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Abstract: We consider multiscale Hamiltonian systems in which harmonic os-
cillators with several high frequencies are coupled to a slow system. It is shown
that the oscillatory energy is nearly preserved over long times ε−N for arbitrary
N > 1, where ε−1 is the size of the smallest high frequency. The result is uniform
in the frequencies and does not require non-resonance conditions.

1. Introduction and statement of the main result

As has been discussed, e.g., in [2–5,15], the problem of slow rates of ther-
malization in statistical mechanics can be understood by studying multiscale
problems of the following type: For momenta p = (p0, p1, . . . , pn) and positions
q = (q0, q1, . . . , qn) with pj, qj ∈ R

dj consider a Hamiltonian that couples high-
frequency harmonic oscillators with a Hamiltonian of slow motion,

H(p,q) = Hω(p,q) + Hslow(p,q), (1)

where the oscillatory and slow-motion energies are given by

Hω(p,q) =

n∑

j=1

1

2

(
|pj|

2 + ω2
j |qj |

2
)
, Hslow(p,q) =

1

2
|p0|

2 + U(q) (2)

with high angular frequencies

ωj ≥
1

ε
, 0 < ε ≪ 1. (3)

The coupling potential U(q) is assumed smooth with derivatives bounded inde-
pendently of the small parameter ε.
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Weakly anharmonic systems similar to (1)–(3) have been studied in numerous
publications, from different viewpoints and with different mathematical tech-
niques, ever since the seminal paper by Fermi, Pasta & Ulam ([9], reprinted in
[10]). For some recent work, see [1,8,10,12,14] and references therein. The sys-
tem (1)–(3) has been considered in [4] with the double motivation of explaining
slow rates of thermalization and the realization of holonomic constraints.

The equations of motion are

q̈j + ω2
j qj = −∇jU(q), j = 0, . . . , n, (4)

where ∇j denotes the partial derivative with respect to qj and ω0 = 0. We are
interested in the energy exchange (or lack thereof) between the fast and the
slow system, where in contrast to previous work we assume no condition on the
frequencies other than the lower bound (3).

Theorem 1. Fix an energy bound E > 0, an integer N ≥ 1, and further a radius
ρ > 0 and a set K ⊂ R

d0 such that the potential U has bounded derivatives of
all orders in a ρ-neighbourhood of K × 0 × · · · × 0. Then there exist C > 0 and
ε∗ > 0 such that the following holds for 0 < ε ≤ ε∗: Whenever the frequencies
satisfy ωj ≥ ε−1 for j = 1, . . . , n and the initial values (p(0),q(0)) are such that

Hω

(
p(0),q(0)

)
≤ E, (5)

then, along the solution of (4) to these initial values, the oscillatory energy de-
viates from its starting value by no more than

∣∣Hω

(
p(t),q(t)

)
− Hω

(
p(0),q(0)

)∣∣ ≤ C ε3/4 for 0 ≤ t ≤ ε−N , (6)

provided that q0(t) stays in the set K for such long times. The threshold ε∗ and
the constant C depend on n and N , on the energy bound E and on bounds of
derivatives of the potential U .

We emphasize that no non-resonance condition is required in this result. The
estimate is uniform in the frequencies ωj ≥ ε−1. This sets Theorem 1 apart from
existing related results in Hamiltonian perturbation theory.

For fixed strongly non-resonant frequencies as well as for exactly resonant
frequencies that satisfy a diophantine non-resonance condition outside a res-
onance module, the long-time estimate (6) is a particular case of the energy
separation results shown by Benettin, Galgani and Giorgilli [4]. The proof of
Theorem 1 is based on modulated Fourier expansions with suitably modified
frequencies and does not use the canonical transformation techniques of Hamil-
tonian perturbation theory on which the proofs in [4] are based. The idea of
modifying frequencies to avoid almost-resonant situations has also been used in
[2] in a different context where all frequencies are sufficiently close to a single
high frequency.

The results in [4] are proved over times that are exponentially long in negative
fractional powers of ε in the case of a real-analytic potential. We expect that then
also Theorem 1 holds over exponentially long times, but we will not investigate
this question in this paper. See, however, [6] for a corresponding result over
exponentially long times for a single high frequency proved via modulated Fourier
expansions.
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We remark that the order ε3/4 can be improved, with the same proof, to ε1−δ

for arbitrary δ > 0, with ε∗ and C depending additionally on δ and deteriorating
as δ → 0.

The energy bound Hω(p,q) ≤ Const. implies qj = O(ε) for j = 1, . . . , n.
Theorem 1 and conservation of the total energy therefore yield that also the
energy 1

2 |p0|2 + U(q0, 0, . . . , 0) of the isolated slow system is nearly preserved

over time ε−N along solutions of (4).
We present a numerical example in the next section and prove Theorem 1 in

the remainder of the paper.

2. Numerical illustration

We consider the problem with n = 7 frequencies

εωj = 1, 1 + ε2, 1 + ε, 1 + ε3/4, 1 + ε2/3, 1 + ε1/2, 2

for j = 1, . . . , n, and with the potential

U(q) =
1

2
q2
0 +

(
a q0 + q1 + q2 + 2 q3 + 3 q4 + q5 + q6 + 3 q7

)3

depending on a parameter a. The initial values are chosen as

q(0) = (1, 0.3 ε, 0.4 ε, 0.7 ε,−1.1 ε, 0.4 ε,−0.6 ε,−0.7 ε)

p(0) = (−0.2, 0.6, 0.7,−0.9,−0.9, 0.4,−1.1, 0.8).

The numerical solution is computed with a trigonometric integrator (symplectic
method of Deuflhard, see [13, Chap. XIII]), which is applied with constant step
size ∆t = 0.01 ε. Taking the step size twice as large gives nearly identical figures.
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Fig. 1. Individual oscillatory energies and shifted total oscillatory energy with parameter
a = 0.5 and ε = 0.005.

We consider two different values for the parameter a. Figure 1 shows the
individual oscillatory energies Ej = 1

2 (|pj |2 + ω2
j |qj |2) as well as the total oscil-

latory energy Hω on an interval of length 100 000 for a = 0.5 (for a = 1 the
energies explode) and for ε = 0.005. The initial oscillatory energies are close to
0.22, 0.32, 0.65, 1.05, 0.17, 0.82, 1.3. We observe that the oscillatory energies for
the modes j = 4, 5, 6 remain nearly constant, whereas for the other modes, which
are closer to a 1:1 and 1:2 resonance, there is a significant energy exchange. In
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the figure the constant value 2.3 is subtracted from the total oscillatory energy,
so that it fits better into the picture. We repeated the experiment with other
values of ε and found that the maximal deviation (6) of the total oscillatory
energy is 4.56 · 10−1 for ε = 0.02, 1.85 · 10−1 for ε = 0.01, and 9.54 · 10−2 for
ε = 0.005, which indicates an O(ε)-behaviour.
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Fig. 2. Individual oscillatory energies and total oscillatory energy with parameter a = ε.
The upper picture is for ε = 0.02, the middle picture for ε = 0.01, and the lower picture for
ε = 0.005.

Figure 2 shows the same experiment for the parameter a = ε and for three
different values of ε. Here, the maximal deviation (6) of the total oscillatory
energy is 3.95 · 10−2 for ε = 0.02, 1.41 · 10−2 for ε = 0.01, and 4.81 · 10−3 for
ε = 0.005.

3. Modulated Fourier expansion with modified frequencies

3.1. Changing almost-resonant frequencies to exactly resonant frequencies. We
deal with almost-resonant frequencies by introducing modified frequencies close
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to the original frequencies such that almost-resonances among the original fre-
quencies become exact resonances among the modified frequencies. For a multi-
index k = (k1, . . . , kn) ∈ Z

n, we denote ‖k‖ = |k1| + . . . + |kn|. The vector of
frequencies is ω = (ω1, . . . , ωn), and we write k · ω =

∑n
j=1 kjωj .

In order to decide whether a linear combination k ·ω of frequencies is consid-
ered as almost-resonant or as non-resonant we use the fact that there is a gap
in the linear combinations of frequencies.

Lemma 1. There exist µ > 0 depending only on n and N and α ∈ [µ, 1
4 ] depend-

ing on the frequencies such that there is no multi-index k ∈ Z
n with ‖k‖ ≤ N +1

and ε−α ≤ |k · ω| ≤ ε−α−µ.

Proof. Let us denote the number of all multi-indices k ∈ Z
n with ‖k‖ ≤ N + 1

by M , which obviously depends only on n and N . Consider the logarithms to
base ε−1 of the |k · ω| with ‖k‖ ≤ N + 1, which gives a set {a1, ..., aM}. With
µ = 1/(4M + 4), there is an interval of width µ in [µ, 1

4 ] that does not contain
any of the ai. If we denote this interval by [α, α + µ], then there is no k ∈ Z

n

with ‖k‖ ≤ N + 1 and ε−α ≤ |k · ω| ≤ ε−α−µ. ⊓⊔

Let α and µ be as in the previous lemma. We consider multi-indices k ∈ Z
n

with ‖k‖ ≤ N + 1 and |k · ω| ≥ ε−α−µ as non-resonant, whereas those with
|k · ω| ≤ ε−α are considered as almost-resonant and collected in the set

R = {k ∈ Z
n : |k · ω| ≤ ε−α, ‖k‖ ≤ N + 1}.

This set generates the module M that contains all finite linear combinations of
multi-indices in R with integer coefficients. We select a maximum number d ≤ n
of R-linearly independent vectors k1, . . . ,kd ∈ R. Their real-linear span contains
the module M.

We modify the almost-resonant frequencies ωj to exactly resonant frequencies

̟j = ωj + ϑj , j = 1, . . . , n,

by determining ϑ = (ϑ1, . . . , ϑn) as a solution of minimal norm of the (possibly
underdetermined) system of linear equations

ki · ω + ki · ϑ = 0, i = 1, . . . , d.

We then have
‖ϑ‖ ≤ γε−α, (7)

where γ depends only on n and N , and

k · ̟ = 0 for all k ∈ M, (8)

i.e., almost-resonances in the original frequencies become exact resonances in
the modified frequencies. We further have the lower bound

|k · ̟| ≥ 1
2 ε−α−µ for k /∈ M, ‖k‖ ≤ N + 1, (9)

provided that 0 < ε ≤ ε∗, where ε∗ depends only on n and N , i.e., non-resonant
multi-indices for the original frequencies are still non-resonant for the modified
frequencies. It will be convenient to let ̟0 = 0 and ϑ0 = 0.
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3.2. Short-time approximation by a modulated Fourier expansion. We let N be
a set of representatives of the equivalence classes in Z

n/M, which are chosen
such that for each k ∈ N , the norm of k is minimal in the equivalence class [k] =
k + M, and with k ∈ N , also −k ∈ N . We denote K = {k ∈ N : ‖k‖ ≤ N}.

We make the approximation ansatz (modulated Fourier expansion)

qj(t) ≈
∑

k∈K

zk

j (ε−αt) ei(k·̟)t, j = 0, 1, . . . , n. (10)

The modulation functions zk

j (τ) for τ = ε−αt with α from Lemma 1 are deter-
mined such that all their derivatives with respect to τ are bounded independently
of ε and that they yield a small defect δk

j in the modulation equations, which
are derived by inserting the expansion (10) into the differential equation (4) and
comparing the coefficients of ei(k·̟)t:

(
̟2

j − (k · ̟)2
)
zk

j + 2 i(k · ̟) ε−α
dzk

j

dτ
+ ε−2α

d2zk

j

dτ2
(11)

= (2̟jϑj − ϑ2
j)z

k

j −∇−k

j U(z) + δk

j .

Here ∇−k

j denotes the gradient with respect to z−k

j and the modulation potential

U(z) for z = (zk

j ) is given as

U(z) = U(z0

0) +

N∑

m=1

n∑

j1,...,jm=0

∑

k1+...+km∈M

1

m!
∂j1 . . . ∂jm

U(z0

0)
(
zk

1

j1 , . . . , zk
m

jm

)
,

where z0
0 = (z0

0 , 0, . . . , 0) and the indices (jl,k
l) = (0,0) are excluded from the

sum. Note that zk

j are vectors in R
dj and correspondingly ∂j1 . . . ∂jm

U(z0
0 ) is a

multilinear form on R
dj1 × · · · × R

djm ; in contrast ∇jU denotes the gradient, a
column vector in R

dj . In the following we let 〈j〉 = (0, . . . , 1, . . . , 0) denote the
jth unit vector in Z

n.

Proposition 1. In the situation of Theorem 1, the solution qj(t) (j = 0, . . . , n)
of (4) admits an expansion

qj(t) =
∑

k∈K

zk

j (ε−αt) ei(k·̟)t + rj(t), 0 ≤ t ≤ εα, (12)

where the coefficient functions zk
j (τ) satisfy z−k

j = zk

j and are bounded for 0 ≤
τ ≤ 1, together with all their derivatives with respect to τ up to any fixed order,
by

|z0

0 (τ)| ≤ C1, |z
±〈j〉
j (τ)| ≤ C1ω

−1
j ≤ C1ε,

and for all other (j,k),

|zk

j (τ)| ≤ C1|̟
2
j − (k · ̟)2|−1ε‖k‖.

The functions zk

j satisfy the modulation equations (11) with a defect bounded by

|δk

j (τ)| ≤ C2ε
N+1, 0 ≤ τ ≤ 1. (13)
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The remainder term is bounded by

(
ω2

j |rj(t)|
2 + |ṙj(t)|

2
)1/2

≤ C3ε
N+1, 0 ≤ t ≤ εα.

The constants C1, C2, C3 are independent of ε and the frequencies ωj ≥ ε−1, but
depend on n and N , on the energy bound E and on bounds of derivatives of the
potential U .

This will be proved in Section 4. The proof follows the lines of previous proofs
for modulated Fourier expansions; compare for example [13, Chap. XIII] and, in
technically more complicated situations than here, [7,11,12].

3.3. The almost-invariant. We introduce the functions yk

j (t) = zk

j (ε−αt) ei(k·̟)t,

which we collect in the vector y = (yk

j ) for j = 0, . . . , n and k ∈ K. Since k·̟ = 0

for k ∈ M, the modulation potential satisfies U(y) = U(z). By (11), we have
with rotated defects dk

j (t) = δk

j (ε−αt)ei(k·̟)t that

ÿk

j + ω2
j yk

j = −∇−k

j U(y) + dk

j , (14)

where ∇−k

j denotes the partial derivative with respect to y−k

j .

Without the defects dk

j , equation (14) is again a Hamiltonian system. Since

the sum in U(y) is over multi-indices k1, . . . ,km with k1 + · · · + km ∈ M, the
extended potential U is invariant under the action of the one-parameter group
S(θ)y = (eiθ(k·̟)yk

j ):

U(S(θ)y) = U(y) for all θ ∈ R,

because k · ̟ = 0 for k ∈ M. By Noether’s theorem this leads to a conserved
quantity E of the system (14) considered without defects. As we now show, this
quantity is almost conserved in our situation including the defects dk

j : We have

−
n∑

j=0

∑

k∈K

i(k · ̟) y−k

j ∇−k

j U(y) =
d

dθ
U(S(θ)y)

∣∣∣
θ=0

= 0,

and for

E(y, ẏ) = −i

n∑

j=0

∑

k∈K

(k · ̟) y−k

j ẏk

j (15)

we thus obtain by multiplying (14) with −i(k ·̟)y−k

j and summing over j and
k that

d

dt
E(y(t), ẏ(t)) = −i

n∑

j=0

∑

k∈K

(k · ̟) y−k

j (t) dk

j (t).

Since the right-hand side is O(εN+1) by the estimates of Proposition 1, E is an
almost-invariant. Moreover, E turns out to be close to the oscillatory energy Hω

along the solution of (4).
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Proposition 2. In the situation of Proposition 1 we have for 0 ≤ t ≤ εα

|E(y(t), ẏ(t)) − E(y(0), ẏ(0))| ≤ CεN+1

|E(y(t), ẏ(t)) − Hω(p(t),q(t))| ≤ C′ε3/4.

The constants C and C′ are independent of ε and the frequencies ωj ≥ ε−1.

Proof. The first inequality has already been derived above. Concerning the sec-
ond inequality, we note that with τ = ε−αt we have for k 6= 0

ẏk

j (t) = ei(k·̟)t
(
ε−α

dzk

j

dτ
(τ) + i(k · ̟)zk

j (τ)
)

= i(k · ̟)yk

j (t) + O(ε1−α).

With the bounds of Proposition 1 it follows that (omitting the argument t)

E(y, ẏ) = 2

n∑

j=1

̟2
j |y

〈j〉
j |2 + O(ε1−α)

= 2
n∑

j=1

ω2
j |y

〈j〉
j |2 + O(ε1−α).

On the other hand, with Proposition 1 we also obtain

Hω(p,q) = 1
2

n∑

j=1

(
|ẏ

〈j〉
j + ẏ

−〈j〉
j |2 + ω2

j |y
〈j〉
j + y

−〈j〉
j |2

)
+ O(ε)

= 2

n∑

j=1

ω2
j |y

〈j〉
j |2 + O(ε1−α).

Since α ≤ 1
4 , the result follows. ⊓⊔

3.4. Transition from one interval to the next. Propositions 1 and 2 are only
valid on a short time interval 0 ≤ t ≤ εα. We now consider a second short time
interval εα ≤ t ≤ 2εα and control in the following proposition the transition in
the almost-invariant from the first to the second interval.

Proposition 3. Let the conditions of Proposition 1 be fulfilled. Let zk

j (ε−αt)
for 0 ≤ t ≤ εα be the coefficient functions as in Proposition 1 for initial data
(p(0),q(0)), and let yk

j (t) = zk

j (ε−αt)ei(k·̟)t and y(t) = (yk

j (t)). Let further

ỹ(t) = (ỹk

j (t)) be the corresponding functions of the modulated Fourier expansion

for 0 ≤ t ≤ εα to the initial data (p(εα),q(εα)), constructed as in Proposition 1.
Then,

|E(y(εα), ẏ(εα)) − E(ỹ(0), ˙̃y(0))| ≤ CεN+1,

where C is independent of ε and the frequencies ωj ≥ ε−1.

The proof will be given in Section 4.
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3.5. From short to long time intervals. Now we put many short time inter-
vals together to get the long-time result of Theorem 1. For m = 0, 1, 2, . . . ,
let ym(t) contain the summands of the modulated Fourier expansion starting
from (p(mεα),q(mεα)). As long as Hω(p(mεα),q(mεα)) ≤ 2E, Proposition 2
yields for 0 ≤ t ≤ εα

|E(ym(t), ẏm(t)) − E(ym(0), ẏm(0))| ≤ CεN+1.

By Proposition 3,

|E(ym(εα), ẏm(εα)) − E(ym+1(0), ẏm+1(0))| ≤ CεN+1.

Summing up these estimates over m and applying the triangle inequality yields,
for 0 ≤ θ ≤ εα,

|E(ym(θ), ẏm(θ)) − E(y0(0), ẏ0(0))| ≤ 2(m + 1)CεN+1.

By Proposition 2, we have at t = mεα + θ

|E(ym(θ), ẏ(θ)) − Hω(p(t),q(t))| ≤ C′ε3/4.

Combining these bounds at t and at 0 we obtain for t ≤ ε−N

|Hω(p(t),q(t)) − Hω(p(0),q(0))| ≤ 2CtεN+1−α + 2C′ε3/4.

This yields the bound of Theorem 1.

4. Proof of Propositions 1 and 3

4.1. Construction of the modulation functions. We give an iterative construction
of the functions zk

j (j = 0, . . . , n and k ∈ K) such that after M = ⌈(N + 1)/µ⌉

iteration steps, the defect in equations (11) is of size O(εN+1). We denote by
zm =

(
[zk

j ]m
)

the mth iterate and distinguish between the following cases:

1. For j = 0 and k = 0 the first two terms in (11) disappear and we iterate with
a second order differential equation for [z0

0 ]m+1:

ε−2α d2[z0
0 ]m+1

dτ2
= −∇−0

0 U(zm).

2. For j 6= 0 and k = ±〈j〉 with the jth unit vector 〈j〉 = (0, . . . , 0, 1, 0, . . . , 0),
the first term in (11) disappears and we iterate using a first order differential

equation for [z
±〈j〉
j ]m+1:

±2i ̟j ε−α
d[z

±〈j〉
j ]m+1

dτ
+ ε−2α

d2[z
±〈j〉
j ]m

dτ2
(16)

= (2̟jϑj − ϑ2
j)[z

±〈j〉
j ]m+1 −∇

∓〈j〉
j U(zm).

We note that by (7) we have for sufficiently small ε

∣∣∣
2̟jϑj − ϑ2

j

2̟jε−α

∣∣∣ ≤ 2γ.
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3. In all other cases we iterate with an explicit equation for [zk

j ]m+1:

(
̟2

j − (k · ̟)2
)
[zk

j ]m+1 + 2 i(k · ̟) ε−α
d[zk

j ]m

dτ
+ ε−2α

d2[zk

j ]m

dτ2
(17)

= (2̟jϑj − ϑ2
j)[z

k

j ]m −∇−k

j U(zm).

For j 6= 0 we note that ±〈j〉 − k /∈ M for k ∈ K and k 6= ±〈j〉, and therefore
we have by (9)

∣∣∣
(k · ̟)ε−α

̟2
j − (k · ̟)2

∣∣∣ ≤ 2εµ,
∣∣∣

ε−2α

̟2
j − (k · ̟)2

∣∣∣ ≤ 2ε1−α+µ

and

∣∣∣
2̟jϑj − ϑ2

j

̟2
j − (k · ̟)2

∣∣∣ ≤ 8γεµ.

For j = 0 and k /∈ M we have similar estimates directly by (9).

We need initial values [z0
0 ]m+1(0), d

dτ [z0
0 ]m+1(0) and [z

±〈j〉
j ]m+1(0) for j 6= 0.

They are uniquely determined by the equations (for j = 0, . . . , n)

qj(0) =
∑

k∈K

[zk

j ]m+1(0), q̇j(0) =
∑

k∈K

(
ε−α

d[zk

j ]m+1

dτ
(0) + i(k · ̟) [zk

j ]m+1(0)
)

(18)
after inserting (17) for k 6= ±〈j〉 and replacing for j 6= 0 the derivative of

[z
±〈j〉
j ]m+1 with (16). The starting iterates are chosen as [z0

0 ]0(τ) equal to the

solution at t = εατ of ÿ = −∇0U(y, 0, . . . , 0) with y(0) = q0(0) and ẏ(0) = q̇0(0),
and for all other (j,k) with k 6= ±〈j〉, we set [zk

j ]0(τ) = 0. The diagonal functions

[z
±〈j〉
j ]0 are then chosen as constant functions such that (18) is satisfied.

4.2. Bounds of the modulation functions. We estimate the modulation functions
on intervals of length τ = O(1), or equivalently t = O(εα). With the above
inequalities and the energy bound (5) we obtain by induction on m, for m =
0, . . . , M ,

[z0

0 ]m = O(1), [z
±〈j〉
j ]m = O(ω−1

j )

and for all other (j,k),

[zk

j ]m = O
(
|̟2

j − (k · ̟)2|−1ε‖k‖
)
,

and the same bounds hold for all their derivatives up to any prescribed order.
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4.3. Bounds of the defect. We prove the estimate (13) of the defect δk

j in Propo-

sition 1. The defect [δk

j ]m(τ) in inserting the mth iterate zm = ([zk

j ]m) in the

modulation equations (11) satisfies

[δ0

0 ]m = −ε−2α

(
d2[z0

0 ]m+1

dτ2
−

d2[z0
0 ]m

dτ2

)

and for j = 1, . . . , n

[δ
±〈j〉
j ]m = ∓2i ̟j ε−α

(
d[z

±〈j〉
j ]m+1

dτ
−

d[z
±〈j〉
j ]m

dτ

)

+ (2̟jϑj − ϑ2
j )

(
[z

±〈j〉
j ]m+1 − [z

±〈j〉
j ]m

)

and for all other (j,k)

[δk

j ]m = −
(
̟2

j − (k · ̟)2
) (

[zk

j ]m+1 − [zk

j ]m
)
.

In the following we work with the Cr([0, 1]) norm, defined for v = (vk

j ) by

‖v‖Cr = max
0≤τ≤1

max
0≤l≤r

n∑

j=0

∑

k∈K

∣∣∣
dl

dτ l
vk

j (τ)
∣∣∣,

and use the notation

Λz = v = (vk

j ) with





v0
0 = ε−2αz0

0

v
±〈j〉
j = 2i ̟jε

−αz
±〈j〉
j , j = 1, . . . , n

vk

j = (̟2
j − (k · ̟)2)zk

j else.

With this notation and the above formulas for the defect we have
∣∣[δk

j ]m
∣∣ ≤ C‖vm+1 − vm‖C2.

We therefore study vm+1 − vm and show by induction on m that for m ≤ M
and r = 2M − 2m + 2,

‖vm+1 − vm‖Cr = O(εmµ), (19)

which implies the estimate (13) of the defect in Proposition 1 if we use M ≥
(N + 1)/µ iterations for the construction of the modulation functions. Estimate
(19) is shown by analysing the iterative construction of modulation functions,
where the (m + 1)th iterates are the dominant terms and the mth iterates the
non-dominant ones.

We first consider the diagonal elements [v
±〈j〉
j ]m. From (18) we obtain after

inserting (17) for k 6= ±〈j〉 that

|[v
±〈j〉
j ]m+1(0) − [v

±〈j〉
j ]m(0)| ≤ Cεµ‖vm − vm−1‖C2 .

Solving the differential equation (16) by the variation-of-constants formula then
yields that

|[v
±〈j〉
j ]m+1(τ) − [v

±〈j〉
j ]m(τ)| ≤ Cεµ‖vm − vm−1‖C2 , 0 ≤ τ ≤ 1.
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Repeated differentiation in (16) further shows that for ℓ ≤ 2M − 2m + 2 and for
0 ≤ τ ≤ 1

∣∣∣
dℓ

dτ ℓ
[v

±〈j〉
j ]m+1(τ) −

dℓ

dτ ℓ
[v

±〈j〉
j ]m(τ)

∣∣∣ ≤ Cεµ‖vm − vm−1‖Cℓ+2.

Using 2α ≥ µ we also bound, for r = 2M − 2m + 2,

‖[v0

0 ]m+1 − [v0

0 ]m‖Cr ≤ Cεµ‖vm − vm−1‖Cr+2.

Similarly we have from the iteration formulas and the above inequalities that

‖vm+1 − vm‖Cr ≤ Cεµ‖vm − vm−1‖Cr+2 .

This proves (19) and the estimate of the defect of Proposition 1.

4.4. Solution approximation. We consider the Mth iterates of the modulation
functions (with M = ⌈(N+1)/µ⌉) and omit the superscript M on the modulation
functions and their defects. The truncated modulated Fourier expansion

q̃j(t) =
∑

k∈K

zk

j (ε−αt) ei(k·̟)t

satisfies the perturbed second order differential equation

¨̃qj + ω2
j q̃j = −∇jU(q̃) + dj , j = 0, . . . , n,

with

dj(t) =
∑

k∈K

δk

j (ε−αt)ei(k·̟)t−
∑

k∈N\K

∇−k

j U(z(ε−αt))ei(k·̟)t +ρj(t) = O(εN+1),

where ρ(t) denotes the gradient of the remainder term in the truncated Taylor
expansion of the potential U about z0

0 (ε−αt): omitting the arguments t and
τ = ε−αt, and writing q̃ = z0

0 + q̂,

ρj = ∇jU(q̃) −∇jU(z0

0) −
N∑

m=1

n∑

j1,...,jm=0

1

m!
∂j1 . . . ∂jm

∇jU(z0

0)
(
q̂j1 , . . . , q̂jm

)
.

After subtracting the differential equation (4), standard estimates using the vari-
ation of constants formula and the Gronwall inequality then yield the bound of
rj(t) = q̃j(t) − qj(t) for 0 ≤ t ≤ εα as stated in Proposition 1.
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4.5. Proof of Proposition 3. Let zm = ([zk

j ]m) and z̃m = ([z̃k

j ]m) be the mth
iterates of the construction of the modulation functions z and z̃ for initial data
(p(0),q(0)) and (p(εα),q(εα)), respectively. With the iteration for z̃m and the
defect formula for zM the same arguments as in the estimates of the defect yield
for wm(τ) = ΛzM (1 + τ) − Λz̃m(τ) that

‖wM‖C2 = O(εN+1). (20)

The only difference is that the estimate of [w
±〈j〉
j ]m+1(0) now reads

|[w
±〈j〉
j ]m+1(0)| ≤ Cεµ‖wm‖C2 + CεN+1,

a bound that is obtained by inserting (12) in the defining relation (18) for

[z̃
±〈j〉
j ]m+1(0) and by using the estimate of the remainder term from Propo-

sition 1. Similarly the estimate of w0
0 has to be modified. The bound of Propo-

sition 3 follows from (20).
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