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Abstract. We consider second-order di�erential systems where high-frequency oscillations are

generated by a linear part. We present a frequency expansion of the solution, and we discuss two

invariants of the system that determines the coe�cients of the frequency expansion. These invariants

are related to the total energy and the oscillatory harmonic energy of the original system.

For the numerical solution we study a class of symmetric methods that discretize the linear part

without error. We are interested in the case where the product of the step size with the highest

frequency can be large. In the sense of backward error analysis we represent the numerical solution

by a frequency expansion where the coe�cients are the solution of a modi�ed system. This allows us

to prove the near-conservation of the total and the oscillatory energy over very long time intervals.
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1. Introduction. Long-time near-conservation of the total energy and of adia-

batic invariants in numerical solutions to Hamiltonian di�erential equations is impor-

tant in a wide range of physical applications from molecular dynamics to nonlinear

wave propagation. Backward error analysis [BG94, HaL97, Rei98] has shown that

symplectic numerical integrators approximately conserve the total energy and adia-

batic invariants over times that are exponentially long in the step size; more precisely,

over times of length exp(c=h!) where ! is the highest frequency in the system. Such

a result is meaningful only for h! ! 0, which is often not a practical assumption.

For example, in spatially discretized wave equations h! is the CFL number, which is

not chosen small in actual computations. Recently, in [GSS99, HoL99] new symplec-

tic or symmetric time-stepping methods have been studied which admit second-order

error bounds on �nite time intervals independently of the frequencies of the dominant

linear part of the system. In particular for such \long-time-step methods", the case

h! ! 0 is of no computational interest. The situation is reminiscent of sti� versus

nonsti� di�erential equations, where sti� integrators are not appropriately analyzed

by considering only the limit behavior h! 0. In the sti� case, much insight has been

gained by studying the behavior of numerical methods on well-chosen, rather simple

linear and nonlinear sti� model problems.

As a �rst step towards an understanding of the numerical energy behavior in

Hamiltonian systems when the product of the step size and the highest frequency is

not a small quantity, we consider in this article the nonlinear, highly oscillatory model

problem

�x+


2

x = g(x) ;(1.1)

where


 =

�

0 0

0 !I

�

; ! � 1(1.2)
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(with blocks of arbitrary dimensions), and where the nonlinearity

g(x) = �rU(x)(1.3)

has a Lipschitz constant bounded independently of !. This situation arises in the cel-

ebrated Fermi-Pasta-Ulam model, for which we will present numerical experiments.

Clearly, in the model problem (1.1) we take strong restrictions in that the high fre-

quencies are con�ned to the linear part of the problem, and that the linear part has

a single high frequency. The diagonal form of 
 is not essential, since the numerical

methods are invariant under a diagonalization of the matrix.

We study the long-time energy behavior of a class of symmetric numerical methods

which are used with step sizes h such that the product h! is bounded away from zero

and can be arbitrarily large. The methods integrate the linear part of (1.1) exactly

and reduce to the St�ormer/Verlet method for ! = 0. The class includes the methods

of [GSS99, HoL99]. Classical symmetric methods such as the St�ormer/Verlet method,

the trapezoidal rule, or Numerov's method are not considered in this article. However,

using the results of the present paper, their energy behavior on (1.1) for h! in the

range of linear stability is analyzed in [HaL99].

Our approach to the near-conservation of the energy is based on a frequency

expansion of the solution x(t) of (1.1),

x(t) = y(t) +

X

k 6=0

e

ik!t

z

k

(t) ;(1.4)

which is an asymptotic series where the coe�cient functions y(t) and z

k

(t) together

with their derivatives are bounded independently of !. It turns out that the system

determining the coe�cient functions has two (formally exact) invariants. One of these

is close to the total energy

H(x; _x) =

1

2

(j _x

1

j

2

+ j _x

2

j

2

) +

1

2

!

2

jx

2

j

2

+ U(x) ;(1.5)

where x = (x

1

; x

2

) according to the partitioning of 
. The other invariant is close to

I(x; _x) =

1

2

j _x

2

j

2

+

1

2

!

2

jx

2

j

2

;(1.6)

which represents the oscillatory energy of the system.

For the numerical solution we derive a similar frequency expansion which is valid

on grid points t = nh. Under a non-resonance assumption on h!,

j sin(

1

2

kh!)j � c

p

h for k = 1; : : : ; N (N � 2);(1.7)

the equations determining the coe�cient functions have a similar structure to those

of the continuous problem. This allows us to obtain two almost-invariants close to H

and I , and rigorous estimates for the near-conservation of the total and the oscillatory

energy over time intervals of size C

N

h

�N

. The only restriction on N comes from the

above non-resonance condition. The analysis uses only the symmetry of the methods

and does not require symplecticness.

In Sect. 2 we describe the numerical methods and we present numerical experi-

ments with the Fermi-Pasta-Ulam problem. These experiments illustrate the long-

time conservation of the total and the oscillatory energy in non-resonance situations,

which will later be completely explained by the theory. We also show the energy be-

havior of the methods near resonances. This behavior depends strongly on properties
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of the �lter functions that determine the numerical method. We identify conditions

that yield satisfactory energy conservation near resonances and the correct energy

exchange between highly oscillatory components.

Sect. 3 gives a complete analysis of the two-dimensional linear case of (1.1) over

the whole range of non-resonant, near-resonant and exactly resonant cases. This

gives already much insight into conditions determining the energy conservation in the

general situation.

The frequency expansion of the analytical solution of (1.1) is introduced in Sect. 4,

that of the numerical solution in Sect. 5. The numerical invariants are derived in

Sect. 6. The main result on the numerical long-time conservation of energy for (1.1)

is formulated and proved in Sect. 7.

2. Numerical methods and numerical experiments. In this section we

present the numerical methods and we illustrate the main results of this paper with

the Fermi-Pasta-Ulam problem.

2.1. The discretization. We consider the di�erential equation (1.1), where 


2

is a symmetric and positive semi-de�nite (not necessarily diagonal) real matrix, and

we assume that initial values x

0

and _x

0

are given at t

0

= 0. By the variation-of-

constants formula, the exact solution of (1.1) satis�es

�

x(t)

_x(t)

�

=

�

cos t
 


�1

sin t


�
 sin t
 cos t


��

x

0

_x

0

�

+

Z

t

0

�




�1

sin(t� s)


cos(t� s)


�

g

�

x(s)

�

ds(2.1)

(observe that 


�1

sin t
 is well-de�ned also for singular 
). It is therefore natural to

consider, for a �xed step size h, the explicit discretization

x

n+1

= cosh
x

n

+


�1

sinh
 _x

n

+

1

2

h

2

	 g

n

(2.2)

_x

n+1

= �
 sinh
x

n

+ cosh
 _x

n

+

1

2

h

�

	

0

g

n

+	

1

g

n+1

�

(2.3)

where g

n

= g(�x

n

) and � = �(h
), 	 =  (h
), 	

0

=  

0

(h
), 	

1

=  

1

(h
) with

real functions �(�),  (�),  

0

(�),  

1

(�) depending smoothly on �

2

. For g(x) � 0 this

method integrates the problem (1.1) without error.

If �(0) =  (0) =  

0

(0) =  

1

(0) = 1, the method is consistent of order 2. For

�xed 
 and for h! 0, second-order convergence follows from classical results. In this

article we are mainly interested in the situation where h
 can take large values.

For long-time integrations, symmetric and/or symplectic methods are expected

to have favorable properties. By exchanging n$ n+ 1 and h$ �h in (2.2)-(2.3), it

is seen that the method is symmetric for all g(x) if and only if

 (�) = sinc � �  

1

(�);  

0

(�) = cos � �  

1

(�)(2.4)

(where sinc � = sin �=�). It can be shown by direct veri�cation that (2.2)-(2.3) is

a symplectic discretization if, in addition to (2.4), also �(�) =  

1

(�) holds. This

condition will not be required for the analysis of our paper.

Since the nonlinearity g(x) in (1.1) does not depend on _x, we can eliminate _x

n

in

(2.2) with the help of (2.3). In the case of a symmetric discretization we thus get the

two-step recurrence

x

n+1

� 2 cosh
x

n

+ x

n�1

= h

2

	 g

n

:(2.5)

The starting value x

1

is obtained from (2.2) with n = 0. For the case 
 = 0 we

recognize the well-known St�ormer method.
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Fig. 1. Alternating soft and sti� springs

Methods of the type (2.5) or (2.2)-(2.3) have been proposed and studied by several

authors. Gautschi [Gau61] suggests to take  (�) = sinc

2

(�=2). With this choice, (1.1)

is integrated exactly even for g(x) = const . Deuhard [Deu79] discretizes the integral

in (2.1) by the trapezoidal rule and thus arrives at (2.5) with  (�) = sinc � and

�(�) = 1. More recently, Garc��a-Archilla, Sanz-Serna and Skeel [GSS99] introduce

a function �(�) in the argument of g, and they consider the case where the method

is symplectic, so that  (�) = sinc � � �(�). Hochbruck and Lubich [HoL99] consider

 (�) = sinc

2

(�=2) and general �(�). The papers [GSS99] and [HoL99] derive error

bounds on �nite time intervals which are independent of ! and of the smoothness of

the solution.

In this article, we consider general functions �;  with �(0) = 1,  (0) = 1, which

have no zeros except possibly at integral multiples of �. Since we are interested in

the energy conservation of the numerical solution, we need also an approximation to

the derivative if we use the two-term recurrence relation (2.5). This can be obtained

by the relation (2.3) or, in the case of a symmetric method, also by the formula

x

n+1

� x

n�1

= 2h sinch
 _x

n

:(2.6)

This is possible if h! is not a nonzero integral multiple of �. We obtain (2.6) by

subtracting (2.5) from twice the formula of (2.2). For a symmetric method we obtain

a formula for _x

n�1

by exchanging n $ n + 1 and h $ �h in (2.3). Subtracting the

resulting formula from (2.3), we obtain the two-step recurrence

_x

n+1

� _x

n�1

= �2
 sinh
x

n

+

1

2

h

�

	

1

g

n+1

+ 2	

0

g

n

+	

1

g

n�1

�

:(2.7)

Formulas (2.5) and (2.7) give a symmetric two-step method even if (2.4) is not satis-

�ed. If  (�) = sinc

2

(�=2) and  

0

(�) +  

1

(�) = 2 sinc �, then this method is exact for

g(x) = const . The choice  

1

(�) = 0 has been considered in [HoL99].

2.2. Experiments with the Fermi-Pasta-Ulam problem. We consider a

chain of springs, where soft nonlinear springs alternate with sti� harmonic springs

(see [GGMV92] and Fig. 1). The variables x

1

; : : : ; x

2n

(and x

0

= 0, x

2n+1

= 0) stand

for the displacements of end-points of the springs. The movement is described by a

Hamiltonian system with

H(x; _x) =

1

2

n

X

i=1

�

_x

2

2i�1

+ _x

2

2i

�

+

K

2

n

X

i=1

(x

2i

� x

2i�1

)

2

+

n

X

i=0

(x

2i+1

� x

2i

)

4

:

Using the symplectic change of variables u

i

= (x

2i

+x

2i�1

)=

p

2, v

i

= (x

2i

�x

2i�1

)=

p

2,

we get a new Hamiltonian system with

H(u; v; _u; _v) =

1

2

n

X

i=1

�

_u

2

i

+ _v

2

i

�

+

!

2

2

n

X

i=1

v

2

i

+

1

4

n

X

i=0

(u

i+1

� v

i+1

� u

i

� v

i

)

4

;(2.8)
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Fig. 2. Energy exchange of sti� springs

where u

0

= v

0

= u

n+1

= v

n+1

= 0 and !

2

= 2K. This is exactly of the form (1.1).

For our numerical experiments we consider the case n = 3 (as shown in Fig. 1)

with ! = 100. As initial values we take

u

1

(0) = 1; _u

1

(0) = 1; v

1

(0) = !

�1

; _v

1

(0) = 1;

and zero for the remaining initial values. We apply the method (2.2)-(2.3) with the

following data:

(a)  (�) = sinc

2

(

1

2

�); �(�) = 1 [Gau61]

(b)  (�) = sinc �; �(�) = 1 [Deu79]

(c)  (�) = sinc

2

�; �(�) = sinc � [GSS99]

with  

0

(�) and  

1

(�) given by (2.4).

We study the total energy (2.8) and the oscillatory energy

I = I

1

+ I

2

+ I

3

with I

j

(v

j

; _v

j

) =

1

2

�

_v

2

j

+ !

2

v

2

j

�

along the numerical solution on the interval 0 � t � 400. With the chosen initial

values we have H = 2:000300005 and I

1

= 1, I

2

= I

3

= 0 at t = 0. In Fig. 2 we have

plotted, for three di�erent step sizes and for all three methods, the numerical values

for I

1

; I

2

; I

3

; I and H � 0:8. We see that an exchange of energy takes place, going

from the �rst sti� spring with energy I

1

to the second sti� spring and later to the

third one. For the smallest step size we have also plotted in gray the numerical values

for perturbed initial values obtained by adding 10

�8

to u

1

(0), _u

1

(0) and _v

1

(0). This

illustrates that the solution is very sensitive to perturbations.
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In all cases we see that H and I are well preserved over the whole interval, even

for step sizes where the numerical solution is completely wrong. Further experiments

have shown that such a preservation holds for much longer intervals (we tested up to

t = 100 000). An explanation of this phenomenon is the main objective of this paper.

2.3. Numerical experiments in near-resonant situations. When the prod-

uct of the step size and the frequency h! is close to a multiple of �, then the di�erent

methods show widely di�erent behavior. Energy is conserved only for some choices of

 and �. Satisfactory numerical behavior also in near-resonance situations is obtained

if the numerical method satis�es the following additional conditions:

j (h!)j � C

1

sinc

2

(

1

2

h!) ;(2.9)

j (h!)j � C

2

jsinc (h!)j ;(2.10)

j (h!)�(h!)j � C

3

sinc

2

(h!) :(2.11)

These conditions yield long-time energy conservation for all values of h! with the

exception of h! in intervals of width O(h) near integral multiples of 2�. The total

energy appears to be conserved uniformly for arbitrary values of h! if

 (h!) = �(h!) sinc

2

(h!) :(2.12)

The necessity of these conditions is seen from an analysis of the linear case, which is

given in Sect. 3.

When h! is close to 2m� with a positive integer m, the condition (2.9) requires

a double zero of  at 2m�. Similarly, for h! close to an odd multiple of �, condition

(2.10) there requires a simple zero of  . For the choice  (�) = sinc

2

(

1

2

�) [Gau61,

HoL99] the condition (2.9) is obviously satis�ed for all values of h!, but (2.10) is

violated near odd multiples of �. For  (�) = sinc � [Deu79], condition (2.10) is trivially

satis�ed for all h!, but condition (2.9) fails near even multiples of �. The choice

 (�) = �(�) sinc � with �(�) = sinc � [GSS99] satis�es the three conditions (2.9){

(2.11) for all h!. Condition (2.12) is not satis�ed by any of the methods previously

proposed in the literature.

Table 1

Methods used for the numerical experiments of Sect. 2.3

Method  (�) �(�) (2.9) (2.10) (2.11)

A sinc (�) 1 2k�

p

k�

B sinc (�) sinc (�) 2k�

p p

C sinc

2

(

1

2

�) sinc

2

(�)

p

(2k + 1)�

p

D �(�) sinc (�) sinc (

1

2

�)

p p

(2k + 1)�

E �(�) sinc (�) sinc (�)

p p p

F sinc

2

(�) 1

p p p

Let us illustrate the e�ect of the conditions (2.9), (2.10) and (2.11) on the numer-

ical solution when h! is close to a multiple of �. We consider the Fermi-Pasta-Ulam

problem of Sect. 2.2 with the same initial values, and we apply six di�erent methods.

Their characteristics are given in Table 1. The sign

p

indicates that the correspond-

ing condition on  and � is satis�ed. If a condition is not satis�ed for all values of
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−.02

.00
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−.02

.00

.02 (F)

Fig. 3. Energy conservation of di�erent methods for h! = 1:0000001 � � and h = 0:01

−2

0

2 (A)

−2

0

2 (B)

−.02

.00

.02 (C)

−.02

.00

.02 (D)

−.02

.00

.02 (E)

−.02

.00

.02 (F)

Fig. 4. Energy conservation of di�erent methods for h! = 2:0000001 � � and h = 0:01

−.01

.00

.01
(A)

−.01

.00

.01
(B)

−.01

.00

.01
(C)

−.01

.00

.01
(D)

−.01

.00

.01
(E)

−.01

.00

.01
(F)

Fig. 5. Energy conservation of di�erent methods for h! = 2:5 � � (nonresonant case) and h = 0:01

h!, we give the values close to which it is violated. For each of the methods (B), (C),

(D) only one of the conditions (2.9)-(2.11) is not ful�lled.

In Fig. 3 we show the errors of the Hamiltonian over the interval [0; 1000]. We

have used the step size h = 0:01 and ! such that h! = 1:0000001��. Method (C) gives

a maximal error of size 396497, because  

1

(�) given by (2.4) has a singularity at � = �.
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� = 1 � = sinc

 = sinc

2

 = sinc

2

� = 1 � = sinc

 = sinc

2

 = sinc

2

.0

.2

H

.0

.2

H

.0

.2

I

.0

.2

I

� 2� 3� 4� � 2� 3� 4�

Fig. 6. Error in the total and oscillatory energies as a function of h! for the FPU problem

Methods (A) and (D) show a clear drift from the constant value of the Hamiltonian.

Only the methods (B), (E), and (F), for which all three conditions are satis�ed close to

�, conserve the Hamiltonian very well. For the pictures corresponding to these three

methods, we have changed the scale so that the small oscillations become visible.

Fig. 4 shows the same experiment, where this time ! is chosen such that h! =

2:0000001 ��. For both situations, we get the same qualitative behavior when we plot

the oscillatory energy instead of the Hamiltonian. The results of these experiments

con�rm that the conditions (2.9), (2.10), (2.11) cannot be omitted if we are interested

in long-time energy estimates that hold uniformly in h!.

In Fig. 5 the numerical results of the nonresonant case h! = 2:5 � � are included.

All methods give satisfactory results. The most accurate results are obtained by the

method (C).

In the upper pictures of Fig. 6 we plot the maximal errors in the Hamiltonian

as a function of h!, and we take step sizes h = 0:1, h = 0:05, and h = 0:025. The

picture to the right corresponds to the method (E) of Table 1. The picture to the left

is obtained with method (F) which satis�es (2.12). Uniform convergence of the error

can be observed only in this case. The lower pictures of Fig. 6 show the analogue

for the deviations in the oscillatory energy. Close to integral multiples of 2� this

deviation is large for both methods. The same phenomenon can be observed already

for linear problems (see Fig. 8), for which a complete analysis is given in Sect. 3.

2.4. Energy exchange. The energy exchange between sti� components takes

place on time intervals of length O(!). In Fig. 2, this is reproduced qualitatively

correctly for large h! only in the case where  (�) = sinc �, �(�) = 1. The numerical

frequency expansion of Sect. 5 shows that the condition

 (h!)�(h!) = sinc (h!)(2.13)
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.0

.2

HH

.0

.2

HH

.0

.2

II

.0

.2

II

� 2� 3� 4� � 2� 3� 4�

Fig. 7. Same experiment as in Fig. 6 with method (2.5),  = sinc , � = 1 (left pictures) and

with method (2.16) (right pictures)

is needed for the approximation of the energy exchange between sti� components

when h! is bounded away from zero (compare the equations for the z

2

component in

(4.8) and (5.8)). This is a severe condition which excludes all methods considered so

far with the exception of the above-mentioned method  (�) = sinc �, �(�) = 1. On

the other hand, we have seen that this method has rather poor energy conservation

properties. We therefore extend the class of methods (2.5) to

x

n+1

� 2 cosh
x

n

+ x

n�1

= h

2

K

X

k=1

	

k

g(�

k

x

n

) ;(2.14)

where 	

k

=  

k

(h
), �

k

= �

k

(h
). For consistency, the functions  

k

, �

k

must satisfy

K

X

k=1

 

k

(0) = 1 ; �

k

(0) = 1 (k = 1; : : : ;K) :

Conditions (2.9) and (2.10) are now needed for  =

P

k

 

k

, and condition (2.13) is

replaced with

K

X

k=1

 

k

(h!)�

k

(h!) = sinc (h!) :(2.15)

For example, the method

x

n+1

� 2 cosh
x

n

+ x

n�1

= h

2

sinc

2

(h
) g(x

n

)

+ h

2

sinc (h
)

�

g(x

n

)� g(sinc (h
)x

n

)

�

(2.16)
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with (2.6), or equivalently in one-step form

x

n+1

= cosh
x

n

+


�1

sinh
 _x

n

+

1

2

h

2

sinc (h
) eg

n

(2.17)

_x

n+1

= �
 sinh
x

n

+ cosh
 _x

n

+

1

2

h

�

cos(h
) eg

n

+ eg

n+1

�

(2.18)

where eg

n

= g(x

n

) + sinc (h
)g(x

n

) � g(sinc (h
)x

n

), shows the correct energy ex-

change for large h!, as for method (b) in Fig. 2. In Fig. 7, we compare the energy

conservation for the method (2.5) with  (�) = sinc �, �(�) = 1 (left) and the method

(2.16) (right) for the same step sizes as in Fig. 6. For (2.16), the total and oscillatory

energies are well conserved over long times except for h! in intervals of length O(h)

around integral multiples of �.

For ease of presentation, the following analysis will be done for methods of class

(2.5), but the arguments extend in an obvious way to the class (2.14).

3. Long-time energy conservation for linear problems. We start our anal-

ysis with the case where U(x) =

1

2

x

T

Ax with a two-dimensional symmetric matrix A

satisfying a

11

> 0, so that

g(x) = �rU(x) = �Ax

is linear. This gives already a lot of insight and illustrates the importance of the

conditions (2.9){(2.12). In this situation, the di�erential equation (1.1) becomes

�x+


2

x+Ax = 0:(3.1)

The total energy H given by (1.5) is an invariant of the system. In the following we

assume that H

�

x(0); _x(0)

�

is bounded uniformly in !. This requires x

2

(0) = O(!

�1

).

3.1. Analytical solution. The exact solution of (3.1) is given by

x(t) = (ae

i�

1

t

+ ae

�i�

1

t

)

�

1

O(!

�2

)

�

+ (be

i�

2

t

+ be

�i�

2

t

)

�

O(!

�2

)

1

�

;

where �

2

i

are the eigenvalues of 


2

+A, so that

�

1

= �

p

a

11

+O(!

�2

); �

2

= �! +O(!

�1

):

For given initial values x(0), _x(0) satisfying x

2

(0) = O(!

�1

), we obtain a = O(1) and

b = O(!

�1

). Consequently, we have

x

2

(t) = be

i�

2

t

+ be

�i�

2

t

+O(!

�2

)

_x

2

(t) = i!

�

be

i�

2

t

� be

�i�

2

t

�

+O(!

�2

):

(3.2)

This implies !

2

jx

2

(t)j

2

+ j _x

2

(t)j

2

= 4!

2

jbj

2

+O(!

�1

), so that the quantity

I(x; _x) =

1

2

j _x

2

j

2

+

1

2

!

2

jx

2

j

2

remains O(!

�1

)-close to the constant value I

�

x(0); _x(0)

�

for all times t.

3.2. Numerical solution. We search for functions bx(t) = e

i�t

v, such that x

n

:=

bx(nh) satis�es the numerical scheme (2.5) with g

n

= �A�x

n

. This implies

�

e

i�h

� 2 cosh
+ e

�i�h

�

v = �h

2

	A�v;



LONG-TIME ENERGY CONSERVATION 11

so that � = cos(h�) has to be an eigenvalue of

 

1�

1

2

h

2

a

11

�

1

2

h

2

a

12

�

�

1

2

h

2

a

21

 cos(h!)�

1

2

h

2

a

22

� 

!

;(3.3)

and v a corresponding eigenvector. In this section we use the short notation  =  (h!)

and � = �(h!). Since the o�-diagonal elements of (3.3) are small, the eigenvalues �

1

=

cos(h�

1

) and �

2

= cos(h�

2

) are close to �

1

= 1�

1

2

h

2

a

11

and �

2

= cos(h!)�

1

2

h

2

a

22

� ,

respectively. The corresponding eigenvectors are

v

1

=

�

1

 

�

; v

2

=

�

��

1

�

;

where  =

1

2

h

2

a

21

=(�

2

��

1

). For �

1

6= �

2

the general solution can thus be written as

bx(t) = (ae

i�

1

t

+ ae

�i�

1

t

)v

1

+ (be

i�

2

t

+ be

�i�

2

t

)v

2

;(3.4)

where the complex coe�cients are computed from the initial values bx(0) = x

0

, bx(h) =

x

1

with x

1

obtained from (2.2).

Inserting x

n

= bx(nh) from (3.4) into (2.6) gives _x

n

= bx

0

(nh), where

h sinc (h
) bx

0

(t) = i sin(�

1

h)(ae

i�

1

t

� ae

�i�

1

t

)v

1

+ i sin(�

2

h)(be

i�

2

t

� be

�i�

2

t

)v

2

:

To study the long-time near-conservation of H

�

bx(t); bx

0

(t)

�

and I

�

bx(t); bx

0

(t)

�

we dis-

tinguish two cases.

Case I: well-separated eigenvalues. We assume that one of the conditions

1� cos(h!) �

1

4

h

2

a

11

or(3.5)

1� cos(h!) � h

2

a

11

(3.6)

is satis�ed. This covers nearly all choices of h!. Only values in intervals of length

O(h) are excluded.

Theorem 3.1. Consider the numerical method (2.2)-(2.3) applied to (3.1) with

a

11

> 0 and x

2

(0) = O(!

�1

). Under one of the restrictions (3.5) or (3.6) on the

step size, and under the conditions (2.9), (2.10), (2.11) on the numerical method, the

energies H and I of (1.5) and (1.6) along the numerical solution satisfy

H(x

n

; _x

n

) = H(x

0

; _x

0

) +O(h

2

) +O(!

�1

)(3.7)

I(x

n

; _x

n

) = I(x

0

; _x

0

) +O(!

�1

)(3.8)

for all n � 0. The constants symbolized by O(�) are independent of !, h and n.

Proof. The characteristic polynomial of the matrix (3.3) is p(�) = (� � �

1

)(� �

�

2

)�

1

4

h

4

a

12

a

21

� . Its zeros can be computed explicitly. Each of the conditions (3.5)

or (3.6) together with (2.11) implies that

�

i

� �

i

= O(h

2

� ) and �

i

� �

i

= O(h

2

!

�2

)

for both eigenvalues �

i

of (3.3). Hence, for su�ciently small h, �

1

and �

2

are real and

in the interval [�1; 1]. The angles �

i

, de�ned by �

i

= cos(h�

i

), are therefore also real

and satisfy

�

1

= �

p

a

11

+O(h

2

); �

2

= �! +O

�

!

�1

� =sinc (h!)

�

:
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We next estimate the coe�cients a; a; b; b in (3.4). Since the �

i

and v

i

are real, the

coe�cients a; b are the complex conjugates of a; b. In both situations, (3.5) and (3.6),

we have  = O(1) and, under the assumption (2.9), we further have  = O(!

�2

).

Consequently, the condition bx(0) = x

0

yields a+a = O(1) and b+b = O(!

�1

). Instead

of using bx(h) = x

1

, it is more convenient to work with bx(h) � cosh
 bx(0) = x

1

�

cosh
x

0

. From the estimates  = O(!

�1

sinch!),  (1� cosh!) = O(h

2

sinch!),

 = O(sinc (h!) sinc (h!=2)), which all follow from (2.9) and (2.10), we then get

a = O(1) and b = O(!

�1

), and

bx

2

(t) = be

i�

2

t

+ be

�i�

2

t

+O(!

�2

);

bx

0

2

(t) = i!

�

be

i�

2

t

� be

�i�

2

t

�

+O(!

�1

):

(3.9)

The second relation is a consequence of the fact that  = O(!

�1

sinch!) and

sin(h�

2

) = sin(h!)(1+O(!

�2

)) (which follows from �

2

= cosh�

2

= cosh!+O(h

2

� )

and (2.11)). The statement (3.8) is now an immediate consequence of (3.9) and of the

identity jc + cj

2

+ jc � cj

2

= 4jcj

2

, because the modulus of c = be

i�

2

t

is independent

of t.

The near-conservation of the Hamiltonian can be seen similarly. If one of the

conditions (3.5) and (3.6) is satis�ed, we get � sin(�

2

h) = O(h) so that

bx

1

(t) = ae

i�

1

t

+ ae

�i�

1

t

+O(!

�1

)

bx

0

1

(t) = i�

1

(ae

i�

1

t

� ae

�i�

1

t

) +O(h

2

) +O(!

�1

):

This implies jbx

0

1

(t)j

2

+�

2

1

jbx

1

(t)j

2

= Const+O(h

2

) +O(!

�1

). Since jbx

2

(t)j = O(!

�1

)

and �

2

1

jbx

1

(t)j

2

= a

11

jbx

1

(t)j

2

+ O(h

2

) = 2U

�

bx(t)

�

+ O(h

2

) + O(!

�1

) for all t, this

together with (3.8) proves the statement (3.7) for the total energy.

Case II: nearly collapsing eigenvalues. We now consider the complementary case

1

4

h

2

a

11

� 1� cos(h!) � h

2

a

11

;(3.10)

so that the two eigenvalues of (3.3) are very close.

Theorem 3.2. Consider the numerical method (2.2)-(2.3) applied to (3.1) with

a

11

> 0 and x

2

(0) = O(!

�1

). Under the condition (2.12) on the numerical method,

viz.  (�) = �(�) sinc

2

�, we have

H(x

n

; _x

n

) = H(x

0

; _x

0

) +O(h

2

) +O(!

�1

)(3.11)

for all n � 0 and uniformly in h! � c > 0. The constants symbolized by O(�) are

independent of !, h and n.

Proof. Under the condition (2.12) the numerical method satis�es (2.9), (2.10),

(2.11) so that Theorem 3.1 is applicable. It therefore remains to consider the situation

where h! is restricted by (3.10).

The condition (3.10) implies

1

2

h

p

a

11

� j sin(h!)j � h

p

2a

11

for su�ciently small

h. We now assume that � � 0, which is satis�ed by the choice (2.12). This guaran-

tees that the eigenvalues of (3.3) are real, that �

i

� �

i

= O(h

2

p

� ), and that

sin(h�

1

) = �h

p

a

11

+O(h

3

+ h

p

� )

sin(h�

2

) = � sin(h!) +O(h

p

� ):

(3.12)

For the special choice (2.12) we further have jj � 1=

p

� ,  = O(!

�1

), and � =

O(!), so that the coe�cients of (3.4) satisfy a = O(1) and b = O(!

�1

). Moreover,



�

sin(h�

1

)� sin(h�

2

)

�

= O(h)(3.13)
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� = 1 � = sinc

 = sinc

2

 = sinc

2

� = 1 � = sinc

 = sinc

2

 = sinc

2

.0

.2

.4

H

.0

.2

.4

H

.0

.2

.4

I

.0

.2

.4

I

� 2� 3� 4� � 2� 3� 4�

Fig. 8. Error in the total and oscillatory energies as a function of h! for a linear problem

holds (recall that  =

1

2

h

2

a

21

=(�

2

� �

1

)). This is a consequence of the estimate

h

p

a

11

j sin(h�

1

) � sin(h�

2

)j � j sin

2

(h�

1

) � sin

2

(h�

2

)j = j�

2

� �

1

j = j�

2

� �

1

j +

O(h

2

p

� ) and of the fact that jj � 1=

p

� .

The relations (3.12) and (3.13) thus yield

bx

0

1

(t) = i

p

a

11

�

(ae

i�

1

t

� ae

�i�

1

t

)� �(be

i�

2

t

� be

�i�

2

t

)

�

+O(h

2

+ !

�1

);

bx

0

2

(t) = i!

�

 (ae

i�

1

t

� ae

�i�

1

t

) + (be

i�

2

t

� be

�i�

2

t

)

�

+O(h

2

+ !

�1

):

Together with (3.4) this implies

H

�

bx(t); bx

0

(t)

�

= 2a

11

jae

i�

1

t

� �be

i�

2

t

j

2

+ 2!

2

j ae

i�

1

t

+ be

i�

2

t

j

2

+O(h

2

+ !

�1

)

= const � 4(a

11

�� !

2

 )<(abe

i(�

1

��

2

)t

) +O(h

2

+ !

�1

):

To prove that the t-dependent term is small, we need the relation (2.12) between �

and  . Using also (3.12) and (3.13) we obtain

a

11

�� !

2

 = �

�

a

11

� !

2

sinc

2

(h!)

�

= �

�

sin

2

(h�

1

)� sin

2

(h�

2

)

�

=h

2

+O(1) = O(1):

This completes the proof of Theorem 3.2, because b = O(!

�1

).

The proof above shows that in general

I

�

bx(t); bx

0

(t)

�

= 2!

2

j ae

i�

1

t

+ be

i�

2

t

j

2

+O(h

2

+ !

�1

):(3.14)

In the situation of Theorem 3.1 we have a = O(!

�2

) so that the �rst term in

the right-hand expression of (3.14) becomes negligible, and long-time conservation

of I can be concluded. If a

12

6= 0 and cos(h!) � 1 �

1

2

h

2

a

11

, we have �

1;2

�
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cos(h!) �

1

2

h

2

a

12

p

� and  � 1=

p

� , so that  �

p

 =� and � �

p

�= . The

initial condition bx(0) = x

0

then gives

 (a+ a) �

1

2

( x

01

+ x

02

); (b+ b) �

1

2

(� x

01

+ x

02

);

so that none of the terms in (3.14) can be neglected. If �

1

� �

2

is di�erent from an

integral multiple of 2�, the expression (3.14) cannot remain close to a constant value.

This result is intuitively clear, because in the situation (3.10) the two frequencies are

indistinguishably close for the numerical method.

The upper pictures of Fig. 8 show the maximal error in the HamiltonianH(x

n

; _x

n

)

in dependence of h! for the problem (3.1) with a

11

= 1, a

12

= a

21

= 1, a

22

= 2 and

initial values x(0) = (�0:9; !

�1

)

T

, _x(0) = (1:0; 1:5)

T

. The three curves correspond

to the step sizes h = 0:2, h = 0:1, and h = 0:05. The picture to the left it obtained

with a method satisfying (2.12). Uniform convergence of the error can nicely be

observed. The picture to the right corresponds to the method (E) of Table 1. The

lower pictures of Fig. 8 plot the maximal deviation of the oscillatory energy I(x

n

; _x

n

)

as a function of h!. It con�rms the analysis above, which shows that for h! satisfying

cosh! � 1�

1

2

h

2

a

11

the oscillatory energy cannot be well conserved.

4. Frequency expansion of the analytical solution. The main tool of our

analysis for nonlinear problems is a decomposition of the solution x(t) of (1.1) into

a smooth part and into highly oscillatory terms with smoothly varying amplitudes.

This decomposition is valid over �nite time intervals. We show the existence of two

almost-invariants for the coe�cients of this decomposition, which are related to the

total energy and the oscillatory energy of the system. A repeated use of these almost-

invariants then allows us to prove the long-time near-conservation of the oscillatory

energy.

4.1. The frequency expansion. We assume the nonlinearity g in (1.1) analytic

on an open set D, and we consider solutions of (1.1) which satisfy

x(t) 2 K ;(4.1)

where K is a compact subset of D. We assume further that the initial values have

limited harmonic energy:

1

2

k _x(0)k

2

+

1

2

k
x(0)k

2

� E ;(4.2)

where E is independent of !.

Theorem 4.1. Under the assumptions (4.2) and (4.1) for 0 � t � T , the solution

x(t) of Eq. (1.1) has for arbitrary N � 2 an expansion of the form

x(t) = y(t) +

X

0<jkj<N

e

ik!t

z

k

(t) +R

N

(t);(4.3)

where the remainder term and its derivative are bounded by

R

N

(t) = O(!

�N�2

) and

_

R

N

(t) = O(!

�N�1

) :(4.4)

The real functions y = (y

1

; y

2

) and the complex functions z

k

= (z

k

1

; z

k

2

) are bounded,

together with all their derivatives, by

y

1

= O(1); z

1

1

= O(!

�3

); z

k

= O(!

�k�2

); k = 2; : : : ; N � 1;

y

2

= O(!

�2

); z

1

2

= O(!

�1

);

(4.5)
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and we have z

�k

= z

k

. They are unique up to terms of size O(!

�N�2

). The constants

symbolized by the O-notation are independent of ! and t with 0 � t � T (but depend

on E, N , T , and on the order of the derivative).

Proof. To determine the smooth functions y(t), z(t) = z

1

(t), and z

2

(t); : : : ; z

N�1

(t),

we put

ex(t) := y(t) +

X

0<jkj<N

e

ik!t

z

k

(t);(4.6)

insert this function into (1.1), expand the nonlinearity around y(t) and compare the

coe�cients of e

ik!t

. With the notation g

(m)

(y)z

�

= g

(m)

(y)(z

�

1

; : : : ; z

�

m

) for a multi-

index � = (�

1

; : : : ; �

m

), we obtain the following system of di�erential equations:

�

�y

1

!

2

y

2

�

+

�

0

�y

2

�

= g(y) +

X

s(�)=0

1

m!

g

(m)

(y)z

�

(4.7)

�

�!

2

z

1

2i! _z

2

�

+

�

2i! _z

1

+ �z

1

�z

2

�

=

X

s(�)=1

1

m!

g

(m)

(y)z

�

(4.8)

�

�k

2

!

2

z

k

1

(1� k

2

)!

2

z

k

2

�

+

�

2ki! _z

k

1

+ �z

k

1

2ki! _z

k

2

+ �z

k

2

�

=

X

s(�)=k

1

m!

g

(m)

(y)z

�

(4.9)

Here the sums range over all m � 1 and all multi-indices � = (�

1

; : : : ; �

m

) with

integers �

j

satisfying 0 < j�

j

j < N , which have a given sum s(�) =

P

m

j=1

�

j

.

For large !, the dominating terms in these di�erential equations are given by

the left-most expressions. However, since the central terms involve higher derivatives,

we are confronted with singular perturbation problems. We are interested in smooth

functions y; z; z

k

that satisfy the system up to a defect of size O(!

�N

). In the spirit

of Euler's derivation of the Euler-Maclaurin summation formula (see e.g. [HaW96])

we remove the disturbing higher derivatives by using iteratively the di�erentiated

equations (4.7)-(4.9). This leads to a system

�y

1

= F

1

( _y

1

; y; z

1

; : : : ; z

N�1

; !

�1

) _z

2

= !

�1

F

2

( _y

1

; y; z

1

; : : : ; z

N�1

; !

�1

)

z

1

= !

�2

G

1

( _y

1

; y; z

1

; : : : ; z

N�1

; !

�1

) y

2

= !

�2

G

2

( _y

1

; y; z

1

; : : : ; z

N�1

; !

�1

)

z

k

1

= !

�2

G

k

1

( _y

1

; y; z

1

; : : : ; z

N�1

; !

�1

) z

k

2

= !

�2

G

k

2

( _y

1

; y; z

1

; : : : ; z

N�1

; !

�1

):

where F

j

;G

j

;G

k

j

are formal series in powers of !

�1

. Since we get formal algebraic rela-

tions for y

2

; z

1

; z

k

, we can further eliminate these variables in the functions F

j

;G

j

;G

k

j

.

We �nally obtain for y

2

; z

1

; z

k

the algebraic relations

z

1

= !

�2

�

G

10

(y

1

; _y

1

; z

2

) + !

�1

G

11

(y

1

; _y

1

; z

2

) + : : :

�

y

2

= !

�2

�

G

20

(y

1

; _y

1

; z

2

) + !

�1

G

21

(y

1

; _y

1

; z

2

) + : : :

�

z

k

1

= !

�2

�

G

k

10

(y

1

; _y

1

; z

2

) + !

�1

G

k

11

(y

1

; _y

1

; z

2

) + : : :

�

z

k

2

= !

�2

�

G

k

20

(y

1

; _y

1

; z

2

) + !

�1

G

k

21

(y

1

; _y

1

; z

2

) + : : :

�

(4.10)

and a system of real second-order di�erential equations for y

1

and complex �rst-order

di�erential equations for z

2

:

�y

1

= F

10

(y

1

; _y

1

; z

2

) + !

�1

F

11

(y

1

; _y

1

; z

2

) + : : :

_z

2

= !

�1

�

F

20

(y

1

; _y

1

; z

2

) + !

�1

F

21

(y

1

; _y

1

; z

2

) + : : :

�

:

(4.11)
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At this point we can forget the above derivation and we can take it as a motivation for

the ansatz (4.10)-(4.11), which we truncate after the O(!

�N

) terms. Inserting this

ansatz and its �rst and second derivatives into (4.7){(4.9) and comparing like powers

of !

�1

yields recurrence relations for the functions F

k

jl

; G

k

jl

. This shows that these

functions together with their derivatives are all bounded on compact sets.

We determine initial values for (4.11) such that the function ex(t) of (4.6) satis�es

ex(0) = x(0) and

_

ex(0) = _x(0). Because of the special structure of the ansatz (4.10)-

(4.11), this gives a system

x

1

(0) = y

1

(0) +O(!

�2

)

x

2

(0) = z

2

(0) + z

2

(0) +O(!

�2

)

_x

1

(0) = _y

1

(0) +O(!

�1

)

_x

2

(0) = i!z

2

(0)� i!z

2

(0) +O(!

�1

);

(4.12)

which, by the implicit function theorem, yields (locally) unique initial values y

1

(0),

_y

1

(0), z

2

(0). The assumption (4.2) implies that z

2

(0) = O(!

�1

). It further follows

from the boundedness of F

2l

that z

2

(t) = O(!

�1

) for 0 � t � T . By looking closer at

the structure of the function G

k

jl

it can be seen that it contains at least k times the

factor z

2

. This implies the stated bounds for all other functions.

We still have to estimate the remainder R

N

(t) = x(t)� ex(t). For this we consider

the solution of (4.10)-(4.11) with initial values (4.12). By construction, these functions

satisfy the system (4.7)-(4.9) up to a defect of O(!

�N

). This gives a defect of size

O(!

�N

), when the function ex(t) of (4.6) is inserted into (1.1). Hence on a �nite time

interval 0 � t � T , we obtain R

N

(t) = O(!

�N

) and

_

R

N

(t) = O(!

�N

). To obtain the

slightly sharper bounds (4.4), we apply the above proof with N replaced by N + 2.

4.2. The Hamiltonian of the frequency expansion. Consider now the sit-

uation where g(x) = �rU(x), so that (1.1) is a Hamiltonian system

�x+


2

x = �rU(x)(4.13)

with Hamiltonian

H(x; _x) =

1

2

_x

T

_x+

1

2

x

T




2

x+ U(x) ;(4.14)

where U(x) is assumed to be analytic. Let v

k

(t) = e

ik!t

z

k

(t) (0 < jkj < N) and note

that by (4.7){(4.9) these functions satisfy

�v

k

+


2

v

k

= �

X

s(�)=k

1

m!

U

(m+1)

(y)v

�

+O(!

�N

) :(4.15)

Here, the sum is again over all m � 1 and all multi-indices � = (�

1

; : : : ; �

m

) with

integers �

j

(0 < j�

j

j < N) which have a given sum s(�) =

P

m

j=1

�

j

, and we write

v

�

= (v

�

1

; : : : ; v

�

m

). Further we denote V = (v

1

; v

�1

; : : : ; v

N�1

; v

�N+1

) and we let

U(y; V ) = U(y) +

X

s(�)=0

1

m!

U

(m)

(y)v

�

:(4.16)

From the above it follows that the vector (y; V ) satis�es the system

�y +


2

y = �r

y

U(y; V ) +O(!

�N

)(4.17)

�v

k

+


2

v

k

= �r

v

�k U(y; V ) +O(!

�N

)(4.18)
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which, neglecting the O(!

�N

) terms, is Hamiltonian with

H(y; _y; V;

_

V ) =

1

2

�

_y

T

_y + y

T




2

y

�

+

1

2

X

0<jkj<N

�

( _v

�k

)

T

_v

k

+ (v

�k

)

T




2

v

k

�

+ U(y; V ):

(4.19)

Theorem 4.2. Under the assumptions (4.2) and (4.1) for 0 � t � T , we have

H(y(t); _y(t); V (t);

_

V (t)) = H(y(0); _y(0); V (0);

_

V (0)) +O(!

�N

)(4.20)

H(y(t); _y(t); V (t);

_

V (t)) = H(x(t); _x(t)) +O(!

�1

) :(4.21)

The constants symbolized by O(�) are independent of ! and t with 0 � t � T , but

depend on E, N and T .

Proof. Multiplying (4.17) and (4.18) with _y

T

and ( _v

�k

)

T

, respectively, gives

_y

T

(�y +


2

y) +

X

0<jkj<N

( _v

�k

)(�v

k

+


2

v

k

) = �

d

dt

U(y; V ) +O(!

�N

) :

Integrating from 0 to t and using v

�k

= v

k

then yields (4.20).

By the bounds of Theorem 4.1, we have for 0 � t � T

H(y; _y; V;

_

V ) =

1

2

j _y

1

j

2

+ j _v

1

2

j

2

+ !

2

jv

1

2

j

2

+ U(y) +O(!

�1

):(4.22)

On the other hand, we have from (4.14) and (4.3) that

H(x; _x) =

1

2

j _y

1

j

2

+

1

2

j _v

1

2

+ _v

�1

2

j

2

+

1

2

!

2

jv

1

2

+ v

�1

2

j

2

+ U(y) +O(!

�1

):(4.23)

Using v

1

2

= e

i!t

z

1

2

and _v

1

2

= e

i!t

( _z

1

2

+ i!z

1

2

) together with v

�1

2

= v

1

2

, it follows from

_z

1

2

= O(!

�1

) that _v

1

2

+ _v

�1

2

= i!(v

1

2

� v

�1

2

) + O(!

�1

) and j _v

1

2

j = !jv

1

2

j + O(!

�1

).

Inserted into (4.22) and (4.23) this yields the statement (4.21).

4.3. Another almost-invariant. Besides the Hamiltonian H(y; _y; V;

_

V ), the

coe�cients of the frequency expansion have another almost-invariant. It only depends

on the oscillating part and it is given by

I(V;

_

V ) = �i!

X

0<jkj<N

k (v

�k

)

T

_v

k

:(4.24)

This almost-invariant turns out to be close to the energy of the harmonic oscillator,

I(x; _x) =

1

2

j _x

2

j

2

+

1

2

!

2

jx

2

j

2

:(4.25)

Theorem 4.3. Under the assumptions (4.2) and (4.1) for 0 � t � T , we have

I(V (t);

_

V (t)) = I(V (0);

_

V (0)) +O(!

�N

)(4.26)

I(V (t);

_

V (t)) = I(x(t); _x(t)) +O(!

�1

) :(4.27)

The constants symbolized by O(�) are independent of ! and t with 0 � t � T , but

depend on E, N and T .
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Proof. With the vector Z = (z

1

; z

�1

; : : : ; z

N�1

; z

�N+1

) it holds that U(y; Z) =

U(y; V ) and also r

z

�kU(y; Z) = e

�ik!t

r

v

�kU(y; V ). Di�erentiating the identity 0 =

U(y(t); V (t))� U(y(t); Z(t)) with respect to t yields

0 =

X

0<jkj<N

�

( _v

�k

)

T

r

v

�kU(y(t); V (t))� ( _z

�k

)

T

r

z

�kU(y(t); Z(t))

�

=

X

0<jkj<N

�

_v

�k

� e

�ik!t

_z

�k

�

T

r

v

�kU(y(t); V (t))

= �

X

0<jkj<N

ik!(v

�k

)

T

r

v

�kU(y(t); V (t));(4.28)

because v

�k

= e

�ik!t

z

�k

and hence _v

�k

= e

�ik!t

( _z

�k

� ik!z

�k

).

The proof of Theorem 4.3 is now very similar to that of Theorem 4.2. We multiply

the relation (4.18) with �i!k(v

�k

)

T

instead of ( _v

�k

)

T

. Summing up yields, with the

use of (4.28),

�i!

X

0<jkj<N

k (v

�k

)

T

�

�v

k

+


2

v

k

�

= O(!

�N

) :(4.29)

The derivative of I(V;

_

V ), given by (4.24), is

d

dt

I(V;

_

V ) = �i!

X

0<jkj<N

k

�

(v

�k

)

T

�v

k

+ ( _v

�k

)

T

_v

k

�

:(4.30)

In the sums

P

k

k(v

�k

)

T




2

v

k

and

P

k

k( _v

�k

)

T

_v

k

, the terms with k and �k cancel.

Hence, the statement (4.26) follows from (4.29) and (4.30).

Using _v

k

= e

ik!t

( _z

k

+ ik!z

k

) = ik!v

k

+ O(!

�1

), it follows from the bounds of

Theorem 4.1 that

I(V;

_

V ) = 2!

2

jv

1

2

j

2

+O(!

�1

):

On the other hand, using the arguments of the proof of Theorem 4.2, we have

I(x; _x) =

1

2

j _v

1

2

+ _v

�1

2

j

2

+

1

2

!

2

jv

1

2

+ v

�1

2

j

2

+O(!

�1

) = 2!

2

jv

1

2

j

2

+O(!

�1

):

This proves the second statement of the theorem.

Corollary 4.4. If x(t) 2 K for 0 � t � !

N

, then

I(x(t); _x(t)) = I(x(0); _x(0)) +O(!

�1

) +O(t!

�N

) :

The constants symbolized by O(�) are independent of ! and t with 0 � t � !

N

, but

depend on E and N .

Proof. With a �xed T > 0, let V

j

denote the vector of frequency expansion terms

that correspond to starting values (x(jT ); _x(jT )). For t = (n + �)T with 0 � � < 1,

we have by (4.27)

I(x(t); _x(t))� I(x(0); _x(0))

= I(V

n

(�T );

_

V

n

(�T )) +O(!

�1

)� I(V

0

(0);

_

V

0

(0)) +O(!

�1

)

= I(V

n

(�T );

_

V

n

(�T ))� I(V

n

(0);

_

V

n

(0)) +

n�1

X

j=0

�

I(V

j+1

(0);

_

V

j+1

(0))� I(V

j

(0);

_

V

j

(0))

�

+O(!

�1

) :
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We note that I(V

j+1

(0);

_

V

j+1

(0))�I(V

j

(0);

_

V

j

(0)) = O(!

�N

), because, by the unique-

ness statement of Theorem 4.1, we have V

j+1

(0) = V

j

(T ) + O(!

�N

) and

_

V

j+1

(0) =

_

V

j

(T )+O(!

�N

), and we have the bound (4.26) of Theorem 4.3. The same argument

applies to I(V

n

(�T );

_

V

n

(�T ))� I(V

n

(0);

_

V

n

(0)). This yields the result.

Remark. It is already known from the article [BGG87] that the oscillatory energy

I(x(t); _x(t)) is nearly preserved over long times. The proofs in [BGG87] are completely

di�erent. They use coordinate transforms from Hamiltonian perturbation theory and

show that I is nearly preserved over time intervals which grow exponentially with !.

By carefully tracing the N -dependence of the constants in the O(!

�N

)-terms, it is

possible to obtain near-conservation of I over exponentially long time intervals also

within the present framework of frequency expansions.

5. Frequency expansion of the numerical solution. In this section we show

that the numerical solution (2.2), (2.3) for nonlinear problems (1.1) has a frequency

expansion similar to that of the analytical solution. Following the idea of backward

analysis and motivated by the results of Sect. 4 we look for a function

bx(t) = y(t) +

X

0<jkj<N

e

ik!t

z

k

(t)(5.1)

(with smooth y(t) and z

k

(t) depending on h)

1

such that, up to a small defect,

bx(t+ h)� 2 cosh
 bx(t) + bx(t� h) = h

2

	 g(�bx(t)); bx(0) = x

0

; bx(h) = x

1

:(5.2)

We assume throughout this section that

h! � d > 0;(5.3)

and that the numerical solution �x

n

remains in a compact subset of the region where

g(x) is analytic, i.e.,

�x

n

2 K for 0 � nh � T:(5.4)

5.1. Functional calculus. For the computation of the functions y(t) and z

k

(t)

the following functional calculus is convenient. Let f be an entire complex function

bounded by jf(�)j � C e

j�j

. Then,

f(hD)x(t) =

1

X

k=0

f

(k)

(0)

k!

h

k

x

(k)

(t)

converges for every function x which is analytic in a disk of radius r > h around t.

We note that (hD)

k

x(t) = h

k

x

(k)

(t) for k = 0; 1; 2; : : : and exp(hD)x(t) = x(t + h).

If f

1

and f

2

are two such entire functions, then

f

1

(hD)f

2

(hD)x(t) = (f

1

� f

2

)(hD)x(t)

whenever both sides exist. In particular, we have

x(t + h)� 2 cosh
x(t) + x(t� h) = (e

hD

� 2 cosh
 + e

�hD

)x(t):

1

To avoid an overloaded notation with hats, we use the same letters y and z

k

as for the analytical

solution. We hope that this does not cause confusion.
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We therefore introduce the operator

L(hD) = e

hD

� 2 cosh
+ e

�hD

= 2

�

cos(ihD)� cosh


�

= 4 sin

�

1

2

h
 +

1

2

ihD

�

sin

�

1

2

h
�

1

2

ihD

�

(5.5)

which, for h! 0, is an approximation to h

2

(D

2

+


2

).

We next study the application of such an operator to functions of the form e

i!t

z(t).

By Leibniz' rule of calculus we have (hD)

k

e

i!t

z(t) = e

i!t

(hD + i!h)

k

z(t). After a

short calculation this also yields

f(hD)e

i!t

z(t) = e

i!t

f(hD + i!h)z(t) = e

i!t

1

X

k=0

f

(k)

(i!h)

k!

h

k

z

(k)

(t) :(5.6)

5.2. Modi�ed equations for the coe�cient functions of the frequency

expansion. With the operator L(hD) of (5.5) the condition (5.2) becomes

L(hD)bx(t) = h

2

	g

�

�bx(t)

�

:(5.7)

Inserting the ansatz (5.1), expanding the right-hand side of (5.7) into a Taylor series

around �y(t), and comparing the coe�cients of e

ik!t

yields for the functions y(t) and

z

k

(t)

L(hD)y = h

2

	

�

g(�y) +

X

s(�)=0

1

m!

g

(m)

(�y)(�z)

�

�

L(hD + ik!h)z

k

= h

2

	

X

s(�)=k

1

m!

g

(m)

(�y)(�z)

�

:

(5.8)

Here, � = (�

1

; : : : ; �

m

) is a multi-index as in the proof of Theorem 4.1, s(�) =

P

m

j=1

�

j

, and (�z)

�

is an abbreviation for the m-tupel (�z

�

1

; : : : ;�z

�

m

). To get

smooth functions y(t) and z

k

(t) which solve (5.8) up to a small defect, we look at the

dominating terms in the Taylor expansions of L(hD) and L(hD + ik!h). With the

abbreviations s

k

= sin(

1

2

kh!) and c

k

= cos(

1

2

kh!) we have

L(hD) =

�

0 0

0 4s

2

1

�

�

�

1 0

0 1

�

(ihD)

2

+ : : :

L(hD + ih!) =

�

�4s

2

1

0

0 0

�

+ 2s

2

�

1 0

0 1

�

(ihD)� c

2

�

1 0

0 1

�

(ihD)

2

+ : : :(5.9)

L(hD + ikh!) =

�

�4s

2

k

0

0 4s

k�1

s

k+1

�

+ 2s

2k

�

1 0

0 1

�

(ihD)

� c

2k

�

1 0

0 1

�

(ihD)

2

+ : : : :

The situation is now more complicated than in (4.7)-(4.9) for the frequency expansion

of the analytical solution, because several of the coe�cients in (5.9) may vanish due

to numerical resonance. We here con�ne the discussion to the non-resonant case. We

assume that h and !

�1

lie in a subregion of the (h; !

�1

)-plane of small parameters

for which there exists a positive constant c such that

j sin(

1

2

kh!)j � c

p

h for k = 1; : : : ; N; with N � 2:(5.10)
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The condition excludes that h! is o(

p

h) close to integral multiples of �. For given h

and !, the condition imposes a restriction on N . In the following, N is a �xed integer

such that (5.10) holds.

Theorem 5.1. Under the limited-energy condition (4.2), under the non-resonance

condition (5.10), under the conditions (5.3), (5.4), and under the conditions (2.9) and

(2.10) on the numerical method (2.2){(2.4), the numerical solution is of the form

x

n

= y(t) +

X

0<jkj<N

e

ik!t

z

k

(t) +

�

O(t

2

h

N

)

O( (h!)t

2

h

N

)

�

uniformly for 0 � t = nh � T , where the functions y = (y

1

; y

2

) and z

k

= (z

k

1

; z

k

2

)

satisfy (5.8) up to a defect of O(h

N+2

) in their �rst components, and O( (h!)h

N+2

)

in their second components. Together with all their derivatives these functions are

bounded by

y

1

= O(1); z

1

1

= O(h�(h!)!

�1

); z

k

1

= O(h�(h!)

k

!

�k

);

y

2

= O(!

�2

); z

1

2

= O(!

�1

); z

k

2

= O(h (h!)�(h!)

k

!

�k

)

(5.11)

for k = 2; : : : ; N � 1. We have z

�k

= z

k

, and the constants symbolized by the O-

notation are independent of ! and h, but depend on E, N , and T .

Proof. Under assumption (5.10), the �rst non-vanishing coe�cients in (5.9) are

the dominant ones, and the derivation of the de�ning relations for y and z

k

is the

same as for the analytical solution in Theorem 4.1. We insert (5.9) into (5.8) and we

eliminate recursively the higher derivatives. This motivates the following ansatz for

the computation of the functions y and z

k

:

�y

1

= f

10

(�=�) +

p

h f

11

(�=�) + : : :

_z

2

=

 (h!)h

s

2

�

f

20

(�=�) +

p

h f

21

(�=�) + : : :

�

z

1

=

h

2

s

2

1

�

g

10

(�=�) +

p

h g

11

(�=�) + : : :

�

y

2

=

 (h!)h

2

s

2

1

�

g

20

(�=�) +

p

h g

21

(�=�) + : : :

�

(5.12)

z

k

1

=

h

2

s

2

k

�

g

k

10

(�=�) +

p

h g

k

11

(�=�) + : : :

�

z

k

2

=

 (h!)h

2

s

k+1

s

k�1

�

g

k

20

(�=�) +

p

h g

k

21

(�=�) + : : :

�

;

where the functions depend smoothly on the variables y

1

, _y

1

, z

2

and on the bounded

parameters

p

h=s

k

, s

k

, c

k

, and  (h!). Inserting this ansatz and its derivatives into

(5.8) and comparing like powers of

p

h yields recurrence relations for the functions

f

k

jl

, g

k

jl

. The functions g

k

jl

(for k � 1) contain at least k times the factor �(h!)z

2

, and

f

2l

contains at least once this factor. Since the series in (5.12) need not converge, we

truncate them after the (

p

h)

2(N+2)

terms.

We next determine the initial values y

1

(0), _y

1

(0) and z

2

(0) such that bx(0) and

bx(h) of (5.1) coincide with the starting values x

0

and x

1

of the numerical scheme (x

1

is

computed from x

0

and _x

0

via the formula (2.2) with n = 0). Using the non-resonance
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assumption (5.10), the condition bx(0) = x

0

= (x

01

; x

02

) becomes

x

01

= y

1

(0) +O

�

h�(h!)z

2

(0)

�

x

02

= z

2

(0) + z

2

(0) +O

�

h

2

 (h!)=s

2

1

�

+O

�

h (h!)�(h!)z

2

(0)

�

:

(5.13)

The formula for the �rst component of (2.2), x

11

�x

01

= h _x

01

+

1

2

h

2

g

1

(�x

0

), together

with bx

1

(h)� bx

1

(0) = h _y

1

(0) +O(h

2

) +O(h�(h!)z

2

(0)) implies that

_x

01

= _y

1

(0) +O(h) +O

�

�(h!)z

2

(0)

�

:(5.14)

For the second component we have x

12

�cosh! x

02

= h sinch! _x

02

+O(h

2

 (h!)) from

(2.2), and bx

2

(h) � cosh! bx

2

(0) = (1� cosh!)y

2

(0) +O(h

2

 (h!)) + i sinh!

�

z

2

(0)�

z

2

(0)

�

+O

�

h (h!)�(h!)z

2

(0)

�

, which after division by h sinch! yields

_x

02

= i!

�

z

2

(0)� z

2

(0)

�

+ O(h (h!)=sinch!)

+ O

�

 (h!)�(h!)z

2

(0)=sinch!

�

:

(5.15)

The four equations (5.13), (5.14), (5.15) constitute a nonlinear system for the four

quantities y

1

(0), _y

1

(0), !

�

z

2

(0) + z

2

(0)

�

, and !

�

z

2

(0)� z

2

(0)

�

. By the implicit func-

tion theorem and using the limited-energy assumption (4.2), we get a locally unique

solution for su�ciently small h, if the conditions (2.9) and (2.10) are satis�ed.

The initial value for z

2

satis�es z

2

(0) = O(!

�1

), and it follows from (2.10) that

h (h!)=s

2

= O(!

�1

), so that _z

2

= O(!

�1

z

2

) by (5.12). This implies z

2

(t) = O(!

�1

)

for t � T . The other estimates (5.11) are directly obtained from (5.12). Conse-

quently, the values bx(nh) inserted into the numerical scheme (2.5) yield a defect of

size O(h

N+2

):

bx((n+ 1)h)� 2 cosh
 bx(nh) + bx((n� 1)h) = h

2

	

�

g(�bx(nh)) +O(h

N

)

�

:(5.16)

Standard convergence estimates then show that on bounded time intervals x

n

�bx(nh)

is of size O(t

2

h

N

) in the �rst component and of size O( (h!)t

2

h

N

) in the second

component. This completes the proof of Theorem 5.1.

5.3. Frequency expansion of the derivative approximation. Under the

condition (5.10) we have h! 6= k� for integer k, so that the derivative approximation

_x

n

is given by (2.6). We now de�ne bx

0

(t) by the continuous analogue

bx(t+ h)� bx(t� h) = 2h sinc (h
) bx

0

(t):(5.17)

Using condition (2.10), Theorem 5.1 implies that

_x

n

= bx

0

(nh) +O(t

2

h

N�1

) +O(h

N+1

)

on bounded time intervals. We next write the function bx

0

(t) as

bx

0

(t) = y

0

(t) +

X

0<jkj<N

e

ik!t

z

0k

(t):(5.18)

Inserting the relation (5.1) into �i sin(ihD)bx(t) = h sinc (h
)bx

0

(t), which is equivalent

to (5.17), and comparing the coe�cients of e

ik!t

we obtain

sinc (ihD) _y

1

= y

0

1

sinc (ihD) _y

2

= sinc (h!)y

0

2

(ih)

�1

sin(ihD � k!h) z

k

1

= z

0k

1

(ih)

�1

sin(ihD � k!h) z

k

2

= sinc (h!)z

0k

2

:

(5.19)
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In particular, we get for z

1

2

that

z

01

2

= i! cos(ihD) z

1

2

� i!

cos!h

sin!h

sin(ihD) z

1

2

:(5.20)

Theorem 5.2. Under the assumptions of Theorem 5.1, the numerical solution

_x

n

, given by (2.6), satis�es

_x

n

= y

0

(t) +

X

0<jkj<N

e

ik!t

z

0k

(t) +O(t

2

h

N�1

) +O(h

N+1

)

uniformly for 0 � t = nh � T , where the functions y

0

= (y

0

1

; y

0

2

) and z

0k

= (z

0k

1

; z

0k

2

)

together with all their derivatives are bounded by

y

0

1

= _y

1

+O(h

2

); z

01

1

= O(!

�1

); z

0k

1

= O(!

�k

);

z

01

2

= i!z

1

2

+O(!

�1

); y

0

2

= O(!

�1

); z

0k

2

= O(!

�k

); k = 2; : : : ; N � 1:

(5.21)

The constants symbolized by the O-notation are independent of ! and h, but depend

on E, N and T .

Proof. The estimates follow from (5.19) and from Theorem 5.1. For y

0

2

, z

01

1

and

z

01

2

we use the formulas (5.12) to get the sharper result.

5.4. Energy along the numerical solution. In the Hamiltonian case g(y) =

�rU(y), the total energy H and the oscillatory energy I are related to the frequency

expansion coe�cients as follows.

Lemma 5.3. If the coe�cients of the frequency expansions for x

n

and _x

n

satisfy

(5.11) and (5.21), respectively, then

H(bx; bx

0

) =

1

2

j _y

1

j

2

+ 2!

2

jz

1

2

j

2

+ U(y) +O(!

�1

) +O(h

2

);(5.22)

I(bx; bx

0

) = 2!

2

jz

1

2

j

2

+O(!

�1

):(5.23)

Proof. By de�nition (4.25) we have I(bx; bx

0

) =

1

2

jbx

0

2

j

2

+

1

2

!

2

jbx

2

j

2

. Since

!bx

2

(t) = !

�

e

i!t

z

1

2

(t) + e

�i!t

z

�1

2

(t)

�

+O(!

�1

) by (5.11),

bx

0

2

(t) = i!

�

e

i!t

z

1

2

(t)� e

�i!t

z

�1

2

(t)

�

+O(!

�1

) by (5.21),

the statement (5.23) follows from the fact that jv+vj

2

+ jv�vj

2

= 4jvj

2

. The formula

(5.22) can be proved in the same way.

6. Almost-invariants of the numerical frequency expansion. In this sec-

tion we show that, in the Hamiltonian case g(y) = �rU(y), the coe�cients of the

frequency expansion of the numerical solution have invariants that can be obtained as

in Sect. 4. We denote V = (v

1

; v

�1

; : : : ; v

N�1

; v

�N+1

) with v

k

(t) = e

ik!t

z

k

(t), where

z

k

are the coe�cients of the frequency expansion (5.1). Similar to (4.16) we consider

the function

U(y; V ) = U(�y) +

X

s(�)=0

1

m!

U

(m)

(�y)(�v)

�

;(6.1)
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where the sum is taken over all m � 1 and all multi-indices � = (�

1

; : : : ; �

m

) with

non-vanishing integral components for which s(�) =

P

j

�

j

= 0 and 0 < j�

j

j < N . It

then follows from Theorem 5.1 that the coe�cients y and v

k

satisfy

�L(hD)y = �h

2

	

�

r

y

U(y; V ) +O(h

N

)

�

(6.2)

�L(hD)v

k

= �h

2

	

�

r

v

�k U(y; V ) +O(�(h!)h

N

)

�

:(6.3)

The factor �(h!) in the defect of (6.3) is due to the presence of the factor �(h!)z

2

in

the relations (5.12) de�ning the z-components.

The similarity of these relations to (4.17), (4.18) allows us to obtain invariants

that are the analogues of H and I of Sect. 4.

6.1. First invariant. As in Sect. 4.2 we multiply (6.2) and (6.3) by _y

T

and

( _v

�k

)

T

, respectively, and we thus obtain

_y

T

	

�1

�h

�2

L(hD)y +

X

0<jkj<N

( _v

�k

)

T

	

�1

�h

�2

L(hD)v

k

+

d

dt

U(y; V ) = O(h

N

):

Since we know bounds on z

k

and on its derivatives (Theorem 5.1), we switch to the

quantities z

k

and we get the equivalent relation

_y

T

	

�1

�h

�2

L(hD)y +

X

0<jkj<N

( _z

�k

� ik!z

�k

)

T

	

�1

�h

�2

L(hD + ik!h)z

k

+

d

dt

U(y; V ) = O(h

N

):

(6.4)

We shall show that the left-hand side is the total derivative of an expression that only

depends on y, z

k

and its derivatives. Indeed, the term _y

T

y

(2l)

can be written as

_y

T

y

(2l)

=

d

dt

�

_y

T

y

(2l�1)

� �y

T

y

(2l�2)

+ : : :� (y

(l�1)

)

T

y

(l+1)

�

1

2

(y

(l)

)

T

y

(l)

�

:

Similarly, we get for z = z

k

and z = z

�k

that

Re

_

z

T

z

(2l)

= Re

d

dt

�

_

z

T

z

(2l�1)

� : : :� (z

(l�1)

)

T

z

(l+1)

�

1

2

(z

(l)

)

T

z

(l)

�

Re z

T

z

(2l+1)

= Re

d

dt

�

z

T

z

(2l)

� : : :� (z

(l�1)

)

T

z

(l+1)

�

1

2

(z

(l)

)

T

z

(l)

�

Im

_

z

T

z

(2l+1)

= Im

d

dt

�

_

z

T

z

(2l)

�

�

z

T

z

(2l�1)

+ : : :� (z

(l)

)

T

z

(l+1)

�

Im z

T

z

(2l+2)

= Im

d

dt

�

z

T

z

(2l+1)

�

_

z

T

z

(2l)

+ : : :� (z

(l)

)

T

z

(l+1)

�

:

Hence, there exists a function

b

H

0

[y; Z](t), which depends on the values at t of the

functions y and Z = (z

1

; z

�1

; : : : ; z

N�1

; z

�N+1

) and of their �rst N derivatives, such

that (6.4) reads

d

dt

b

H

0

[y; Z](t) = O(h

N

) :

This yields immediately the �rst statement of the following result.

Theorem 6.1. Under the assumptions of Theorem 5.1, the coe�cient functions

y and Z = (z

1

; z

�1

; : : : ; z

N�1

; z

�N+1

) satisfy

b

H

0

[y; Z](t) =

b

H

0

[y; Z](0) + O(th

N

)
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for 0 � t � T . Moreover,

b

H

0

[y; Z](t) =

1

2

j _y

1

(t)j

2

+ U(�y(t)) + �(h!) 2!

2

jz

1

2

(t)j

2

+O(h

2

);

where �(h!) = sinc (h!)�(h!)= (h!).

Proof. The formula for

b

H

0

is obtained from the formulas (5.9) for L(hD+ ikh!)

together with the estimates of Theorem 5.1.

Remark. Symplectic discretizations have  (�) = sinc � � �(�), so that �(h!) = 1.

6.2. Second invariant. As in the proof of Theorem 4.3 we have for the function

U(y; V ) of (6.1) that

0 = �

X

0<jkj<N

ik!(v

�k

)

T

r

v

�kU

�

y(t); V (t)

�

:

Consequently, it follows from (6.3) that

�i!

X

0<jkj<N

k(v

�k

)

T

	

�1

�h

�2

L(hD)v

k

= O(�(h!)h

N

) :

Written in the z variables, this becomes

�i!

X

0<jkj<N

k(z

�k

)

T

	

�1

�h

�2

L(hD + ik!h)z

k

= O(�(h!)h

N

) :(6.5)

As in Sect. 6.1, the left-hand expression can be written as the total derivative of a

function

b

I

0

[Z](t) which depends on the values at t of the function Z and its �rst N

derivatives:

d

dt

b

I

0

[Z](t) = O(�(h!)h

N

) :

Theorem 6.2. Under the assumptions of Theorem 5.1, the coe�cient functions

Z = (z

1

; z

�1

; : : : ; z

N�1

; z

�N+1

) satisfy

b

I

0

[Z](t) =

b

I

0

[Z](0) + O(t�(h!)h

N

)

for 0 � t � T . Moreover,

b

I

0

[Z](t) = �(h!)

�

2!

2

jz

1

2

(t)j

2

+O(h

2

)

�

;

with �(h!) as in Theorem 6.1.

Proof. From (6.5) and the estimates of Theorem 5.1, we obtain

b

I

0

[Z](t) = �(h!) 2!

2

jz

1

2

(t)j

2

+O(�(h!)h

2

) :

Because of condition (2.10), this yields the stated formula for

b

I

0

.

7. Long-time energy conservation of the numerical discretization. We

are now able to prove the main result of this paper. This shows that the total energy

H and the oscillatory energy I are nearly conserved over time intervals of length

C

N

h

�N

, for any N for which the non-resonance condition (5.10) is satis�ed.

For the convenience of the reader we restate our assumptions:

� the limited-energy condition (4.2):

1

2

k _x(0)k

2

+

1

2

k
x(0)k

2

� E ;
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� the boundedness condition (5.4) for the numerical solution sequence: �x

n

stays in

a compact subset of the domain of analyticity of g;

� the condition (5.3): h! � d > 0;

� the conditions (2.9) and (2.10) on the numerical method:

j (h!)j � C

1

sinc

2

(

1

2

h!) ; j (h!)j � C

2

jsinc (h!)j ;

� the non-resonance condition (5.10): for some N � 2,

j sin(

1

2

kh!)j � c

p

h for k = 1; : : : ; N:

Theorem 7.1. Under the above conditions, the numerical solution of (1.1) ob-

tained by the method (2.2){(2.4) satis�es

H(x

n

; _x

n

) = H(x

0

; _x

0

) +O(h) +O(th

N

);

I(x

n

; _x

n

) = I(x

0

; _x

0

) +O(h) +O(th

N

);

where t = nh. The constants symbolized by O(�) are independent of n and of h and !

satisfying the above conditions, but depend on N .

Proof. (a) If we consider the linear combinations

b

H =

b

H

0

� (1 � 1=�)

b

I

0

and

b

I =

b

I

0

=�, it follows from Theorem 6.1 and Theorem 6.2 that

b

H[y; Z](t) =

b

H[y; Z](0) +O(th

N

);

b

I[Z](t) =

b

I[Z](0) +O(th

N

):

(7.1)

Moreover, by Theorem 6.1 and Theorem 6.2 together with Lemma 5.3 we have

b

H[y; Z](t) = H

�

bx(t); bx

0

(t)

�

+O(h

2

) +O(!

�1

);

b

I [Z](t) = I

�

bx(t); bx

0

(t)

�

+O(!

�1

);

(7.2)

where again bx(t) is de�ned by the frequency expansion (5.1) with coe�cients y(t) and

Z(t), and bx

0

(t) is de�ned by (5.17). The relations (7.1) and (7.2) hold only on �nite

time intervals 0 � t � T , on which the frequency expansion is de�ned.

(b) We now apply the above relations repeatedly on intervals of length h, for

frequency expansions corresponding to di�erent starting values. As long as (x

n

; _x

n

)

satis�es the limited-energy condition (4.2) (possibly with a larger constant E), Theo-

rem 5.1 gives us frequency expansion coe�cients y

n

(t); Z

n

(t) corresponding to starting

values (x

n

; _x

n

). Because of the uniqueness (up to O(h

N+1

)) of the coe�cients of the

frequency expansion, the following diagram commutes up to terms of size O(h

N+1

):

(x

n

; _x

n

)  ! (y

n

(0); _y

n

(0); Z

n

(0);

_

Z

n

(0))

?

?

?

?

y

numerical

method

?

?

?

y

ow

(y

n

(h); _y

n

(h); Z

n

(h);

_

Z

n

(h))

= (up to O(h

N+1

))

(x

n+1

; _x

n+1

)  ! (y

n+1

(0); _y

n+1

(0); Z

n+1

(0);

_

Z

n+1

(0))

(7.3)

The construction of the coe�cient functions via (5.12) shows that also higher deriva-

tives of (y

n

; Z

n

) at h and (y

n+1

; Z

n+1

) at 0 di�er by only O(h

N+1

). We thus have
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from (7.3) and (7.1)

b

H[y

n+1

; Z

n+1

](0) =

b

H[y

n

; Z

n

](h) +O(h

N+1

)

=

b

H[y

n

; Z

n

](0) +O(h

N+1

) :

Using this relation repeatedly, we obtain

b

H[y

n

; Z

n

](0) =

b

H[y

0

; Z

0

](0) +O(nh

N+1

) :

Moreover, from (7.2) we have the following for the coe�cient functions corresponding

to the starting values (x

n

; _x

n

) and (x

0

; _x

0

):

b

H[y

n

; Z

n

](0) = H

�

bx

n

(0); bx

0

n

(0)

�

+O(h

2

) +O(!

�1

) ;

b

H[y

0

; Z

0

](0) = H

�

bx

0

(0); bx

0

0

(0)

�

+O(h

2

) +O(!

�1

) :

Since bx

n

(0) = x

n

by construction, and bx

0

n

(0) = _x

n

+ O(h

N+1

) by Theorem 5.2, we

obtain

H(x

n

; _x

n

)�H(x

0

; _x

0

) = H(bx

n

(0); bx

0

n

(0))�H(bx

0

(0); bx

0

0

(0)) +O(h

N+1

)

=

b

H[y

n

; Z

n

](0)�

b

H[y

0

; Z

0

](0) +O(h

2

) +O(!

�1

)

= O(nh

N+1

) +O(h

2

) +O(!

�1

) ;

which gives the desired bound for the deviation of the total energy along the numerical

solution. The same argument applies to I(x

n

; _x

n

).
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