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Abstract: We consider the problem of the long-time stability of plane waves
under nonlinear perturbations of linear Klein-Gordon equations. This problem
reduces to studying the distribution of the mode energies along solutions of one-
dimensional semilinear Klein–Gordon equations with periodic boundary condi-
tions when the initial data are small and concentrated in one Fourier mode. It is
shown that for all except finitely many values of the mass parameter, the energy
remains essentially localized in the initial Fourier mode over time scales that are
much longer than predicted by standard perturbation theory. The mode energies
decay geometrically with the mode number with a rate that is proportional to
the total energy. The result is proved using modulated Fourier expansions in
time.

1. Introduction

Consider first the d-dimensional linear wave equation or Klein–Gordon equation
utt − ∆u + ρu = 0 (x ∈ Rd, t ∈ R; with ρ ≥ 0) with real initial data that
are linear combinations of e±ik·x for some wave vector k ∈ Rd, k 6= 0. The
solution is a linear combination of plane waves ei(±k·x±ωt) with all combinations
of signs, with the frequency ω =

√
|k|2 + ρ. This is evidently no longer the

case when a small nonlinearity g(u) (such as u2 or u3 for small initial data)
is introduced on the right-hand side of the equation. The question then arises
as to what is the long-time behaviour of solutions of the nonlinearly perturbed
equation for such initial data. At any time t > 0 where a solution exists, it
will have a Fourier series representation u(x, t) =

∑∞
j=−∞ uj(t) eijk·x. What can

be said of the mode amplitudes |uj(t)|, or better of the mode energies Ej(t) =
1
2 |ωjuj(t)|

2 + 1
2 |u̇j(t)|

2 (with the frequencies ωj =
√
j2|k|2 + ρ), for large t?

Will the mode energies for |j| 6= 1, which vanish initially, remain small and
decay geometrically with growing |j| over long times? This stability problem of
plane waves under nonlinear perturbations of the equation will be studied in the
present paper, with a positive answer for almost all ρ > 0 over time scales that
are much longer than standard perturbation theory would suggest.

Without loss of generality, we may assume that the wave vector has unit
length (after changing ρ to ρ|k|2) and, by rotational invariance, equals the first
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unit vector k = (1, 0, . . . , 0). The problem then reduces to studying the one-
dimensional semilinear wave equation

utt − uxx + ρu = g(u), −π ≤ x ≤ π, t ≥ 0, (1)

with periodic boundary conditions, for small (real) initial data that are linear
combinations of e±ix. We assume that the nonlinearity g is at least quadratic
at 0:

g is real-analytic near 0 and g(0) = g′(0) = 0. (2)

We expand the solution u(x, t) into its Fourier series

u(x, t) =

∞∑
j=−∞

uj(t) eijx

and consider the mode energies

Ej(t) =
1

2
|ωjuj(t)|2 +

1

2
|u̇j(t)|2, with the frequencies ωj =

√
j2 + ρ. (3)

Since we consider only real solutions, we have uj = u−j and therefore E−j = Ej .
We consider small initial data concentrated in the first mode:

E1(0) ≤ ε, 0 < ε� 1,

Ej(0) = 0 for |j| 6= 1.
(4)

Our main result, Theorem 1, shows that for all mass parameters ρ > 0, with
the exception of only finitely many in any bounded interval, and for sufficiently
small ε, the energy remains essentially localized in the first mode over long times
t ≤ ε−N , for arbitrarily fixed N > 1. The mode energies decay geometrically with
growing j, with a decay rate that is proportional to ε for the first modes, and at
least with a smaller power of ε close to 1 for all remaining modes.

We are not aware that the problem studied in this paper has been consid-
ered previously in the literature. Our result fits, however, into a series of results
that have been obtained recently on the long-time behaviour of weakly nonlinear
Hamiltonian partial differential equations by various authors [1,2,4–10,13–15].
The problem considered here is also closely related to the Fermi–Pasta–Ulam
(FPU) problem [11,12], which in the small-energy regime deals with a non-
linearly perturbed system of near-resonant harmonic oscillators and for which
metastability phenomena have been analyzed in [3,18].

The long-time behaviour of such weakly nonlinear problems has been ana-
lyzed rigorously by two different techniques: Birkhoff normal forms and mod-
ulated Fourier expansions in time. Here we follow the latter approach, which
originally came up in the long-time analysis of numerical methods for oscillatory
differential equations [16,17] and was later applied to Hamiltonian partial dif-
ferential equations in [8,13,14]. It does not seem directly possible to obtain the
results of the present paper using normal form techniques. While normal forms
use coordinate transforms to take the system into a form from which the desired
long-time properties can be read off, modulated Fourier expansions embed the
given system into a larger modulation system that has a Hamiltonian structure
from which the long-time behaviour can be inferred.
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Our approach is close to that taken for the FPU problem in [18], but the
problem considered here does not encounter the technical difficulties due to
almost-resonances present in the FPU problem. On the other hand, the non-
resonant situation considered here allows us to obtain stronger estimates over
much longer time scales.

2. Main result

In this paper we prove the following theorem.

Theorem 1. Fix an integer K ≥ 2 and real numbers s > 1
2 and ρ0 > 0. For

all except finitely many 0 < ρ < ρ0 the following holds: There exist δ0 > 0 and
positive c and C such that for 0 < θ ≤ 1 the mode energies (3) of solutions to the
nonlinear wave equation (1)-(2) for initial data (4) with 0 < εθ/2 ≤ δ0 satisfy,
over long times

0 ≤ t ≤ c ε−θK/2,

the bounds

E0(t) ≤ Cε2,
Ej(t) ≤ Cεj , 0 < j < K, (5)

∞∑
j=K

ε−(j−K)(1−θ)j2sEj(t) ≤ CεK

and |E1(t)− E1(0)| ≤ Cε2.

The values of ρ considered in the theorem are those for which the frequencies

ωj =
√
j2 + ρ satisfy a certain non-resonance condition, which will be specified

below. We note that for ρ = 0 the frequencies are fully resonant, and the theorem
does not apply in this case. One encounters blow-up phenomena for ρ = 0, for
instance for the nonlinearities g(u) = u2 or g(u) = u3.

It is not difficult to extend the proof of Theorem 1 to initial data concentrated
in a collection of low modes, Ej(0) ≤ ε for |j| ≤ B and Ej(0) = 0 for |j| > B. For
example for B = 1 the estimate (5) still holds if the first estimate is replaced by
E0(t) ≤ Cε. For larger values of B the range of modes of energy εj is stretched
in (5),

El(t) ≤ Cεj for 0 < j < K and (j − 1)B ≤ l ≤ jB

and a corresponding modification of the last estimate in (5).
The proof of Theorem 1 also shows that the statement of the theorem still

holds true for more general initial data that satisfy the bounds (5) with a given
constant C0 in place of C.

Stronger estimates can be obtained when further derivatives of g at 0 are
zero. In particular, for odd functions g, we have Ej(t) = 0 for all t for all even j.
For odd functions g we obtain the above estimates for odd j if g′′′(0) 6= 0, e.g.,
for g(u) = −u3 or g(u) = ρ(sinu − u) (the sine-Gordon equation), and slightly
stronger estimates if g′′′(0) = 0.
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Fig. 1. Mode energies versus time.

We give a numerical illustration of the above result for g(u) = u2, ρ = 1/2
and initial data

u(x, 0) =
2
√

2ε

ω1
cos(x), ut(x, 0) = 0,

so that
E1(0) = ε, Ej(0) = 0 for j 6= 1.

In Fig. 1, the mode energies Ej(t) for ε = 10−4 (first and third figure) and
ε = 10−6 (second and last figure) are plotted versus time on the intervals [0, 100]
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(first two figures) and [0, 105] (lower two figures). Lower lying curves correspond
to higher modes j. The differential equation was discretized in space by a spectral
collocation method with 27 grid points and in time by a trigonometric integrator
[17, Ch. XIII] with step size 10−2. Nearly identical results were obtained with
other choices of the discretization parameters.

The starting point for the proof of Theorem 1 is to rewrite the partial dif-
ferential equation (1) as a system of second-order differential equations for the
Fourier coefficients uj(t):

üj + ω2
juj = −∇−jU(u) (6)

with the potential

U(u) = −
∑
m≥3

g(m−1)(0)

m!

∑
j1+...+jm=0

uj1 . . . ujm .

Here, ∇−j denotes the partial derivative with respect to u−j and u = (uj)j∈Z.
Since u(x, t) is real, we have uj = u−j . In particular, u0 is real. The proof of
Theorem 1 via modulated Fourier expansions in time is outlined in Section 3.
The proof proceeds by a sequence of auxiliary results of independent interest,
which are proved in Sections 4 and 5.

3. Modulated Fourier expansion

3.1. Approximation ansatz. We will approximate the jth Fourier component of
the solution by a sum of products of polynomials and exponentials,

uj(t) ≈
∑
k∈Kj

zkj (t) ei(k·ω)t, (7)

where Kj is a finite set of sequences k = (kl)l≥0 with only finitely many non-
zero integers kl, where ω = (ωl)l≥0 is the sequence of frequencies (3), and
k · ω =

∑
l≥0 klωl. A subtlety that sets the present paper apart from previ-

ous work on modulated Fourier expansions, e.g., in [8], is the fact that here the
expansion is not a multiscale expansion, but instead we use just one time-scale
and ensure the uniqueness of the modulation functions zkj by requiring that they
are polynomials. They will be constructed by inserting the ansatz (7) into (6),
collecting the coefficients of ei(k·ω)t for all k in the resulting expressions, and to
determine polynomials zkj such that there is a small defect dkj in the modulation
equations

(ω2
j − (k · ω)2)zkj + 2i(k · ω)żkj + z̈kj = −∇−k−j U(z) + dkj (8)

with the potential

U(z) = −
∑
m≥3

g(m−1)(0)

m!

∑
j1+...+jm=0

∑
k1+...+km=0

zk
1

j1 . . . z
km

jm .

Here, the last sum is restricted to k1 ∈ Kj1 , . . . ,km ∈ Kjm . The symbol ∇−k−j in

(8) denotes the partial derivative with respect to z−k−j , and z = (zkj )j,k.
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3.2. Non-resonance condition. In the construction of the modulated Fourier ex-
pansion (7) via (8) we encounter small denominators ω2

j − (k · ω)2. We require
the following non-resonance condition: there is a γ > 0 such that∣∣ωj − |k · ω|∣∣ ≥ γ for (j,k) ∈ K, k 6= ±〈j〉, (9)

where 〈j〉 = (0, . . . , 0, 1, 0, . . .) is the |j|-th unit sequence (with the entry 1 at
the |j|-th position) and the set K is defined in the following. We fix the integer
K, and we denote

µ(k) = 2|k0|+
∑
l≥1

min(l,K)|kl|. (10)

We set

K = {(j,k) : max
(
|j|, µ(k)

)
< 2K and kl = 0 for all l ≥ K}

∪ {(j,±〈j − r〉+ k) : |j| ≥ K, |r| < K, µ(k) < K} (11)

and let
Kj = {k : (j,k) ∈ K}. (12)

The set of indices K, which determines the linear combinations of frequencies
that have to be controlled in the non-resonance condition (9), is smaller than the
corresponding set for initial values with all mode energies of order ε as studied in
[1,2,8]. This reflects the fact that, due to the special form of the initial condition,
fewer interactions of Fourier modes are relevant on the considered time interval.
The following theorem will be shown in Section 6.

Theorem 2. Fix K ≥ 2 and ρ0 > 0. All except finitely many 0 < ρ < ρ0 satisfy
the non-resonance condition (9) with a constant γ depending on ρ and K.

This theorem is in contrast to the situation studied in [1,2,8], where the set
of resonant ρ is (only) shown to be of zero Lebesgue measure [1, Theorem 6.5].

3.3. Weighted norms. For a sequence u = (uj)j∈Z we consider the weighted `2

norm

‖u‖2 =
∑
j∈Z

σj |uj |2 with σj =

{
ε−2(1−θ), j = 0,

ε−|j|(1−θ)|j|2s, j 6= 0,
(13)

where 0 < θ ≤ 1. For s > 1
2 this norm behaves well with convolutions (u ∗v)j =∑

j1+j2=j
uj1vj2 . We then have

‖u ∗ v‖ ≤ cs ‖u‖ · ‖v‖ (14)

with a constant cs that is independent of u, v, ε (but depends on s > 1/2). This
bound relies on the fact that the weights κj = max

(
1, |j|2s

)
satisfy the inequality∑

j1+j2=j
κ−1j1 κ

−1
j2
≤ c2sκ−1j , so that the Cauchy–Schwarz inequality yields∑

j∈Z
κj

∣∣∣ ∑
j1+j2=j

uj1vj2

∣∣∣2 ≤ c2s(∑
j1∈Z

κj1 |uj1 |2
)(∑

j2∈Z
κj2 |vj2 |2

)
. (15)
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For the extended norm

‖(u, u̇)‖2 = ‖Ωu‖2 + ‖u̇‖2 with (Ωu)j = ωjuj , (16)

we note

1

2
‖(u, u̇)‖2 =

∑
j∈Z

σjEj .

3.4. The modulated Fourier expansion on a short time interval. The situation
(4) is not met at any later time t > 0. Instead of (4) we now consider the situation
where the initial mode energies satisfy

E0(0) ≤ C0ε
2,

El(0) ≤ C0ε
l, 0 < l < K,∑

l≥K

σlEl(0) ≤ C0ε
θK .

(17)

We then have the following result.

Theorem 3 (Modulated Fourier expansion). Fix an integer K ≥ 2, and
let ρ > 0 be such that the non-resonance condition (9) is satisfied. Let s > 1/2
and 0 < θ ≤ 1. Let the initial mode energies satisfy (17). Then, the Fourier
coefficients uj(t) (j ∈ Z) of the solution of (1)-(2) admit an expansion

uj(t) =
∑
k∈Kj

zkj (t) ei(k·ω)t + rj(t) for 0 ≤ t ≤ 1, (18)

where Kj is a finite set of sequences k = (kl)l≥0 with only finitely many non-zero
integers kl as given by (12), where the coefficient functions zkj are polynomials

satisfying z−k−j = zkj , and where the remainder r(t) = (rj(t))j∈Z is bounded in

the weighted norm (13), (16) by

‖(r(t), ṙ(t))‖ ≤ CεθKt (19)

and the defect d(t) = (
∑

k∈Kj
|dkj (t)|)j∈Z of (8) is bounded by

‖d(t)‖ ≤ CεθK . (20)

The constant C is independent of ε and θ, but depends on K, on γ of (9), on s
in (13) and on C0 of (17).
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3.5. Almost-invariants. For real τ and real sequences λ = (λl)l≥0 we note that

U(Sλ(τ)z) = U(z) for Sλ(τ)z = (ei(k·λ)τzkj )j,k.

We therefore obtain

0 =
d

dτ

∣∣∣∣
τ=0

U(Sλ(τ)z) =
∑
j∈Z

∑
k∈Kj

i(k · λ)z−k−j∇
−k
−j U(z)

and by (8),

0 =
∑
j∈Z

∑
k∈Kj

i(k · λ)z−k−j

(
(ω2
j − (k · ω)2)zkj + 2i(k · ω)żkj + z̈kj − dkj

)
. (21)

We note that∑
j,k

(k · λ)z−k−j (ω2
j − (k · ω)2)zkj = 0,

2
∑
j,k

(k · λ)(k · ω)z−k−j ż
k
j =

∑
j,k

(k · λ)(k · ω)
d

dt

(
z−k−j z

k
j

)
,

∑
j,k

(k · λ)z−k−j z̈
k
j =

∑
j,k

(k · λ)
d

dt

(
z−k−j ż

k
j

)
,

and hence the relation (21) can be rewritten as

d

dt
Iλ(z, ż) = −

∑
j∈Z

∑
k∈Kj

i(k · λ)z−k−j d
k
j (22)

with the almost-invariant action

Iλ(z, ż) =
∑
j∈Z

∑
k∈Kj

(k · λ)
(

(k · ω)z−k−j z
k
j − iz−k−j ż

k
j

)
.

For λ = 〈l〉 with l ≥ 0, the l-th unit sequence (0, . . . , 0, 1, 0, . . .), we define the
l-th almost-invariant energy as

El(z, ż) =
ωl

2
I〈l〉(z, ż) =

1

2

∑
j∈Z

∑
k∈Kj

klωl

(
(k · ω)|zkj |2 − iz−k−j ż

k
j

)
(23)

and we write briefly

El(t) = El(z(t), ż(t))

when it is clear to which function z we refer. We first show that the almost-
invariant energies El can be bounded in terms of bounds on the mode energies Ej .
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Theorem 4 (Almost-invariant energies controlled by mode energies).
Let the conditions of Theorem 3 be fulfilled. If the initial mode energies satisfy
the bounds (17), then we have, for 0 ≤ t ≤ 1,

|E0(t)| ≤ C0ε2,
|El(t)| ≤ C0εl, 0 < l < K, (24)∑

l≥K

σl|El(t)| ≤ C0εθK ,

where C0 is independent of ε and depends only through the constant C0 on the
estimates (17).

The relation (22) together with bounds of the defects dkj leads to the following
bounds, which show that the functions El(t) are nearly constant.

Theorem 5 (Variation of almost-invariant energies). Under the conditions
of Theorem 3 we have, for 0 ≤ t ≤ 1,∣∣∣∣ ddtE0(t)

∣∣∣∣ ≤ Cε2εθK/2,∣∣∣∣ ddtEl(t)
∣∣∣∣ ≤ CεlεθK/2, 0 < l < K,∑

l≥K

σl

∣∣∣∣ ddtEl(t)
∣∣∣∣ ≤ Cε3θK/2,

where C is independent of ε and depends on the initial data only through the
constant C0 of (17).

When we consider a modulated Fourier expansion constructed from the so-
lution u at t = 1, we can relate the almost-invariants of that expansion with
those of the modulated Fourier expansion starting from the initial data at t = 0.
Together with Theorem 5 this will allow us to study longer times by patching
together many intervals.

Theorem 6 (Transitions in the almost-invariant energies). Let the con-
ditions of Theorem 3 be fulfilled. Let z(t) = (zkj (t))j,k for 0 ≤ t ≤ 1 be the
coefficient functions as in Theorem 3 for initial data (u(·, 0), ut(·, 0)), and let
z̃(t) = (z̃kj (t))j,k be the coefficient functions of the modulated Fourier expansion
for 0 ≤ t ≤ 1 corresponding to the initial data (u(·, 1), ut(·, 1)), constructed as
in Theorem 3. Then,

|E0(z(1), ż(1))− E0(z̃(0), ˙̃z(0))| ≤ Cε2εθK/2,

|El(z(1), ż(1))− El(z̃(0), ˙̃z(0))| ≤ CεlεθK/2, 0 < l < K,∑
l≥K

σl|El(z(1), ż(1))− El(z̃(0), ˙̃z(0))| ≤ Cε3θK/2,

where C is independent of ε and depends on the initial data only through the
constant C0 of (17).
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As the following result shows, the mode energies Ej can be bounded in terms
of bounds of the almost-invariant energies El.
Theorem 7 (Mode energies controlled by almost-invariant energies).
Let the conditions of Theorem 3 be fulfilled. If the almost-invariant energies
satisfy (24) for 0 ≤ t ≤ 1, then the mode energies are bounded by

E0(t) ≤ Cε2,
El(t) ≤ Cεl, 0 < l < K, (25)∑

l≥K

σlEl(t) ≤ CεθK ,

and
|E1(t)− E1(t)| ≤ Cε2,

where C depends on C0 in (24), but is independent of ε and C0 of (17) if εθ is
sufficiently small.

3.6. From short to long intervals. Assume that the solution of (1) satisfies con-

dition (25) with a possibly larger constant Ĉ0 instead of C for 0 ≤ t ≤ n (this is
true for n = 0 by assumption (17); else it is justified by induction). Theorems 3
to 7 can be applied on the next interval n ≤ t ≤ n+ 1. In particular, Theorem 3
gives us a modulated Fourier expansion whose coefficient functions we denote
by zn(t), for 0 ≤ t ≤ 1. Theorem 5 yields, for 0 ≤ t ≤ 1,

|E0(zn(0), ż0(0))− E0(zn(t), żn(t))| ≤ Ĉε2εθK/2 ,

|El(zn(0), ż0(0))− El(zn(t), żn(t))| ≤ ĈεlεθK/2 , 0 < l < K,∑
l≥K

σl |El(zn(0), ż0(0))− El(zn(t), żn(t))| ≤ Ĉε3θK/2

with a constant Ĉ that only depends on Ĉ0. On the other hand, we can also apply
Theorems 4 and 7 to guarantee that condition (25) is also satisfied on the interval
n ≤ t ≤ n+ 1 with a possibly larger constant. Consequently, Theorem 3 allows
us to consider the modulated Fourier expansion zn+1(t) on the next interval.
The transition is estimated by Theorem 6 as

|E0(zn(1), żn(1))− E0(zn+1(0), żn+1(0))| ≤ Ĉε2εθK/2,

|El(zn(1), żn(1))− El(zn+1(0), żn+1(0))| ≤ ĈεlεθK/2, 0 < l < K,∑
l≥K

σl |El(zn(1), żn(1))− El(zn+1(0), żn+1(0))| ≤ Ĉε3θK/2 ,

where the constant Ĉ can be assumed to be the same as above. Summing up
these estimates over n and applying the triangle inequality yields, for 0 ≤ t ≤ 1,

|E0(z0(0), ż0(0))− E0(zn(t), żn(t))| ≤ Ĉε2εθK/2 (2n+ 1),

|El(z0(0), ż0(0))− El(zn(t), żn(t))| ≤ ĈεlεθK/2 (2n+ 1), 0 < l < K,∑
l≥K

σl |El(z0(0), ż0(0))− El(zn(t), żn(t))| ≤ Ĉε3θK/2 (2n+ 1).
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Let C0 be the constant in condition (24) for the first subinterval [0, 1]. This

constant depends on C0 of (17), but not on Ĉ0. Set c = C0/(2Ĉ). For n + 1 ≤
c ε−θK/2 we thus obtain from Theorem 4

|E0(zn(t), żn(t))| ≤ 2C0ε2,
|El(zn(t), żn(t))| ≤ 2C0εl, 0 < l < K,∑

l≥K

σl|El(zn(t), żn(t))| ≤ 2C0εθK .

Theorem 7 now yields for t ≤ c ε−θK/2,

E0(t) ≤ Cε2,
El(t) ≤ Cεl, 0 < l < K,∑

l≥K

σlEl(t) ≤ CεθK ,

|E1(t)− E1(0)| ≤ Cε2,

where C depends on C0, but is independent of Ĉ0. The last estimate is obtained
from the bound |E1(t)−E1(t)| ≤ Cε2 and from the near invariance of E1(t). This
gives us the bounds of Theorem 1. It remains to prove Theorems 3 to 7 .

4. Proof of Theorems 3 and 4

For ease of presentation we give the proof for the particular nonlinearity g(u) =
u2. The generalization to other nonlinearities satisfying (2) presents no math-
ematical difficulties. In the following we denote by . an inequality ≤ up to a
factor that is independent of ε and θ.

4.1. Construction of the modulation functions. We work with the small param-
eter

δ = εθ/2.

Condition (17) implies for the initial values

ω0u0(0) = δ2a0,

u̇0(0) = δ2b0,

ωjuj(0) = δmin(|j|,K)aj , j 6= 0,

u̇j(0) = δmin(|j|,K)bj , j 6= 0,

(26)

where aj = a−j , bj = b−j and by (17)∑
j∈Z

σj(|aj |2 + |bj |2) . 1.
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The modulation functions will be constructed from an ansatz

zkj (t) =

2K−1∑
m=1

δmzkj,m(t) (27)

with polynomials zkj,m(t). Inserting this ansatz into (8), using g(u) = u2, and
comparing the coefficients of δm yields the equation

(ω2
j − (k · ω)2)zkj,m + 2i(k · ω)żkj,m + z̈kj,m (28)

=
∑

j1+j2=j

∑
k1+k2=k

∑
m1+m2=m

zk
1

j1,m1
zk

2

j2,m2
.

For the initial values we obtain from (26) by requiring that (7) is exactly fulfilled
at t = 0,

ωj
∑
k∈Kj

zkj,m(0) =


aj for m = min(|j|,K) if j 6= 0,

and for m = 2 if j = 0,

0 else,

∑
k∈Kj

(
żkj,m(0) + i(k · ω)zkj,m(0)

)
=


bj for m = min(|j|,K) if j 6= 0,

and for m = 2 if j = 0,

0 else.

(29)

We determine an approximate solution of (28)-(29) for m = 1, . . . , 2K − 1
consecutively. For k 6= ±〈j〉, after division by (ω2

j − (k ·ω)2), equation (28) is of
the form

z − αż − βz̈ = p.

For a polynomial p of degree d, the unique polynomial solution is given by

z =

d∑
l=0

(
α
d

dt
+ β

d2

dt2
)l
p. (30)

For k = ±〈j〉 we have a differential equation of the form ż − βz̈ = p which
admits a polynomial solution with one free parameter. This parameter is fixed
by the initial value that is obtained from (29):

2iωjz
±〈j〉
j,m (0) = −i

∑
k6=〈j〉,k6=−〈j〉

(ωj ± k · ω)zkj,m(0)∓
∑
k

żkj,m(0)

+


iaj ± bj for m = min(|j|,K) if j 6= 0,

and for m = 2 if j = 0,

0 else.

(31)

We now discuss the iterative process used to determine the modulation func-
tions zkj,m in more detail. In particular, we will show that these functions vanish
for sequences k not belonging to the set Kj from (12). Moreover, the leading
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powers of δ in the functions zkj will be examined in more detail, and it will be
found that

zkj,m = 0 for m < min(|j|,K) if j 6= 0, and for m < 2 if j = 0, (32a)

żkj,m = 0 for m = min(|j|,K) if j 6= 0, and for m = 2 if j = 0, (32b)

zkj,m = 0 for m < µ(k), (32c)

zkj,K = 0 for k 6= ±〈j〉 and |j| > K, (32d)

z
±〈l〉
j,m = 0 for |j| 6= l and m = min(|j|,K) if j 6= 0, and m = 2 if j = 0. (32e)

Case m = 1: Here p = 0, since the sum in (28) is empty. Hence,

zkj,1 ≡ 0 for k 6= ±〈j〉,

z
±〈j〉
j,1 is a constant.

For the initial values we obtain from (31)

z
±〈1〉
1,1 (0) =

1

2ω1
(a1 ∓ ib1),

z
±〈1〉
−1,1(0) =

1

2ω1
(a−1 ∓ ib−1) =

1

2ω1
(ā1 ∓ ib̄1)

for the only non-vanishing coefficients with m = 1. We note that z−k−j,1 = zkj,1.

Cases 1 < m < K: We recall the definition (10) of µ(k). By induction, it
follows that zkj,m is a polynomial of degree at most m−max(|j|, µ(k)) and in the
case jµ(k) = 0 of degree not exceeding m −max(|j|, µ(k), 2), where a negative
degree corresponds to the zero polynomial. In particular, we note that the sums
in (28) are finite sums, and zkj,m 6= 0 only if max(|j|, µ(k)) ≤ m. Using a−j = aj

and b−j = bj we obtain z−k−j,m = zkj,m.

Cases K ≤ m ≤ 2K − 1: The case m = K is different for the diagonal

elements ż
±〈j〉
j,K for |j| > K, since by our assumption on the initial values we can

no longer conclude z
±〈j〉
j,K = 0 from ż

±〈j〉
j,K = 0. For m = K + n with n > 0 we

decompose the right-hand side of (28) as

∑
j1+j2=j

∑
k1+k2=k

(
2

n∑
l=1

zk
1

j1,m−lz
k2

j2,l +
∑

m1+m2=m,
mi<K

zk
1

j1,m1
zk

2

j2,m2

)
.

The number of terms in the sum is thus finite and can be estimated independently
of j and k. The first expression in the sum makes evident how the index set for
non-vanishing modulation functions,{

k = ±〈j + r〉+ k̄ : |j| > m = K + n, |r| ≤ n, µ(k̄) ≤ n
}
,

is built up: from k1 = ±〈j1 + r1〉 + k̄1 with |r1| ≤ n − l, µ(k1) ≤ n − l and
max(|j2|, µ(k2)) ≤ l it follows that k = k1 + k2 equals k = ±〈j + r〉 + k̄ with
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r = r1 − j2 and k̄ = k̄1 + k2, which are bounded by |r| ≤ n, µ(k̄) ≤ n.
Induction over n further shows that for (j,k) with max(|j|, µ(k)) ≤ K + n,
the polynomial zkj,m has degree at most m − max(|j|, µ(k)) and in the case

jµ(k) = 0 even ≤ m −max(|j|, µ(k), 2), and zkj,m with max(|j|, µ(k)) > K + n

is a polynomial of degree at most n. In all cases we obtain z−k−j,m = zkj,m, and

zkj,m 6= 0 only if k ∈ Kj as defined in (11)–(12).

4.2. Bounds of the modulation functions. In view of the expansion (27) of the
modulation functions in terms of δ = εθ/2 we expect that the coefficient functions
zkj,m still carry some power of ε. The structure of the equation (28) suggests that
a control of these coefficient functions multiplied with

γ̃kj = max
(
ε−|j|, ε−2|k0|−

∑
l≥1 l|kl|

)(1−θ)/2
for j 6= 0 and

γ̃kj = max
(
ε−2, ε−2|k0|−

∑
l≥1 l|kl|

)(1−θ)/2
for j = 0 should be possible (note that γ̃kj ≤ γ̃k

1

j1
γ̃k

2

j2
for j1 + j2 = j and

k1 + k2 = k). We use the norm, for 0 ≤ t ≤ 1,

|||z|||t =
∑
l≥0

1

l!

∣∣∣ dl
dtl

z(t)
∣∣∣

and note the properties |||z ·w|||t ≤ |||z|||t · |||w|||t, |||z|||t ≤ |z(0)|+ 2 sup0≤τ≤t |||ż|||τ ,
and |||ṗ|||t ≤ d|||p|||t, if p is a polynomial of degree d. In particular, for z of (30)
we have

|||z|||t ≤ C|||p|||t,

where C depends only on an upper bound of the coefficients |α| and |β| and of
the degree of the polynomial p.

Lemma 1. Let s > 1/2 and κj = max(1, |j|2s) for j ∈ Z. For 1 ≤ m ≤ 2K − 1
and 0 ≤ t ≤ 1 we have ∑

j∈Z
κj

( ∑
k∈Kj

γkj |||zkj,m|||t
)2

. 1

with

γkj = max(1, ωj , |k · ω|) · γ̃kj .

Proof. We use induction over m. The statement is evident for m = 1. Let k 6=
±〈j〉 and

αk
j = − 2i(k · ω)

ω2
j − (k · ω)2

, βk
j = − 1

ω2
j − (k · ω)2

.
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By the non-resonance condition (9), |αk
j | + |βk

j | . 1 for k ∈ Kj . For k 6= ±〈j〉
the polynomial solution of (28) as given by (30) therefore satisfies the bound

|||zkj,m|||t .
∑

j1+j2=j

∑
k1+k2=k

∑
m1+m2=m

|||zk
1

j1,m1
|||t|||zk

2

j2,m2
|||t.

By the definition of γkj we have γkj . γk
1

j1
γk

2

j2
for j1 + j2 = j and k1 + k2 = k.

Together with (15) this yields∑
j∈Z

κj

( ∑
k∈Kj ,k6=±〈j〉

γkj |||zkj,m|||t
)2

.
∑

m1+m2=m

(∑
j∈Z

κj

( ∑
k∈Kj

γkj |||zkj,m1
|||t
)2)(∑

j∈Z
κj

( ∑
k∈Kj

γkj |||zkj,m2
|||t
)2)

. 1.

For k = ±〈j〉 we obtain analogously∑
j∈Z

κj

(
γ
±〈j〉
j |||ż±〈j〉j,m |||t

)2
. 1.

With |||z|||t ≤ |z(0)|+ 2 sup0≤τ≤t |||ż|||τ we conclude∑
j∈Z

κj

(
γ
±〈j〉
j |||z±〈j〉j,m |||t

)2
. 1

since the initial values z
±〈j〉
j,m (0) can be estimated accordingly by (31) and the

bounds already given above. ut

4.3. Proof of Theorem 4. We shall prove that, for 0 ≤ t ≤ 1,

σ0 |E0(t)| . δ4

σl |El(t)| . δ2l, 0 < l < K,∑
l≥K

σl |El(t)| . δ2K .

Because of δ = εθ/2 the statement of Theorem 4 then follows from the definition
of σl in (13). We start from

|El(z, ż)| .
∑
j∈Z

( ∑
k∈Kj

|kl|ωl|k · ω||zkj |2 +
∑
k∈Kj

|kl|ωl|zkj ||żkj |
)
. (33)

From kl 6= 0 we infer µ(k) ≥ m0(l), where m0(l) = min(l,K) if l ≥ 1, and
m0(0) = 2. Therefore, (32c) yields

zkj (t) =

2K−1∑
m=m0(l)

δmzkj,m(t).

Lemma 1 and the inequality
∑
l≥0 σl|kl|ωl max(1, |k · ω|) . κj

(
γkj
)2

for k ∈ Kj
thus imply that the sums in (33) are estimated to yield the above bounds.
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4.4. Bounds of the defect. The following bound implies (20).

Lemma 2. The defect in (8) satisfies, for 0 ≤ t ≤ 1,∑
j∈Z

κj

( ∑
k∈Kj

γkj |||dkj |||t
)2

. δ2K

with γkj as in Lemma 1.

Proof. By construction of the zkj ,

dkj = −
2(2K−1)∑
m=2K

δm
∑

j1+j2=j

∑
k1+k2=k

∑
m1+m2=m

zk
1

j1,m1
zk

2

j2,m2
.

The result then follows by proceeding as in the proof of Lemma 1 and using the
bounds of that lemma. ut

4.5. Bounds of the remainder. We consider the differential equation (6) for the
sequence of Fourier coefficients u = (uj)j∈Z, which reads

Ωu̇ = Ωv,

v̇ = −Ω(Ωu) + u ∗ u

for g(u) = u2. Using the variation-of-constants formula, the assumptions on the
initial values and a bootstrap argument involving (14), we obtain in the norm
(13)

‖u(t)‖ . δ for 0 ≤ t ≤ 1.

For the solution ũ of the system ¨̃u = −Ω2ũ + ũ ∗ ũ + d with perturbation
d(t) = (dj(t))j∈Z given as

dj(t) =
∑
k∈Kj

dkj (t)ei(k·ω)t,

we likewise obtain

‖ũ(t)‖ . δ for 0 ≤ t ≤ 1.

Using (14) we obtain the bound

‖u ∗ u− ũ ∗ ũ‖ . δ‖u− ũ‖ . δ‖Ω(u− ũ)‖

Using this bound together with the variation-of-constants formula and the Gron-
wall lemma, we conclude for the error r = u− ũ,

‖(r(t), ṙ(t))‖ ≤
∫ t

0

‖d(τ)‖ dτ . δ2Kt for 0 ≤ t ≤ 1, (34)

using (20) in the last inequality. This gives (19) and completes the proof of
Theorem 3.
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5. Proof of Theorems 5 to 7

5.1. Almost-invariant energies: proof of Theorem 5. From (22) and (23) we have

d

dt
El(z, ż) = −1

2

∑
j∈Z

∑
k∈Kj

iklωlz
−k
−j d

k
j .

For 0 ≤ l ≤ K we therefore obtain, using the Cauchy-Schwarz inequality and

σlωl . κj
(
γkj
)2

if kl 6= 0 and k ∈ Kj , with γkj as in Lemma 1,

σl

∣∣∣∣ ddtEl(z, ż)

∣∣∣∣ .∑
j∈Z

κj
∑
k∈Kj

kl 6=0

γkj |zkj | γkj |dkj |

≤
(∑
j∈Z

κj

( ∑
k∈Kj

kl 6=0

γkj |zkj |
)2)1/2(∑

j∈Z
κj

( ∑
k∈Kj

kl 6=0

γkj |dkj |
)2)1/2

.

Noting that for l ≥ 1,

zkj =

2K−1∑
m=l

δmzkj,m if kl 6= 0,

and for l = 0, zkj =
∑2K−1
m=2 δmzkj,m if k0 6= 0, the stated bound follows from

Lemma 1 and Lemma 2. For∑
l≥K

σl

∣∣∣∣ ddtEl(z, ż)

∣∣∣∣ ≤∑
j∈Z

∑
k∈Kj

µ(k)≥K

∑
l≥K

σl|kl|ωl|zkj ||dkj |

the bound is obtained similarly on using
∑
l≥K σl|kl|ωl . κj

(
γkj
)2

for k ∈ Kj .

5.2. Transitions in the almost-invariant energies: proof of Theorem 6. First we
note that z(t + 1) contains the modulation functions that are uniquely con-

structed (up toO(δ2K)) by starting from (û(1), ˙̂u(1)), where û = (ûj) is the trun-
cated modulated Fourier expansion (18) without the remainder term r = (rj).
On the other hand, z̃(t) contains the modulation functions constructed by start-
ing from the Fourier coefficients u = (uj) of the solution. By Theorem 3 we
have u = û + r with the remainder estimate (19). We thus need to estimate
‖|z(·+1)− z̃‖|t at t = 0 in terms of ‖û(1)−u(1)‖ = ‖r(1)‖. We proceed similarly
to the proof of Lemma 1, taking differences in the recursions instead of direct
bounds. Omitting the details, we obtain∑

j∈Z
κj

(∑
k∈Kj

γkj ‖|zkj (·+ 1)− z̃kj ‖|t
)2

. δ2K

at t = 0. Together with the definition of El and the bounds of Lemma 1, this
yields the stated bound.
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5.3. Controlling mode energies by almost-invariant energies: proof of Theorem 7.
For the proof of Theorem 7 we first show that we can control the mode energies
if we can control the dominant terms in the modulation functions.

Lemma 3. For 0 ≤ t ≤ 1, assume that for all k with µ(k) ≤ K,

σ0|zk0,2(t)|2 ≤ C0,
σj |zkj,|j|(t)|

2 ≤ C0 for 0 < |j| ≤ K,∑
l≥K

σlω
2
l |z
±〈l〉
l,K (t)|2 ≤ C0.

Then,

σ0E0(t) ≤ Cδ4

σlEl(t) ≤ Cδ2l for l = 1, . . . ,K − 1,∑
l≥K

σlEl(t) ≤ Cδ2K

and

σ1

∣∣∣E1(t)− ω2
1

(
|z〈1〉1 |2 + |z−〈1〉1 |2

)∣∣∣ ≤ Cδ4,
where C depends on C0 but is independent of C0 of (17), if δ is sufficiently small.

Proof. We have

El(t) =
1

2
|ωlul(t)|2 +

1

2
|u̇l(t)|2 ≤

(∑
k

ωl|zkl (t)|
)2

+ 2
(∑

k

|żkl (t)|
)2

+ 2
(∑

k

|k · ω||zkl (t)|
)2

+ ω2
l |rl(t)|2 + |ṙl(t)|2.

Let m0(l) = min(l,K) if l ≥ 1, and m0(l) = 2 in case l = 0, so that zkl,m(t) = 0

for m < m0(l) by (32a) and żkl,m0(l)
= 0 for all k by (32b). Therefore,

σlEl(t) ≤ 6δ2m0(l)σl

(∑
k

max(ωl, |k · ω|)|zkl,m0(l)
(t)|
)2

+ 8δ2m0(l)+2κl

(∑
k

γkl
∑

m>m0(l)

|||zkl,m|||t
)2

+ σlω
2
l |rl(t)|2 + σl|ṙl(t)|2.

For l > K only diagonal elements are among the dominant terms in the modu-
lated Fourier expansion by (32d), zkl,m0(l)

= 0 for k 6= ±〈l〉. With the assumption,

with Lemma 1 and the estimate (34) of the remainder we obtain∑
l>K

σlEl(t) ≤ 12δ2K + Cδ2K+2 + Cδ4K ,

where C depends on C0, but not on δ.
We now study the case l ≤ K, where off-diagonal elements zkl with k 6= 〈l〉

can be among the dominant terms in the modulated Fourier expansion. Such
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modulation functions (whose number depends only on K) are estimated by the
assumption. Together with Lemma 1 and the remainder estimate we obtain the
bound of El(t) for l < K.

Finally we study E1 in more detail. We have (omitting the argument t in the
notation)

2E1 = |ω1u1|2 + |u̇1|2

= ω2
1

∣∣z〈1〉1 eiω1t + z
−〈1〉
1 e−iω1t

∣∣2 + 2ω2
1Re

(
η
(
z
〈1〉
1 eiω1t + z

−〈1〉
1 e−iω1t

))
+ ω2

1 |η|2

+ ω2
1

∣∣iz〈1〉1 eiω1t − iz
−〈1〉
1 e−iω1t

∣∣2 + 2ω1Re
(
ϑ
(
iz
〈1〉
1 eiω1t − iz

−〈1〉
1 e−iω1t

))
+ |ϑ|2

with

η =
∑

k6=±〈1〉

zk1 ei(k·ω)t + r1 and ϑ =
∑

k6=±〈1〉

i(k ·ω)zk1 ei(k·ω)t +
∑
k

żk1 ei(k·ω)t + ṙ1.

The estimate of |E1 − ω2
1(|z〈1〉1 |2 + |z−〈1〉1 |2)| thus follows from Lemma 1, the

estimates of the remainder (34), and the fact that zk1,m = 0 for m = 2 and all k.
ut

We now control the off-diagonal modulation functions zkj for small |j| ≤ K

in terms of the diagonal entries z
〈l〉
l .

Lemma 4. For 0 ≤ t ≤ 1 assume that

σ0|z±〈0〉0,2 (t)| ≤ C0,

σj |z±〈j〉j,|j| (t)| ≤ C0 for 0 < |j| ≤ K.

Then,

σ0|zk0,2(t)| ≤ C for all k,

σj |zkj,|j|(t)| ≤ C for 0 < |j| ≤ K and all k,

where C depends on C0, but is independent of C0 of (17).

Proof. Let m0(j) be the smallest index m for which z
±〈j〉
j,m can be different from

zero, i.e., m0(j) = min(|j|,K) for j 6= 0 and m0(0) = 2. We prove the result
by induction over m0(j). For m0(j) = 1, which requires j = ±1, the estimate
follows from the explicit formulas (case m = 1) of Section 4.1. Let now j ∈ Z
with m0(j) > 1. Since żkj,m0(j)

= 0, the recurrence relation of the modulation

functions yields

(ω2
j − (k · ω)2) zkj,m0(j)

=
∑

j1+j2=j

∑
k1+k2=k

∑
m1+m2=m0(j)

zk
1

j1,m1
zk

2

j2,m2
.

Since zk
1

j1,m1
= 0 for m1 < m0(j1) and m0(j) ≤ m0(j1) +m0(j2), this simplifies

to

(ω2
j − (k · ω)2) zkj,m0(j)

=
∑

j1+j2=j
m0(j1)+m0(j2)=m0(j)

∑
k1+k2=k

zk
1

j1,m0(j1)
zk

2

j2,m0(j2)
.

The number of terms in the sum depends only on K. Since m0(j1) < m0(j) and
m0(j2) < m0(j), the result follows by induction using (9) and σj . σj1σj2 . ut
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Finally we show that the almost-invariant energies control the diagonal mod-
ulation functions.

Lemma 5. For 0 ≤ t ≤ 1 we have

σ0

∣∣∣E0(t)− ω2
0

(
|z〈0〉0 (t)|2 + |z−〈0〉0 (t)|2

)∣∣∣ . δ5

σ1

∣∣∣E1(t)− ω2
1

(
|z〈1〉1 (t)|2 + |z−〈1〉1 (t)|2

)∣∣∣ . δ4

σl

∣∣∣El(t)− ω2
l

(
|z〈l〉l (t)|2 + |z−〈l〉l (t)|2

)∣∣∣ . δ2l+1, 1 < l < K,∑
l≥K

σl

∣∣∣El(t)− ω2
l

(
|z〈l〉l (t)|2 + |z−〈l〉l (t)|2

)∣∣∣ . δ2K+1.

Proof. The proof is very similar to that of Theorem 4 in Section 4.3. The only dif-

ference is that we subtract the dominant term ω2
l

(
|z〈l〉l |2 + |z−〈l〉l |2

)
from El(z, ż),

so that the first sum over k ∈ Kj in (33) is only over multi-indices k satisfying
k 6= ±〈j〉. For kl 6= 0 and k 6= ±〈l〉 we have µ(k) ≥ m0(l) + 1, so that by (32c)

zkj (t) =

2K−1∑
m=m0(l)+1

δmzkj,m(t), kl 6= 0 and k 6= ±〈l〉.

By (32b) we have ż
±〈l〉
j,m0(l)

= 0 for |j| = l and by (32e) we have z
±〈l〉
j,m0(l)

= 0 for

|j| 6= l. Compared to the estimates in Section 4.3 we thus gain one power of δ.
This yields the stated bounds for l 6= 1. For l = 1 we use that zk1,m = 0 for m = 2
and all k. ut

Lemmas 3 to 5 yield Theorem 7. For the estimate of E1 − E1 we use these
lemmas with θ = 1.

6. On the non-resonance condition — Proof of Theorem 2

Fix K ≥ 2 and ρ0 > 0. Recall that for ρ ≥ 0 the frequencies are defined as

ωj =
√
j2 + ρ. Throughout the proof of Theorem 2 we consider these frequencies

as functions of ρ. The proof is based on the corresponding proof of Bambusi and
Grébert [2] for the situation of initial values with all mode energies of order ε.

In a first step we show that it suffices to control a finite number of linear
combinations of frequencies in the non-resonance condition (9) (despite the fact
that the set K from (11) is infinite). We denote by c0 a constant depending only
on ρ0 such that

ωj − |j| ≤
c0
|j|+ 1

for all 0 ≤ ρ ≤ ρ0.

Moreover, we introduce for L ≥ 2

γ0(L, ρ) = min
{
|k · ω(ρ) + r| : r ∈ Z, |r| < K, |r|+ µ(k) 6= 0,

µ(k) < 3K, kl = 0 for all l ≥ L
}
.

In this first step we assume ρ such that γ0(K, ρ) 6= 0. Besides the value L = K

we are particularly interested in L = K̃ := (1 + c0)K + 4c0
γ0(K,ρ)

.
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Now let (j,k) be such that |ωj − |k · ω|| should satisfy the non-resonance
condition (9), i.e., let (j,k) ∈ K with k 6= ±〈j〉. We distinguish two cases: Either∣∣ωj − |k · ω|∣∣ =

∣∣k̃ · ω∣∣
with k̃ 6= 0, µ(k̃) < 3K and k̃l = 0 for l ≥ K̃ or∣∣ωj − |k · ω|∣∣ =

∣∣ωj ± ωj−r + k̃ · ω
∣∣

with µ(k̃) < K, |r| < K, |r|+ µ(k̃) 6= 0 and max(|j|, |j − r|) ≥ K̃. The first case
comprises the indices in the first part of the set K and the indices in the second
part of this set that are not too large. The second case deals with indices in the
second part of the set K, where j and j − r are large indices. By definition of γ0
we have in the first case ∣∣ωj − |k · ω|∣∣ ≥ γ0(K̃, ρ).

In the second case we either have (in case “+”)∣∣ωj − |k · ω|∣∣ ≥ ωj + ωj−r −
∣∣k̃ · ω∣∣ ≥ K̃ − (1 + c0)µ(k̃) ≥ 1,

or (in case “−”)∣∣ωj − |k · ω|∣∣ ≥ ∣∣k̃ · ω ± r∣∣− ∣∣ωj − |j|∣∣− ∣∣ωj−r − |j − r|∣∣ ≥ 1

2
γ0(K, ρ).

What remains to be shown in a second step is that γ0(K̃, ρ) = 0 (and hence
also γ0(K, ρ) = 0) only for finitely many 0 < ρ < ρ0. We first consider the
function

fk,r(ρ) = k · ω(ρ) + r

for fixed r ∈ Z and a fixed sequence of integers k with |r|+µ(k) 6= 0, µ(k) < 3K

and kl = 0 for all l ≥ K̃. The square matrix( dm
dρm

ωl

)
m=0,...,M−1; l:kl 6=0

,

with M equal to the number of indices l with kl 6= 0, is invertible for ρ > 0, as is
shown by computing its determinant of Vandermonde form, see [2, Lemma 5.1].

Hence there exists for all ρ > 0 a 0 ≤ m ≤ M − 1 such that f
(m)
k,r (ρ) 6= 0. The

continuity of f
(m)
k,r implies for any ρ > 0 the existence of an open neighbourhood

where f
(m)
k,r is never zero, and consequently where fk,r has only finitely many

zeros. For ρ = 0 the same argument shows the existence of an half-open interval
[0, a) where fk,r has only finitely many zeros provided that k0 = 0. If k0 6= 0 we
use the fact that ω0 =

√
ρ grows in a neighbourhood of zero faster than all other

frequencies to show the existence of an half-open interval [0, a) with the same
property. We have thus constructed an open covering of [0, ρ0] where each set
of the covering contains only finitely many zeros of fk,r. This implies that fk,r
has only finitely many zeros in [0, ρ0]. Taking the union of these zeros over the
finite number of r and k allowed in the definition of γ0 we get a finite number

of 0 ≤ ρ ≤ ρ0 for which γ0(K̃, ρ) = 0. This completes the proof of Theorem 2.
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