng
(
t, y(t)

)
, zn(0) = 0 ∈ Rmn+1.

A Runge-Kutta discretization yields

zk+1
n = R(∆tJn)z

k
n +∆tS(∆tJn)eng

k+1
n and

zk+1
n = ∆t

k∑
j=0

R(∆tJn)
jS(∆tJn)eng

k+1−j
n (3.11)

with R(∆tJn) and S(∆tJn) now rational matrix functions. They are of the form
(with γ = γn, m = mn, and µ = −γn∆t)

R(∆tJn)=



R(µ) 0 0 · · · 0(
1
1

)
∆tR′(µ) R(µ) 0

...(
2
2

)
∆t2R′′(µ)

(
2
1

)
∆tR′(µ) R(µ)

. . .
...

...
...

. . .
. . . 0(

m
m

)
∆tmR(m)(µ)

(
m

m−1

)
∆tm−1R(m−1)(µ) · · ·

(
m
1

)
∆tR′(µ) R(µ)


This is a consequence of R(−∆tγI + ∆N) =

∑m−1
l=0

∆tl

l! R(l)(µ)N l, where N is the
nilpotent matrix whose only non-zero elements are in the first subdiagonal. For the
matrix S(∆tJn) we get the same formulas with R(µ) replaced by S(µ). We are inter-
ested to bound the norm of the vector zk+1

n in (3.11). The first component zk+1
n,0 is given

by the relation (3.9) and therefore satisfies the estimate (3.10). To estimate the sec-
ond component zk+1

n,1 we have to compute the elements of the second row of R(∆tJn)
j .

The diagonal element is R(µ)j and the element left to it is j∆tR′(µ)R(µ)j−1. From
(3.11) we thus get

zk+1
n,1 = ∆t

k∑
j=0

(
j∆tR′(µ)R(µ)j−1S(µ) +R(µ)j∆tS′(µ)

)
gk+1−j
n .
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Applying the triangle inequality, using the bound |g
(
t, y(t)

)
| ≤ G and the estimates

(for 0 ≤ r < 1)

k∑
j=0

rj =
1− rk+1

1− r
≤ 1

1− r
,

k∑
j=0

j rj−1 ≤ 1

(1− r)2
,

k∑
j=0

(
j

l

)
rj−l ≤ 1

(1− r)l+1
,

(3.12)
(the second and last inequalities are obtained by differentiating the infinite geometric
series and by truncating higher order terms, which are positive) we get

|zk+1
n,1 | ≤ ∆t2

( ∣∣R′(µ)S(µ)
∣∣

(1− |R(µ)|)2
+

∣∣S′(µ)
∣∣

1− |R(µ)|

)
G. (3.13)

Applying the fact that |S(µ)| = O(µ−1), |S′(µ)| = O(µ−2), and |R′(µ)| = O(µ−2), we
find that |zkn,1| = O(γ−2

n ), and the same conclusion as in Section 3.2 can be drawn.
For general m we use the multinomial theorem (the indices il are non-negative)(m−1∑
l=0

∆tl

l!
R(l)(µ)N l

)j

=
∑

i1+...+im=j

(
j

i1, . . . , im

)m−1∏
l=0

( ∆tl

l!
R(l)(µ)N l

)il+1

(3.14)

and the inequalities (3.12) for values of l up to m. Since the nilpotent matrix satisfies
Nm = 0, only the terms with

i2 + 2 i3 + . . .+ (m− 1) im ≤ m− 1 (3.15)

give raise to non-vanishing expressions in (3.14). Therefore, only i1 can be large. It
can take only the values j, j− 1, . . . , j−m+1, because otherwise i2 + . . .+ im would
have to be larger than m− 1, contradicting the restriction (3.15).

We start with i1 = j. In this case all other il are zero and there is only one term
in (3.14). The sum over j from 0 to k is bounded by the truncated geometric series
(see (3.10)).

For i1 = j − 1 only one index among {i2, . . . , im} can be non-zero (equal to 1, if
m ≥ 2). In each case the multinomial coefficient in (3.14) equals j, and the second
sum in (3.12) provides the desired bound (see (3.13)).

For i1 = j−2 we have two possibilities. Either one among the indices {i2, . . . , im}
equals 2 (if m ≥ 3), or two of them equal 1 (provided that m ≥ 4). In each case the
multinomial coefficient in (3.14) equals j(j − 1)/2 or j(j − 1), and the estimate of
(3.12) with l = 2 can be applied. Using S′′(µ) = O(µ−3) and similar estimates for
the stability function R(µ), we obtain |zkn,2| = O(γ−3

n ).
This procedure can be continued until i1 = j − m + 1. We obtain the bounds

|zkn,l| = O(γ−l−1
n ) for the (l + 1)th component of the vector zkn.

3.4. Determination of the accuracy parameters. The variables zi,j(t) are
auxiliary variables in the system (2.6) and the question arises, how accurate they
should be. For the original problem (2.1) the user has to specify the desired accuracy
of the solution. This is typically done with help of the parameters Atol and Rtol , with
the aim of having a local error for y(t) that is bounded by Atol + |y|Rtol (for more
details see [9, p. 124]). Of course, such a requirement can be applied component-wise.
For solution components with a very small modulus that have a strong impact on the
other solution components it is in general advisable to use a parameter Atol that is
much smaller than Rtol .
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In the situation of the present work, it is not necessary that all variables zi,j(t)
are computed very accurately. Since the solution y(t) only depends on a linear com-
bination of them (with possibly very small coefficients), it is sufficient that this linear
combination is sufficiently accurate. This can be achieved as follows: we augment the
dimension of y(t) by one and introduce the new variable yd+1(t) by

0 =

n∑
i=1

mi∑
j=0

ci,jzi,j(t)− yd+1(t). (3.16)

We replace the double sum in (2.6) by yd+1(t) and we add the relation (3.16) to (2.6).
This gives a differential-algebraic system where the number of algebraic variables is
augmented by one. The advantage of this is that we can require different accuracies
for the zi,j and for their sum (3.16). For a given tolerance Tol we propose (in general)
to put Atol = Rtol = Tol for all d + 1 components of the augmented vector y, and
we put Atol = Rtol = ωTol (with ω ≥ 1) for all variables zi,j . To increase efficiency
without spoiling accuracy we propose to take ω = 100 or even larger (see the second
experiment in Section 6.1 and Table 6.2).

4. Approximating the kernel with a sum of exponentials. Important ker-
nels, such as the gamma distribution and the Pareto distribution, contain the function
t−α as factor. This section is devoted to approximate it by a sum of exponential func-
tions.

4.1. Approach of Beylkin and Monzón. Since the Laplace transform of the
function zα−1 is Γ(α) t−α for α > 0, we have the integral representation

t−α =
1

Γ(α)

∫ ∞

0

e−tzzα−1 dz =
1

Γ(α)

∫ ∞

−∞
e−teseαs ds, α > 0. (4.1)

To express this function as a sum of exponentials, [1] proposes to approximate the
integral to the right by the trapezoidal rule. With a step size h > 0 this yields

T (t, h) =
h

Γ(α)

∞∑
n=−∞

eαnhe−enht. (4.2)

• Error of the trapezoidal rule. It follows from [15, Theorem 5.1] that the error due
to this approximation can be bounded by∣∣t−α−T (t, h)

∣∣ ≤ 2C

e2πa/h − 1
, C = sup

b∈(−a,a)

1

Γ(α)

∫ ∞

−∞
e−tes cos beαs ds = (t cos a)−α

for any h > 0 and any 0 < a < π/2. This gives the estimate

∣∣t−α − T (t, h)
∣∣ ≤ cαt

−α, cα =
2(cos a)−α

e2πa/h − 1
. (4.3)

To achieve cα ≤ ε, the step size h has to satisfy the inequality in

h ≤ 2πa

ln
(
1 + 2

ε (cos a)
−α

) , a =
π

2

(
1− α

(α+ 1) ln ε−1

)
. (4.4)

The value of a is chosen so that, for a given ε > 0, the estimate for h in (4.4) turns
out to be close to maximal.
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• Error from truncating the series (4.2) at −∞. Since the function s 7→ e−teseαs is
monotonically increasing for s ≤ ln(α/t) we have, for Mh ≤ ln(α/t),

EM (t, h) =
h

Γ(α)

M−1∑
n=−∞

eαnhe−enht ≤ 1

Γ(α)

∫ Mh

−∞
e−teseαs ds

=
t−α

Γ(α)

∫ teMh

0

e−σσα−1 dσ = t−α

(
1− Γ(α, teMh)

Γ(α)

)
,

(4.5)

where Γ(α, x) =
∫∞
x

e−σσα−1 dσ is the incomplete Gamma function.

• Error from truncating the series (4.2) at +∞. The function s 7→ e−teseαs is
monotonically decreasing for s ≥ ln(α/t). The same computation as before therefore
shows that for Nh ≥ ln(α/t)

EN (t, h) =
h

Γ(α)

∞∑
n=N

eαnhe−enht ≤ 1

Γ(α)

∫ ∞

Nh

e−teseαs ds

=
t−α

Γ(α)

∫ ∞

teNh

e−σσα−1 dσ = t−α Γ(α, teNh)

Γ(α)
.

(4.6)

• Choice of the step size h. For a fixed accuracy requirement ε, we choose h according
to (4.4). To study the quality of this approximation, we plot in Figure 4.1 for several
values of α the relative error of the trapezoidal rule as a function of the step size h.
We see that for α = 1/2 the error of the trapezoidal rule is bounded by ε = 10−5

whenever h ≤ 0.78. The estimate (4.4) gives h ≤ 0.70, which is a reasonably good
approximation.

.4 .6 .8 1.0 1.2

10−10

10−8

10−6

10−4

error of trapezoidal rule

α = 0.1

α = 0.9

step size h

Fig. 4.1. Relative error
∣∣t−α − T (t, h)

∣∣/t−α as a function of the step size h. The different
curves correspond to α = 0.1, 0.2, . . . , 0.9 (bold curve for α = 0.5).

• Choice of the truncation indices M and N . For a treatment of the two truncation
errors, we restrict t to the interval 0 < δ ≤ t ≤ T < ∞, and we use the estimates
(4.5) and (4.6). The incomplete Gamma function is monotonically decreasing and
satisfies Γ(α, 0) = Γ(α), Γ(α,∞) = 0. We let x∗ be such that Γ(α, x∗) ≥ Γ(α)(1− ε),
and x∗ be such that Γ(α, x∗) ≤ Γ(α) ε. Both truncation errors are bounded by ε t−α

for t ∈ [δ, T ] if M and N are chosen according to T eMh ≤ x∗ and δeNh ≥ x∗. Since



10 N. GUGLIELMI, E. HAIRER

Γ(α, x) ≥ Γ(α) − xα/α, we can approximate x∗ by the relation xα
∗ = Γ(α + 1) ε.

From Γ(α, x) ≤ xα−1e−x a suitable x∗ is given by (x∗)α−1e−x∗ ≤ Γ(α) ε, which is
approximately x∗ = − ln

(
Γ(α) ε

)
.

−60 −50 −40 −30 −20 −10

10−8

10−6

10−4

10−2

100

−30−20−10 0 10 20 30 40 50 60

10−8

10−6

10−4

10−2

100

truncation error at −∞

M

T = 10

T = 1010

truncation error at +∞

N

δ = 10−10

δ = 102

Fig. 4.2. Relative error of the the truncation errors as a function of M and N , respectively.

To get an impression of the size of the truncation indices M and N , we fix the
values α = 0.5 and h = 0.78, which correspond to ε = 10−5 (see Figure 4.1). In
the left picture of Figure 4.2 we plot max

{
EM (t, h)/t−α

∣∣t ∈ [10−10, T ]
}
(the relative

truncation error) as a function of M , for T = 10, 102, . . . , 1010. In the right picture
of Figure 4.2 we plot max

{
EN (t, h)/t−α

∣∣t ∈ [δ, 500]
}

as a function of N , for δ =
102, 10, 1, 10−1, . . . , 10−10. Replacing the right end of the interval [δ, 500] by a larger
value does not change the picture. We have included the curves for large values of δ,
because they are of interest for a treatment of the Pareto distribution (see Section 5.2).

As a conclusion we see that for an accuracy requirement of ε = 10−5 and for an
interval [δ, T ] with δ = ε = 10−5 and T = 100, we can choose the step size h = 0.78,
and the truncation indices M = −35 and N = 18 or (using h from (4.4)) h = 0.70,
M = −40 and N = 20.

• Total approximation error. The error of approximating the function t−α by a sum
of exponentials is composed by the error of the trapezoidal rule and by those due to
truncation. We have, for δ ≤ t ≤ T ,

∣∣t−α − TN
M (t, h)

∣∣ ≤ 3 ε t−α, TN
M (t, h) =

h

Γ(α)

N−1∑
n=M

eαnhe−enht, (4.7)

provided that h, M , and N are chosen as discussed above.

4.2. Approach of Braess and Hackbusch. An efficient computation of high-
dimensional integrals is another motivation for studying the approximation of t−α

(α = 1/2 or 1) by exponential sums (see [2]). The differences to the approach
of Beylkin and Monzón are that the coefficients ci and γi in the approximation
un(t) =

∑n
i=1 ci exp (−γit) are computed for minimal n numerically with a Remez-like

algorithm, and the absolute error
∣∣t−α − un(t)

∣∣ (not the relative error as in (4.7)) is
kept below a tolerance ε.

5. Important examples of distributed delays. Because of their application
in pharmacodynamics we are mainly interested in the situation where the kernel
of the integral delay term (2.2) is a distribution, i.e., a non-negative function with∫∞
0

k(s) ds = 1. The following distributions are taken from the list given in [16].
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5.1. Gamma distribution. For positive parameters κ > 0 and 0 < α < 1, the
gamma distribution is given by

k(t) =
κ1−α

Γ(1− α)
t−αe−κt, t > 0. (5.1)

We choose δ > 0 such that
∫ δ

0
k(t) dt ≤ ε, and T > 0 such that

∫∞
T

k(t) dt ≤ ε.
Roughly speaking, the small parameter δ and the large parameter T have to be such
that

(κ δ)1−α

Γ(2− α)
≤ ε and

(κT )−αe−κT

Γ(1− α)
≤ ε. (5.2)

We use (4.7) for approximating the gamma distribution by a sum of exponential func-
tions. For a given accuracy requirement ε, Algorithm 1 summarizes the computation
of the parameters δ, T as well as the parameters h,M,N needed in (4.7).

Algorithm 1: Choice of the parameters for the Gamma distribution.

Data: α, κ, ε, δmin, tf
Result: h, T, δ,M,N
begin

1 Set a =
π

2

(
1− α

(α+ 1) ln ε−1

)
2 Set h =

2πa

ln
(
1 + 2

ε (cos a)
−α

)
3 Compute T such that (κT )−αe−κT /Γ(1− α) = ε
4 Set T = min{tf , T}
5 Set x∗ = (Γ(α+ 1) ε)

1/α

6 Set x∗ = − ln
(
Γ(α) ε

)
7 Compute M such that T eMh = x∗

Compute δ such that (κ δ)1−α/Γ(2− α) = ε
8 Set δ = max{δ, δmin}
9 Compute N such that δeNh = x∗

return

• Negative values of α. For negative values of α the function k(t) vanishes at the
origin, but the sum of exponentials (4.2) does not. Let α satisfy −1 < α < 0. The
idea is to split t−α = t · t−α−1, so that α + 1 ∈ (0, 1), and the formula (4.2) can be
applied to the factor t−α−1. This results in a linear combination of functions t e−γt,
which can be treated as explained in Section 2.

For values of α satisfying −2 < α < −1, we split t−α = t2 · t−α−2. The above
procedure then leads to kernels of the form (2.3) with mi = 2. An extension to other
non-integer negative values of α is straight-forward.

5.2. Pareto distribution. The so-caled type I Pareto distribution [16] is given
for α > 0 and β > 0 by

k(t) =

{
0 0 ≤ t < β

αβα t−α−1 t ≥ β.
(5.3)

Note that there is no singularity at the origin. For the approximation (4.7) of t−α−1,
we can choose δ = β independent of the accuracy ε, so that the condition δeNh ≥ x∗
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is less restrictive for the truncation index N . The condition
∫∞
T

k(t) dt ≤ ε for T

reduces to Tα ≥ βα/ε. The truncation index M is determined by T eMh ≤ x∗, where
T is the minimum of β/ε1/α and of the length of the integration interval Tend (see
Algorithm 2).

Algorithm 2: Choice of the parameters for the Pareto distribution.

Data: α, β, ε, tf
Result: h, T,M,N
begin

1 Set T = β ε−1/α

2 Set T = min{tf , T}

3 Set a =
π

2

(
1− (α+ 1)

(α+ 2) ln ε−1

)
4 Set h =

2πa

ln
(
1 + 2ε−1(cos a)−(α+1)

)
5 Set x∗ = Γ(α+ 2) ε

6 Set x∗ = − ln
(
Γ(α+ 1) ε

)
7 Compute M such that T eMh = x∗

Compute N such that βeNh = x∗

return

In this case the integral in (2.2) is from 0 to t−β. When replacing the kernel (on
the interval [β, T ]) by a sum of exponential functions, we are thus lead to

Mẏ(t) = f
(
t, y(t), y(t− τ), IP (t− β)

)
(5.4)

where the function IP (t) is given by (with γn = enh)

IP (t) =


0 if t ≤ 0

αβα h

Γ(α)

N−1∑
n=M

e(α+1)nhe−γnβzn(t) if t ≥ 0
(5.5)

and zn(t) =

∫ t

0

e−γn(t−s)g
(
s, y(s)

)
ds gives raise to the differential equation

żn(t) = −γnzn(t) + g
(
t, y(t)

)
, zn(0) = 0. (5.6)

As we have done in Section 3.4 we consider Ip(t) as a new variable of the system,
and we add the algebraic relation (5.5) to the augmented system (5.4)-(5.6). In this
way we can monitor the choice of the accuracy parameters Atol and Rtol as explained
in Section 3.4. The introduction of the variable IP (t) in the system has the further
advantage that during the numerical integration only the back values of the scalar
function IP (t) have to be stored. Note that the augmented system has additional
breaking points at iτ + jβ with non-negative integers i, j.

• Remark. For small positive α (e.g., α = 0.15 and smaller, see [16, Table 1]) the
condition Tα ≥ βα/ε can lead to a very large T , which then results in a large negative
truncation index M . To increase efficiency, we propose to introduce the new variable

yd+1(t) = αβα

∫ t−β

0

(t− s)−α−1g
(
s, y(s)

)
ds,
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which is the argument I(y)(t) in (2.1), and to differentiate it with respect to t. This
yields the delay differential equation

ẏd+1(t) = αβ−1g
(
t− β, y(t− β)

)
− α(α+ 1)βα

∫ t−β

0

(t− s)−α−2g
(
s, y(s)

)
ds,

which can be added to the system for y(t). The integral in the right-hand side is
again of Pareto type, but with α replaced by α + 1. Replacing the new kernel by a
sum of exponentials gives a more efficient algorithm. Of course, this procedure can
be repeated to increase the parameter α even more.

6. Numerical experiments. This section provides numerical evidence of the
proposed algorithm. The first two examples are scalar test equations (one ordinary
differential equation with a Gamma-distributed delay term, the other a delay differen-
tial equation with a Pareto-distributed delay term). The third example is taken from
applications in chemotherapy-induced myelo-suppression. For the time integration
we make use of the code Radau5 (see[9]), if the augmented system is an ordinary
differential equation, and of the code Radar5 (see [6, 7]), if the augmented system is
a delay differential equation.

6.1. Example 1: ordinary differential equation with a Gamma-distri-
buted delay term. As a first test example we consider a linear differential equation

ẏ(t) =
(
1− y(t)

)
erf

(√
t

2

)
− e−t/4

√
t√

π
+ I

(
t, y(t)

)
+

1

2
, y(0) = 0, (6.1)

where y(t) is a real-valued function, erf denotes the error function, and the distributed
delay term is

I(y)(t) =

∫ t

0

k(t− s)y(s) ds, k(t) =
e−t/4

2
√
πt

(6.2)

Here, k(t) is the Gamma-distribution (5.1) with parameters κ = 1/4 and α = 1/2.
Note that the kernel is weakly singular, but that there is no singularity in the aug-
mented system (2.6). The inhomogeneity of the equation is chosen such that

y(t) = t/2

is the exact solution. This follows from the fact that with y(t) = t/2 we have

I(y)(t) =
t− 2

2
erf

(√
t

2

)
+

e−t/4
√
t√

π
.

First experiment (connection between Tol and ε). We fix the tolerance Tol = 10−8

for the time integrator, and we vary the value of ε, which determines the accuracy of
the approximation by the sum of exponentials. We consider the integration interval
[0, tf ] with tf = 50, so that the exact solution at the final point is y(tf ) = 25.

According to Algorithm 1 of Section 5.1 we compute, for given ε > 0 and for
δmin = 0, the parameters h, T , M , and N . For ε = Tol = 10−8, we compute
T = min{50, 65.79} = 50 and δ = π · 10−16. The suggested parameter values are
h = 0.4638, M = −89, N = 84 which are indicated in bold in Table 6.1. There, the
values of h, T,M,N are also given for further values of ε. The value of δ is δ = πε2.
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ε h T M N err

10−4 0.84 30.49 −27 24 2.45 · 10−4

10−5 0.70 39.20 −39 35 2.75 · 10−5

10−6 0.60 48.00 −54 49 2.35 · 10−6

10−7 0.52 50.00 −70 65 2.40 · 10−7

10−8 0.46 50.00 −89 84 1.71 · 10−8

10−9 0.42 50.00 −110 104 4.72 · 10−10

10−10 0.38 50.00 −133 127 2.14 · 10−9

10−11 0.35 50.00 −158 152 2.08 · 10−9

Table 6.1
Error behavior obtained by applying Radau5 to the test problem (6.1) with final point tf = 50

and Tol = 10−8 for different computed values of h, M , and N (corresponding to ε).

For the numerical integration we apply the code Radau5 (the code Radar5
would give similar results) with accuracy requirement Atol = Rtol = Tol = 10−8

to the augmented system (2.6) with parameters h,M,N , determined by different
values of ε. The initial step size is h = ε. The last column of Table 6.1 reports
the relative error err := |y(tf ) − ȳ|/|y(tf )| at the final point. Here, ȳ denotes the
numerical approximation computed at time tf . We can observe that for ε ≤ Tol the
error is essentially proportional to ε, which corresponds to the error of the kernel
approximation. For ε ≥ Tol the error remains close to Tol , which shows the error of
the time integration.

ω = 1 ω = 10 ω = 100

ε err #fe cpu err #fe cpu err #fe cpu

10−4 2.5 e-4 81 2.5 e-4 2.5 e-4 66 2.2 e-4 2.5 e-4 66 2.2 e-4
10−6 2.4 e-6 162 7.9 e-4 2.3 e-6 132 6.6 e-4 2.3 e-6 117 6.0 e-4
10−8 1.8 e-8 365 2.7 e-3 1.6 e-8 279 2.1 e-3 1.5 e-8 243 1.8 e-3
10−10 5.8 e-11 773 7.6 e-3 1.1 e-11 587 6.2 e-3 1.2 e-10 482 5.1 e-3

Table 6.2
Error behavior of Radau5 applied to the test problem (6.1) with tf = 50, initial step size

h = 0.1, and Atol = Rtol = ε for y and yd+1 (see (3.16)), and Atol = Rtol = ωε for the auxiliary
variables zi,j . Here, err, #fe, cpu indicate the relative error of y(t), the number of function evalu-
ations and the cpu time.

Second experiment (choice of the accuracy parameters). As proposed in Section 3.4 we
add a new variable y1+1(t) to the equation (6.1), and we apply the codeRadau5 to the
augmented system with accuracy parameters Atol = Rtol = ε for the y-components
and Atol = Rtol = ωε for the z-components. We first put ω = 1, and then study
the behaviour for increasing ω. The relative error of y(t), the number of function
evaluations, and the cpu time are given in Table 6.2. We observe that increasing ω
does not affect the precision of the numerical approximation for y(t), but significantly
reduces the number of function evaluations and the cpu time. This is due to the fact
that the numerical integrator can take larger step sizes. For every ε there seems to
exist a critical value of ω, such that the numerical result does not change any more
when ω is further increased. Numerical computations show that this happens for
ε = 10−4 when ω = 10, for ε = 10−6 when ω = 100, for ε = 10−8 when ω = 1000, etc.
We thus propose to use for this example ω = 0.1ε−1/2, i.e., Rtol =

√
ε/10.
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6.2. Example 2: delay differential equation with a Pareto-distributed
delay term. We next consider a test example with Pareto-distributed delay term.
Since such a kernel leads in any case to a delay equation, we add a discrete delay term
and consider

ẏ(t) = −5 I(y)(t)−
y
(
t− τ

)
− 2

y(t) + 1
, y(t) = t for t ≤ 0, (6.3)

where y(t) is a scalar real function, the discrete delay term is τ = π/4, and the
distributed delay term is

I(y)(t) =

√
β

2

∫ t−β

0

(t− s)−3/2 y(s) ds, (6.4)

where the kernel is a Pareto distribution (5.3) with α = 1/2. Since t − s ≥ β > 0,
there is no singularity in the integrand. Note that the system (5.4) depends on y(t−τ)
and also IP (t− β), which gives rise to breaking points at integral multiples of τ and
β and also their integer linear combinations.

ε h M N err

10−1 1.662 −3 1 7.69 · 10−2

10−2 1.116 −6 2 8.97 · 10−4

10−3 0.851 −11 3 2.31 · 10−4

10−4 0.692 −17 4 2.81 · 10−5

10−5 0.586 −24 5 1.37 · 10−6

10−6 0.509 −32 6 3.46 · 10−7

10−7 0.451 −41 7 1.90 · 10−7

10−8 0.405 −51 8 9.83 · 10−8

10−9 0.368 −62 9 5.95 · 10−8

10−10 0.337 −75 10 1.75 · 10−7

10−11 0.311 −88 11 2.40 · 10−7

Table 6.3
Error behavior obtained by applying Radar5 to the test problem (6.3). for different values of

h, M and N , computed according Algorithm 2, with Tol = 10−8

In our experiments we set β = 1 and we consider the integration interval [0, tf ]
with tf = 10. With this choice we compute a reference solution to high precision,

y(tf ) ≈ 0.570525788119.

As explained in Section 5.2, an approximation of the kernel by a sum of ex-
ponentials gives rise to a delay differential equation. For an approximation error ε
Algorithm 2 yields the parameters h, M , and N that are needed for the description
of the augmented system.

For ε = 10−8, the values are h = 0.405, M = −51 and N = 8, which are indicated
in bold in the right side of Table 6.3. In contrast to the situation of Example 1, the
resulting augmented system is not very stiff.

For the numerical solution of this problem we use the code Radar5. We consider
a fixed tolerance Tol = 10−8, and we apply the code with Atol = Rtol = Tol . We
include in the mesh the first 10 breaking points,

τ, β, 2τ, τ + β, 2β, 3τ, 2τ + β, 2β + τ, 3β, 4τ,
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and let the code possibly compute further breaking points.

As initial step size we choose h = Atol . Similar to the first experiment for
Example 1, we report the relative error in Table 6.3 at the final point. We get 120
steps (with no rejections), 854 function evaluations, 72 Jacobian evaluations, 99 LU
decomposition of the matrix in the linear system and 244 solutions of triangular
systems.

The result is very similar to that of Table 6.1. For a fixed tolerance Tol , the error
is proportional to ε as long as ε > Tol . It stagnates at Tol for values of ε that are
smaller than Tol .

6.3. Example 3: a distributed delay model of chemotherapy-induced
myelosuppression. We consider a model system that is proposed and studied in
[10, p. 56]. It uses ideas of the publication [5], where transit compartments in a
semi-physiological model by Friberg are replaced by a convolution integral with a
Gamma-distribution (see also [11]). The equations of the model are

ẏ(t) =
(
κ
( w0

w(t)

)γ

− ksC(t)− κ
)
y(t)

ẇ(t) = −κw(t) + κI
(
t, y(t)

)
Ȧ(t) = − VmaxA(t)

Km + C(t)
, C(t) =

A(t)

V
,

(6.5)

where y(t) gives the proliferating precursor cells for granulocytes, w(t) the circulating
granulocytes, and A(t) is the amount of drug in the plasma. The distributed delay
term, with a Gamma-distribution kernel, is given by

I(y)(t) =

∫ t

0

k(t− s)y(s) ds, k(t) =
κ1−α

Γ(1− α)
t−αe−κt. (6.6)

Table 6.4 gives two sets of parameters, which are taken from [10, Table 2]. Concerning
the units of the parameters we refer to [10]. Time is measured in hours.

ν = 1− α κ w0 γ ks Vmax Km V

0.964 ν/47.5 14.4 0.664 0.0328 77.2 16.9 1.35
1.46 ν/55.6 14.4 0.507 0.0213 100 22 1.03

Table 6.4
Values of the parameters for the system (6.5)

We note that the third equation of (6.5) is a scalar differential equation for A(t),
which is independent of the other two variables of the system. It can be solved
analytically by separation of variables. In this way we find that A(t) is solution of
the nonlinear equation

Km

Vmax

(
lnA(t)− lnA0

)
+

A(t)−A0

VmaxV
= −(t− t0).

To get a better conditioning for its numerical treatment we write it as

A(t) = A0 exp
(
− 1

KmV

(
A(t)−A0

)
− Vmax

Km
(t− t0)

)
. (6.7)
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Fig. 6.1. Solution components y(t) and w(t) of the system (6.5) for the parameter values of
Table 6.4: upper row (problem 1) and lower row (problem 2).

Without changing the solution of the problem we can replace in (6.5) the differential
equation for A(t) by the algebraic equation (6.7). This then leads to a differential-
algebraic system of index 1, which can be solved efficiently by Radau5 and by
Radar5. The formulation as a differential-algebraic system has the advantage that
during the numerical integration there is no accumulation of errors in the variable
A(t). In our experience the DAE formulation is slightly more efficient than the ODE
formulation (see Table 6.7).

As proposed in Section 3.4 we add a new variable y3+1(t) to the equation (6.5),
and we apply the code Radau5 to the augmented system. For various values of ε we
use Atol = Rtol = ε for the three components of (6.5), Atol = Rtol = 10−2ε for the
y3+1-component corresponding to the integral delay, and Atol = Rtol = 102ε for the
z-components. As initial step size we take max(ε, 10−5).

First experiment. We consider the problem (6.5) with parameters taken from the
upper row of Table 6.4. Initial values are

y(0) = w0, w(0) = w0, A(0) = A0 = 127. (6.8)

The solution components y(t) and w(t) are plotted in the left picture of Figure 6.1.
We do not include the graph of A(t), because it monotonically decreases, rapidly
approaches zero, and stays there for all t. We observe that the function y(t) has an
initial layer. It rapidly decreases from y(0) = 14.4 to a small value and then behaves
smoothly.

The challenge of this problem is the fact that the value of α = 0.036 is very small.
According to Algorithm 1 this then leads to a very small x∗, and consequently to a
large negative value of M , so that the dimension of the augmented system becomes
large. The values of M , N (as well as h) are computed by Algorithm 1 of Section 5.1.
They are presented for different values of ε in Table 6.5.

We apply the code Radau5 for values of ε ranging between 10−3 and 10−10 on
the interval [0, 100]. Since the Jacobian of the vector field is not banded, we apply
the code in the standard way, where the linear algebra considers the Jacobian as a
full matrix. The cpu time (measured in seconds) is given in the row of Table 6.5
marked “cpu (full)”. We also have implemented the treatment of the arising linear
systems according to the algorithm of Section 3.1, and the cpu times are listed in the
row of Table 6.5 marked “cpu (sumexp)”. The improvement is amazing. Already for
ε = 10−3 the cpu time is decreased by a factor of 100 and for ε = 10−10, where the
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ε 10−3 10−4 10−6 10−7 10−9 10−10

M −157 −268 −582 −783 −1276 −1567
N 4 8 20 27 45 56

cpu (full) 1.9 · 10−1 1.3 · 100 2.6 · 101 8.3 · 101 5.1 · 102 1.2 · 103
cpu (sumexp) 9.6 · 10−4 2.1 · 10−3 8.9 · 10−3 1.6 · 10−2 5.3 · 10−2 9.5 · 10−2

Table 6.5
Comparison of different linear algebra solvers for the system (6.5) with parameters of the upper

row of Table 6.4.

dimension of the augmented system is very large, the cpu time is even decreased by
a factor of 104.

Second experiment. We next consider the set of parameters given in the lower row
of Table 6.4. The solution is plotted in the right picture of Figure 6.1. Here, the
value of α = −0.46 is negative, and the trick explained in Section 5.1 has to be
applied. This means that the factor t−α in (6.6) is written as t−α = t · t−(α+1) with
α+1 = 0.54 ∈ (0, 1), and only the term t−(α+1) is replaced by a sum of exponentials.
This yields an approximation of the form (2.3) with mi = 1.

As before we apply the code Radau5 with several different values of ε, and initial
values (6.8). We only use the option (sumexp). This time we study the error of the
numerical approximation. A reference solution is computed with a very high accuracy
requirement. The exact solution of A(100) is far below round-off. The row, indicated
as “err” in Table 6.6 shows the relative error of y(t) and w(t) at time t = 100. The
values of M and N are computed by Algorithm 1. They are of moderate size, even
for very small ε. We realize that the error is nicely proportional to the accuracy
requirement Tol .

ε 10−3 10−5 10−7 10−9 10−11

M −17 −38 −67 −105 −150
N 13 35 67 108 156

cpu (sumexp) 4.7 · 10−4 1.7 · 10−3 5.1 · 10−3 1.5 · 10−2 3.9 · 10−2

err 5.3 · 10−4 1.4 · 10−5 1.5 · 10−7 3.3 · 10−9 1.0 · 10−10

Table 6.6
Study of accuracy of Radau5 for the system (6.5) with parameters of the lower row of Table 6.4.

Third experiment. The equations (6.5) are an ODE formulation of the problem of
Section 6.3. When the differential equation for A(t) is replaced by the algebraic
equation (6.7) we get a DAE formulation with two differential equations and one
algebraic relation. The code Radau5 can be applied to each of these formulations,
and it is interesting to know which one performs better. In Table 6.7 we present for
various ε the error at the final point tf = 100, as well as the required number of steps
and function evaluations. We observe that, for the DAE formulation (the final three
columns), not only the error is smaller (excepting ε = 10−3), but also the number of
steps and function evaluations (and consequently the cpu time) are smaller.

6.4. Implementation of the approach of Section 3.1 for solving the lin-
ear system. The code Radau5 [9] (and similarly the code Radar5 [6]) consists of
three files: Radau5.f (Radar5.f) contains the time integrator, decsol.f the lin-
ear algebra subroutines, and dc decsol.f (dc decdel.f) contains the subroutines
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ε h M N err1 #st1 #fe1 err2 #st2 #fe2

10−3 1.04 −17 13 5.34 · 10−4 25 161 9.54 · 10−3 23 154
10−5 0.69 −38 35 1.37 · 10−5 47 287 9.06 · 10−6 38 262
10−7 0.52 −67 67 1.52 · 10−7 80 507 5.47 · 10−8 68 483
10−9 0.42 −105 108 3.33 · 10−9 152 985 4.98 · 10−10 126 945
10−11 0.35 −150 156 1.05 · 10−10 309 2036 2.41 · 10−11 256 1933

Table 6.7
Performance of Radau5 for the problem (6.5) (coefficients from the lower row of Table 6.4)

with tf = 100 and ε ranging from 10−3 to 10−11. Here, err1, #st1, #fe1 indicate the relative error,
the number of steps and the number of function evaluations for an implementation as ODE, while
err2, #st2, #fe2 are the numbers corresponding to an implementation as DAE.

that link the time integrator with the linear algebra subroutines. When using the
linear algebra approach of Section 3.1 one only has to replace the file dc decsol.f
(or dc decdel.f) by dc sumexp.f (or dc sumexpdel.f)1. The other files need not
be touched. In the driver the Jacobian has to be defined as follows: first of all, if d
is the dimension of y in the original system and n the number of summands in (2.3),
we have to define the dimension of the system as

N =

{
d+ 1 + n+ 2 if all mi = 0 in (2.3)

d+ 1 + 2n+ 2 if all mi = 1 in (2.3).

The first d components correspond to those of the original system (2.1), the (d+1)th
component is for the integral delay (3.16), and the next n (or 2n) components are for
the variables zi,j . The final 2 components are not used in the right-hand side function
of the problem. They are used only for the Jacobian.

The Jacobian has to be declared as banded with upper bandwidth mujac = d
and lower bandwith mljac = max(2 − d, 0). The array fjac then has N columns
and max(d + 1, 3) rows. In the left upper (d + 1) × (d + 1) matrix, the derivative of
the vector field f (augmented by (3.16)) with respect to (y, yd+1) has to be stored, in
column d + 2 the derivative of f with respect to the integral term I, and in column
d + 3 the gradient of g(t, y) with respect to y. For the case that all mi = 0, the
coefficients {ci0 | i = 1, . . . n} are stored in the first row starting at position d+4, the
exponents {γi | i = 1, . . . n} in the second row, and zeros in the third row. Finally, for
the case that all mi = 1, the coefficients {(ci0, ci1) | i = 1, . . . n} are stored in the first
row starting at position d+4, the exponents {(γi, γi) | i = 1, . . . n} in the second row,
and the subdiagonal (1, 0, 1, 0, . . . , 1, 0) of (3.2) in the third row.

The codes Radau5 and Radar5 together with the files decsol.f, dc decsol.f,
dc sumexp.f together with drivers for the examples of this article are available at
the address http://www.unige.ch/~hairer/software.html.

Conclusions. In this article we have described an efficient methodology to deal
with important classes of distributed delays, by using Radau5 or Radar5, which are
codes for the numerical integration of a large class of stiff and differential-algebraic
equations, and with discrete delays (for Radar5).

The methodology is based on a suitable expansion of the kernels in terms of
exponential functions, which allows to transform the distributed delay into a set of
ODEs or DDEs. Our numerical experiments confirm the efficiency of this methodology

1The subroutines dc decdel.f and dc sumexpdel.f are restricted to the case where M is a
(possibly singular) diagonal matrix.

http://www.unige.ch/~hairer/software.html
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which allows to get a much more versatile code, able to deal with both discrete and
distributed memory effects, a feature that makes it very appealing in disciplines where
these kind of delays naturally arise, as pharmacodynamics and pharmacokinetics.
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[14] A. Schädle, M. López-Fernández, and C. Lubich. Fast and oblivious convolution quadrature.

SIAM J. Sci. Comput., 28(2):421–438, 2006.
[15] L.N. Trefethen and J.A.C. Weideman. The Exponentially Convergent Trapezoidal Rule. SIAM

Review, 56(3):385–458, 2014.
[16] C.A. Wesolowski, S.N. Wanasundara, P.S. Babyn, and J. Alcorn. Comparison of the gamma-

pareto convolution with conventional methods of characterising metformin pharmacokinet-
ics in dogs. J. Pharmacokinet. Pharmacodyn., 47:19–45, 2020.


