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Abstract: For FPU chains with large particle numbers, the formation of a
packet of modes with geometrically decaying harmonic energies from an ini-
tially excited single low-frequency mode and the metastability of this packet over
longer time scales are rigorously studied in this paper. The analysis uses mod-
ulated Fourier expansions in time of solutions to the FPU system and exploits
the existence of almost-invariant energies in the modulation system. The results
and techniques apply to the FPU α- and β-models as well as to higher-order
nonlinearities. They are valid in the regime of scaling between particle number
and total energy in which the FPU system can be viewed as a perturbation to a
linear system, considered over time scales that go far beyond standard perturba-
tion theory. Weak non-resonance estimates for the almost-resonant frequencies
determine the time scales that can be covered by this analysis.

1. Introduction

This report is intended to be the first one in a series dealing with the
behavior of certain nonlinear physical systems where the non-linearity is
introduced as a perturbation to a primarily linear problem. The behavior
of the systems is to be studied for times which are long compared to the
characteristic periods of the corresponding linear problem.

E. Fermi, J. Pasta, S. Ulam (1955)

The numerical experiment by Fermi, Pasta and Ulam [11], which showed
unexpected recurrent behaviour instead of relaxation to equipartition of energy
in a chain of weakly nonlinearly coupled particles, has incited a wealth of research
in both mathematics and physics and continues to do so; see the recent volume
edited by Gallavotti [14] and the review by Berman and Izrailev [7] as well as
the accounts on the earlier FPU history by Ford [13] and Weissert [20].

The present paper contributes to the vast literature on FPU with an analysis,
for large particle numbers, of the questions of the formation of a packet of modes
with geometrically decaying energies, starting from a single excited mode, and
of the metastability shown in the perseverance of the packet over longer time
scales (see Benettin, Carati, Galgani and Giorgilli [3] for a review of the FPU
problem from the metastability perspective). Only recently, such questions have
been addressed analytically in an impressive paper by Bambusi and Ponno [1].
Here we present an approach to these questions that differs substantially: in
the scaling between particle number N and total energy E considered, in the
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time scales of metastability obtained, and in the kind of analysis employed. The
scaling considered here is such that the nonlinearity can indeed be viewed as a
perturbation to the linear problem (cf. the citation above), which is the case for
E � N−3 in the FPU α-model (cubic potential), whereas in [1] the scaling E ∼
N−3 is studied. In the FPU β-model (quartic potential) we require E � N−1. We
derive our results using a non-resonant modulated Fourier expansion in time of
the solution to the FPU system, as opposed to the use of an integrable resonant
normal form in [1]. The results and techniques developed here apply to FPU
α- and β-models as well as to FPU systems with higher-order nonlinearities,
whereas those of [1] are so far restricted to the α-model. Integrability is an
essential concept in [1], but plays no role here.

The modulated Fourier expansion employed here is a multiscale expansion
whose coefficient functions are constructed from a modulation system that re-
tains a Hamiltonian structure. The modulation system is shown to have almost-
invariants that majorize the normal mode energies of the FPU system. This
permits us to explain the preservation of the low-frequency packet over time
scales that are much longer than the time scale for the formation of the packet.
We mention that modulated Fourier expansions have been used similarly be-
fore in the analysis of numerical methods for oscillatory Hamiltonian differential
equations [17,8] and in the long-time analysis of non-linearly perturbed wave
equations [9] and Schrödinger equations [15,16].

For previous numerical experiments that are in relation to the present work,
we refer to De Luca, Lichtenberg and Ruffo [10], Berchialla, Galgani and Giorgilli
[6], and Flach, Ivanchenko and Kanakov [12].

The paper is organized as follows: In Section 2 we introduce the necessary no-
tation and formulate the problem. Section 3 presents numerical experiments that
illustrate the main result, Theorem 1, which is stated in Section 4. This theorem
provides rigorous bounds on the geometric decay of the energies of all modes and
on the long-time preservation of the packet, in the case of the FPU α-model with
sufficiently small initial excitation in the first mode. The proof of Theorem 1 is
given in Sections 5 to 8. Section 5 provides the necessary weak non-resonance
estimates for the frequencies of the FPU system. These are needed for the con-
struction of the non-resonant modulated Fourier expansion given in Section 6.
Some further bounds for the modulation functions are derived in Section 7. In
Section 8 we construct the almost-invariant energies of the modulation system
and show that they bound the energies in the modes of the FPU system. We are
then able to bound the mode energies over longer time scales than the validity
of the modulated Fourier expansion and complete the proof of Theorem 1. We
obtain even longer time scales by including certain high-order resonances among
frequencies in the construction of the modulated Fourier expansion, which is
done for the first appearing resonance in Section 9. Finally, the extension of
Theorem 1 to the FPU β-model and higher-order models is given in Section 10.

2. Formulation of the problem

The periodic Fermi–Pasta–Ulam lattice with 2N particles has the Hamiltonian

H =

2N∑
n=1

1

2
p2n +

2N∑
n=1

(
1

2
(qn+1 − qn)2 + V (qn+1 − qn)

)
,
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where the real sequences (pn) and (qn) are 2N -periodic, and has the equations
of motion

q̈n − (qn+1 − 2qn + qn−1) = V ′(qn+1 − qn)− V ′(qn − qn−1) . (1)

The non-quadratic potential is typically taken as V (x) = αx3/3 + βx4/4. With
the discrete Fourier coefficients1

u =
(
uj
)N−1
j=−N , qn =

N−1∑
j=−N

uj eijnπ/N , (2)

we obtain, for the special case α = 1 and β = 0, the system

üj + ω2
j uj = − iωj

∑
j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N) ωj1 ωj2 uj1 uj2 (3)

with frequencies

ωj = 2 sin
( jπ

2N

)
, j = −N, . . . , N − 1. (4)

Equation (3) is a complex Hamiltonian system of the form

üj + ω2
juj = −∇−jU(u) (5)

(∇−j denotes derivative with respect to u−j) with potential

U(u) = − i

3

∑
j1+j2+j3=0 mod 2N

(−1)(j1+j2+j3)/(2N) ωj1 ωj2 ωj3 uj1 uj2 uj3 . (6)

The total energy of the FPU system is

E =

N−1∑
j=−N

Ej + 2N U, (7)

where Ej is the jth normal mode energy,

Ej = 2N εj with εj =
1

2

∣∣u̇j∣∣2 +
1

2
ω2
j

∣∣uj∣∣2. (8)

Our interest in this paper is in the time evolution of these mode energies, and
we write Ej(t) = Ej(u(t), u̇(t)). Since the qn are real, we have u−j = uj , and
hence E−j = Ej for all j. Occasionally it will be convenient to work with the
specific energy

ε =
E

2N
. (9)

We are mainly interested in small initial data that are different from zero
only in a single pair of modes ±j0 6= 0:

uj(0) = u̇j(0) = 0 for j 6= ±j0. (10)

1 In contrast to much of the FPU literature we omit the normalization factor 1/
√

2N in (2).

With this scaling there is no factor
√

2N in the system (3) and no factor 2N in the potential
(6), but the factor 2N appears in the energies (7) and (8).
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Fig. 1. Normal mode energies Ej(t) as functions of time for the FPU α-problem with initial
data of Section 3; increasing j corresponds to decreasing values of Ej(t).

Equivalently, only the j0th mode energy is non-zero initially. Because of ü0 = 0
(which follows from ω0 = 0) this also implies that u0(t) = 0 for all t. This
property is valid for general potentials V , because summing up the equation (1)
over all n shows that the second derivative of

∑
n qn vanishes identically.

Remark 1. The original article [11] considers the differential equation (1) with
fixed boundaries qN = q0 = 0. Extending such data by q−j = −qj to a 2N -
periodic sequence, we notice that the extension is still a solution of (1), so that
all statements of the present article remain valid also in this situation.

3. Numerical experiment

For our numerical experiment we consider the potential V (x) = x3/3, i.e., α = 1
and β = 0. For N an integral power of 2, we consider initial values
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Fig. 2. Normal mode energies Ej(t) as functions of time for the FPU α-problem with initial

data as in Fig. 1, but with smaller total energy E = N−5.

qn(0) =

√
2 ε

ω1
sinxn, q̇n(0) =

√
2 ε cosxn (11)

with xn = nπ/N , so that (10) is satisfied with j0 = 1 and the total energy
is E = 2Nε. The solution is computed numerically by a trigonometric method
(treating without error the linear part of the differential equation) with step size
h = 0.01 for N = 8, with h = 0.1 for N = 32, and with h = 1 for N = 128.
Figure 1 shows the mode energies Ej(t) as functions of time for E = N−3. This
is the situation treated in [1]. Figure 2 shows the mode energies for E = N−5.
In the figures we have chosen time intervals that are proportional to N3, which
looks like a natural time scale for the slow changes in the mode energies. Further
numerical experiments with many different values of E and N indicate that, with
small

δ =
√
EN3 � 1 , (12)

the mode energies behave like

Ej(t) ≈ E δ2(j−1)fj(N−3t) for j ≥ 2 (13)

with functions fj(τ) that do not depend significantly on E and N and which
are of size ≈ cj−1 with |c| < 1. We have E1(0) = E−1(0) = E/2 and we observe
that E1(t)− E1(0) ≈ −E δ2f2(N−3t).
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4. Main result

The proof of our main result on the long-time behaviour of normal mode energies
is confronted with small denominators, and relies on lower bounds of the form∣∣∣∣ω2

j −
(
ωj−r +

N∑
`=1

k`ω`

)2∣∣∣∣ ≥ γ
π3 ωj
N3

, (14)

where r and
∑N
`=1 `|k`| are small integers, but j can be arbitrarily large. Because

of the special form (4) of the frequencies ωj , such an estimate can be obtained
for nearly all relevant situations, as will be elaborated in Section 5 below. The
only difficulty arises when there exists an integer s such that the expression∣∣∣ cos

( (2j − r)π
4N

)
− s

r

∣∣∣ (15)

is very small. We therefore restrict the admissible dimensions N to those be-
longing to the non-resonance set N (M,γ) of the following definition, where the
integer M will determine the time scale t ≤ cN2δ−M−1 (with δ � 1 of (12))
over which we obtain a geometric decay of the mode energies, while γ > 0 is
from the non-resonance condition (14).

Definition 1. Let an integer M and a constant γ > 0 be given. The dimension
N belongs to the non-resonance set N (M,γ) if for all pairs of integers (s, r) with
0 < s < r ≤ M and even r − s, for the integer j minimizing (15), and for all

(k1, . . . , kN ) satisfying
∑N
`=1 ` |k`| ≤M and

∑N
`=1 ` k` = s, condition (14) holds

true.

The following statements on the non-resonance set N (M,γ) are obtained by
numerical investigation:

M = 2: All dimensions N belong to N (2, γ) for every γ, because for the only
candidate (s, r) = (1, 2) the difference r − s is not an even number.

M = 3: We have to consider (s, r) = (1, 3). For γ = 0.1 the set N (3, γ) contains
all N between 100 and 1 000 000 except for N = 728. This value of N belongs
to N (3, γ) for γ = 0.04.

M = 4: In addition to the pair (1, 3) we have to consider (s, r) = (2, 4). Since
cos(π3 ) = 1

2 , the integer j minimizing (15) is the integer that is closest to
2N
3 + s. Whenever N is an integral multiple of 3 we have exact resonance,

and condition (14) cannot be fulfilled with a positive γ. All other N (with
the exception of N = 728) belong to N (4, γ) with γ = 0.1.

M = 5: For γ = 0.1 the set N (5, γ) contains all values of N in the range 100 ≤
N ≤ 100 000, except for integral multiples of 3 and 37 additional values.

We are now in the position to formulate our main result. We assume that
initially only the first pair of modes ±1 is excited, that is, the initial data satisfy
(10) for j0 = 1.

Theorem 1. Fix γ > 0 and ρ ≥ 1 arbitrarily, and let M and K be positive
integers satisfying M < K and K+M = 10. Then, there exist δ0 > 0 and c > 0,
C > 0 such that the following holds: if
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(1) the dimension of the system satisfies N ≥ 41 and N ∈ N (M,γ),

(2) the total energy E is bounded such that δ :=
√
EN3 ≤ δ0,

(3) the initial normal mode energies satisfy Ej(0) = 0 for j 6= ±1,

then, over long times

t ≤ cN2 δ−M−1,

the normal mode energies satisfy the estimates

|E1(t)− E1(0)| ≤ C E δ2, (16)

Ej(t) ≤ C E δ2(j−1), j = 1, . . . ,K, (17)
N∑
j=K

ρ2jEj(t) ≤ C E δ2(K−1). (18)

This theorem is proved in Sections 5 through 8. Moreover, the proof shows
that the theorem remains valid if the single-mode excitation condition (10) is
replaced by the geometric-decay condition that (17) and (18) hold at t = 0, with
a given constant C0 in place of C and a ρ0 > ρ in place of ρ.

We note that the maximal time interval is obtained with M = 4, for which
we have t ≤ cN2 δ−5. Longer time intervals for slightly weaker estimates will be
obtained in Section 9, where we account for the almost-resonance ω5 − 2ω4 +
3ω1 = O(N−5) that leads to the restriction K +M ≤ 10 in the above theorem.

The decay of the mode energies with powers of δ was first observed numeri-
cally by Flach, Ivanchenko and Kanakov [12].

To our knowledge, so far the only rigorous long-time bounds of the mode
energies in FPU systems with large particle numbers N have been given by
Bambusi and Ponno [1]. There it is shown for E = N−3 and large N that the
mode energies satisfy

Ej(t) ≤ E(C1e−σj + C2N
−1) for t ≤ TN3,

where the factor T can be fixed arbitrarily, and the constants C1, C2 and σ
depend on T .

In comparison, our result is concerned with the case E � N−3. In this sit-
uation we obtain exponential decay for all j and estimates over much longer
time intervals. For E = δ20N

−3, however, our estimates are proved only on time
intervals of length O(N2). The proof of [1] exploits the relationship of the FPU
α-model with the KdV equation for the scaling E = N−3. The proof of Theo-
rem 1 is completely different and is based on the technique of modulated Fourier
expansions.

The proof of Theorem 1 gives explicit formulas for the dominant terms in
Ej(t):

Ej(t) = 2E δ2(j−1)
(
|c−|2j + |c+|2j

)(
|aj(t)|2 +O(δ2 +N−2)

)
, (19)
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where c± = 1√
2ε

(
ω1u1(0)± i u̇1(0)

)
with ε = E/(2N), so that |c−|2 + |c+|2 = 1,

and the first functions aj(t) are given by

a1(t) =
1

2

a2(t) =
1

π2

(
ei(2ω1−ω2)t − 1

)
a3(t) =

1

π4

( 3

2

(
ei(3ω1−ω3)t − 1

)
− 2
(

ei(ω1+ω2−ω3)t − 1
))
.

All the linear combinations of frequencies appearing in these formulas are of size
O(N−3). In particular, we have

2ω1 − ω2 =
π3

4N3
+O(N−5).

The function a2(t) is thus periodic with period T ≈ 8π−2N3. This agrees ex-
tremely well with Figure 2, where the choice (11) of the initial values corresponds
to c+ = 0 and c− = −i.

We remark that the mode energy values Ej ≈ E j2(δ/π2)2(j−1) stated in
[12] are qualitatively similar, though not identical in quantity to the expressions
given here.

5. Weak non-resonance inequalities

The frequencies ωj = 2 sin
(
jπ
2N

)
are almost in resonance for large N :

ωj + ω` − ωj+` = 8 sin
( jπ

4N

)
sin
( `π

4N

)
sin
( (j + `)π

4N

)
= O(N−3)

for small j and `. Such a near-resonant situation leads to small denominators in
the construction of the modulated Fourier expansion that is given in the next
section. We therefore present a series of technical lemmas that deal with the
almost-resonances among the FPU frequencies.

We consider multi-indices k = (k1, . . . , kN ) with integers k`, we define

µ(k) =

N∑
`=1

`|k`|,

and we denote 〈j〉 = (0, . . . , 0, 1, 0, . . . , 0) the |j|-th unit vector. Furthermore,
we write ω = (ω1, . . . , ωN ) and k · ω = k1ω1 + . . . + kNωN . Our approach
with modulated Fourier expansions leads to small denominators ω2

j − (k · ω)2

which have to be bounded from below. We first consider (j,k) with small |j| and
small µ(k).

Lemma 1. For pairs (j,k) satisfying max
(
|j|, µ(k)

)
≤ 10 and k 6= ±〈j〉, we

have for N ≥ 27

∣∣ω2
j − (k · ω)2

∣∣ ≥


π

4N

(
|ωj |+ |k · ω|

)
if

∑N
`=1 ` k` 6= ±j

π3

8N3

(
|ωj |+ |k · ω|

)
else.
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The above estimate also holds for µ(k) = 11 except for (j,k) = (±5,±(3〈1〉 −
2〈4〉)), for which ω2

5 − (3ω1 − 2ω4)2 = O(N−6).

Proof. For large N we expand the expression |ωj | − |k ·ω| into a Taylor series,
use the remainder bounds | sinx−x| ≤ x3/6 and | sinx−x+x3/6| ≤ x5/120, and
thus obtain the estimates for N ≥ 100. We employ the fact that for µ(k) ≤ 10
the relation j+

∑
` k` = 0 implies |j3 +

∑
`3 k`| ≥ 6 (checked numerically). Also

the remaining finitely many cases are checked numerically. ut

We next consider the expression
∣∣ω2
j − (ωl + k · ω)2

∣∣ , where l is large and j
and µ(k) are small.

Lemma 2. For pairs (j, 〈l〉 + k) satisfying |j| ≤ 11, l ≥ 7, µ(k) ≤ 5, and
〈l〉+ k 6= ±〈j〉, we have for N ≥ 41

∣∣ω2
j − (ωl + k · ω)2

∣∣ ≥


π

8N

(
|ωj |+ |ωl + k · ω|

)
if l +

∑N
`=1 ` k` 6= ±j

π3

8N3

(
|ωj |+ |ωl + k · ω|

)
else.

Proof. For large l ≥ l0 = 20, for 0 ≤ j ≤ 11, µ(k) ≤ 5, and N ≥ 37, we prove

ωl + k · ω − ωj ≥ ωl0 + k · ω − ωj ≥
π

N
.

The second inequality is obtained from l0 +
∑N
`=1 ` k`− j ≥ 4 > 1 by estimating

the remainder in the Taylor series expansion. The finitely many remaining cases
are verified numerically. ut

We finally consider the expression
∣∣ω2
j−(ωj−r+k·ω)2

∣∣ for arbitrarily large j,

but with small |r| and small µ(k). The factor
∣∣ωj+(ωj−r+k·ω)

∣∣ will be bounded
from below by ωj and the expression ωj − (ωj−r + k · ω) is given by

4 sin
( r π

4N

)
cos
( (2j − r)π

4N

)
− π

N

N∑
`=1

` k` +
π3

24N3

N∑
`=1

`3 k` + O
( 1

N5

)
. (20)

Lemma 3. Let M, r be integers such that M ≤ 15 and |r| ≤ M , and consider
pairs (j, 〈j − r〉 + k) satisfying 2M < j ≤ min(N,N + r), µ(k) ≤ M , and
〈j − r〉+ k 6= ±〈j〉. With s =

∑
` ` k` we then have for all dimensions satisfying

N ≥ max
(
π
√

7/2M, π (M3 + 6)/12
)

that

∣∣∣ω2
j − (ωj−r + k · ω)2

∣∣∣ ≥



π ωj
2N

if s < min(r, 0) or s > max(r, 0)

π3 ωj
8N3

if s = r = 0

r2 π2 ωj
8N2

if s = 0 and r 6= 0

|r|π ω3
j

32N
if s = r and r 6= 0.

(21)

A counter-example for the second estimate is k ·ω = ω5− 2ω4 + 3ω1 = O(N−5),
for which µ(k) = 16.
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Proof. The assumptions on the indices imply 2j − r ≤ 2N − |r|. The first term
in (20) is thus a monotonic function of j with asymptotic values ranging from

r π

N
−→ r |r|π2

4N2

when j goes from j = M to j = max(N,N + r). This observation implies the
first inequality of (21), because the second term in (20) is dominant in this case.
Rigourous estimates prove the inequality for N2 ≥ π2M3/6.

The second inequality follows as in Lemma 1 for N2 ≥ π2M5/3840 from the
fact that for 0 < µ(k) ≤ 15 the condition

∑
` ` k` = 0 implies |

∑
` `

3k`| ≥ 6.
For s = 0 and r 6= 0, the first term in (20) is dominant and therefore we have

the third inequality of (21) for N ≥ π(M3 + 6)/12.
For the proof of the last inequality we note that

|ωj − ωj−r − ωr| = 8 sin
( jπ

4N

)
sin
( |r|π

4N

)
sin
( (j − r)π

4N

)
≥ ωj

2
sin
( |r|π

4N

)(
ωj cos

( |r|π
4N

)
− 4 sin

( |r|π
4N

))
where we have used the addition theorem for sin(α − β) and the inequality
2 sin(α/2) ≥ sinα. We therefore obtain

|ωj − ωj−r − k · ω| ≥
|r|π ω2

j

32N
+ χj

with

χj =
ω2
j

4

(
sin
( |r|π

2N

)
− |r|π

8N

)
− ωj |r|2π2

8N2
− |ωr − k · ω|.

To prove χj ≥ 0, we notice that it is an increasing function of j (for j ≥ 2M),
and bounded from below by its value at j = 2M . For r =

∑
` ` k` and µ(k) ≤M

we have
∑
` `(|k`| ± k`) ≤M ± r, so that k` = 0 for 2` > M + |r|, and therefore∑

` `
3|k`| ≤ M(M + |r|)2/4. Using x − x3/6 ≤ sinx ≤ x we obtain the lower

bound

χ2M ≥
|r|3π3

24N3
A
(M
|r|

)
− |r|

3M2π5

48N5
B
(M
|r|

)
with

A(x) = 9x2 − 6x− 1− x(x+ 1)2/4, B(x) = 1 + 6x2.

An inspection of these functions shows that the quotient satisfies 0 < B(x)/A(x) ≤
B(1)/A(1) = 7 on an interval including 1 ≤ x ≤ 15. Hence, χ2M ≥ 0 for
N2 ≥ π2M27/2, which completes the proof of the lemma. ut

It remains to consider the situation where r 6= 0 and 0 < s/r < 1. We have
a near-cancellation of the first two terms in (20) if the index j minimizes (15).
We denote such an integer by j∗(s, r,N).

Lemma 4. Let µ(k) ≤ M , 2M < j ≤ min(N,N + r), 0 < |r| ≤ M and 0 <
s/r < 1, where s =

∑
` ` k`. For N ≥ 0.64M3 and j 6= j∗(s, r,N), we have the

lower bound ∣∣ω2
j − (ωj−r + k · ω)2

∣∣ ≥ π ωj
8N2

√
r.
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Proof. We define α by cosα = s
r , and we use cosβ−cosα = 2 sin(α+β2 ) sin(α−β2 )

with β = (2j−r)π
4N . The estimate then follows from |α − β| ≥ π

4N and from

2 sin(α+β2 ) ≥ 2 sin(α2 ) =
√

2(1− cosα) =
√

2(r−s)
r ≥

√
2
r . ut

The most critical case for a lower bound of
∣∣ω2
j − (ωj−r + k · ω)2

∣∣ is when
j = j∗(s, r,N). This is why we restrict the dimension N of the FPU-system to
values satisfying the non-resonance condition of Definition 1. Because of property
(42) below we consider only even values of r − s in Definition 1.

6. Modulated Fourier expansion

Our principal tool for studying the long-time behaviour of mode energies is a
modulated Fourier expansion, which was originally introduced for the study of
numerical energy conservation in Hamiltonian ordinary differential equations
in the presence of high oscillations [17,8]. This technique was also successfully
applied to the long-time analysis of weakly nonlinear Hamiltonian partial differ-
ential equations [9,15,16]. The idea is to separate rapid oscillations from slow
variations by a two-scale ansatz of the form

ωjuj(t) ≈
∑
k∈Kj

zkj (τ) ei(k·ω)t with τ = N−3t, (22)

where Kj is a finite set of multi-indices k = (k1, . . . , kN ) with integers k`. The

products of complex exponentials ei(k·ω)t =
∏N
`=1 eik`ω`t account for the non-

linear interaction of different modes. The slowly varying modulation functions
zkj (τ) are yet to be determined from a system of modulation equations.

6.1. Choice of the interaction set. We will choose the sets Kj such that the
interaction of low modes with low modes and high modes with low modes is
incorporated, but the interaction of high modes with high modes is discarded.
It turns out that for our purposes an appropriate choice of the multi-index set
Kj is obtained as follows: fix positive integers K and M with

K +M ≤ 10 and M < K.

We define, with the notation introduced at the beginning of Section 5,

K = {(j,k) : max
(
|j|, µ(k)

)
≤ K +M}

∪ {(j,±〈l〉+ k) : |j| ≤ K +M, µ(k) ≤M, l ≥ K + 1}

∪ {(j,±〈j − r〉+ k) : |j| ≥ K +M, |r| ≤M, µ(k) ≤M}.

This set consists of pairs (j,k) for which we have obtained lower bounds for∣∣ω2
j − (k · ω)2

∣∣ in Section 5. We let

Kj = {k : (j,k) ∈ K}.

For convenience we set zkj (τ) = 0 for multi-indices k that are not in Kj .
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6.2. Choice of norm. We work with a weighted `2 norm for 2N -periodic se-
quences u = (uj)

N−1
j=−N ,

‖u‖2 =

N−1∑
j=−N

σj |uj |2, σj = |Nωj |2sρ2|Nωj | (23)

with s > 1/2 and ρ ≥ 1. This choice is motivated by two facts. On the one hand,
the extended norm

‖(u, u̇)‖2 = ‖Ωu‖2 + ‖u̇‖2 (24)

with Ω = diag (ωj) can be written in terms of the mode energies as

‖(u(t), u̇(t))‖2 =
1

2N

N∑
j=1

′ σjEj(t),

where the prime indicates that the last term in the sum is taken with the fac-
tor 1/2. On the other hand, with the given choice of σj , the norm behaves well
with convolutions.

Lemma 5. For the norm (23), we have

‖u ∗ v‖ ≤ c ‖u‖·‖v‖ where (u ∗ v)j =
∑

j1+j2=j mod 2N

uj1 vj2 , (25)

with c depending on s > 1/2, but not on N and ρ ≥ 1.

Proof. We note the bound |ωj | ≤ |ωj1 | + |ωj2 | for j1 + j2 = j mod 2N , which
follows from the addition theorem for sin(α + β). Together with the inequality
2|j| ≤ N |ωj | ≤ π|j|, this yields∑

j1+j2=j mod 2N

σ−1j1 σ
−1
j2
≤ c σ−1j .

The result then follows with the Cauchy-Schwarz inequality:∑
j

σj |(u ∗ v)j |2 ≤
∑
j

(
σj
∑

j1+j2≡j
σ−1j1 σ

−1
j2

) ∑
j1+j2≡j

σj1 |uj1 |2 σj2 |vj2 |2,

where ≡ means congruence modulo 2N . ut

6.3. Statement of result. The approximability of the solution of the FPU system
by modulated Fourier expansions is described in the following theorem.

Theorem 2. Fix γ > 0, ρ ≥ 1, s > 1/2, and let M and K be positive integers
satisfying M < K and K + M = 10. Then, there exist δ0 > 0 and C0 > 0,
C1 > 0, C > 0 such that the following holds: if

(1) the dimension of the system satisfies N ≥ 41 and N ∈ N (M,γ),

(2) the energy is bounded such that δ :=
√
EN3 ≤ δ0,
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(3) the initial values satisfy E0(0) = 0 and

Ej(0) ≤ C0E δ
2(j−1) for 0 < j < K,∑

K≤|j|≤N

σj Ej(0) ≤ C0E δ
2(K−1) (26)

with the weights σj = |Nωj |2sρ2|Nωj | from (23);

then, the solution u(t) = (uj(t))
N−1
j=−N admits an expansion

ωjuj(t) =
∑
k∈Kj

zkj (τ) ei(k·ω)t + ωjrj(t) with τ = N−3t, (27)

where the remainder r(t) = (rj(t))
N−1
j=−N is bounded in the norm (24) by

‖(r(t), ṙ(t))‖ ≤ C
√
ε δK+MN−2t for 0 ≤ t ≤ min(N3, ε−1/2) (28)

with the specific energy ε = E/(2N). The modulation functions zkj (τ) are poly-
nomials, identically zero for j = 0, and for 0 ≤ τ ≤ 1 bounded by(∑

k∈Kj

|zkj (τ)|
)2
≤ C1 ε δ

2(|j|−1) for 0 < |j| < K,

∑
K≤|j|≤N

σj

(∑
k∈Kj

|zkj (τ)|
)2
≤ C1 ε δ

2(K−1).
(29)

The same bounds hold for all derivatives of zkj with respect to the slow time

τ = N−3t. Moreover, the modulation functions satisfy z−k−j = zkj .

The above estimates imply, in particular, a solution bound in the weighted
energy norm: for t ≤ min(N3, ε−1/2),

Ej(t) ≤ C1E δ
2(|j|−1) for 0 < |j| < K,∑

K≤|j|≤N

σj Ej(t) ≤ C1E δ
2(K−1). (30)

We shall see later that such estimates actually hold on much longer time inter-
vals. The rest of this section is devoted to the proof of Theorem 2.

6.4. Formal modulation equations. Formally inserting the ansatz (22) into (3)
and equating terms with the same exponential ei(k·ω)t lead to a relation

(
ω2
j − (k · ω)2

)
zkj + 2i (k · ω)N−3

dzkj
dτ

+N−6
d2zkj
dτ2

= . . . , (31)

where the dots, coming from the non-linearity, represent terms that will be con-
sidered later. Since we aim at constructing functions without high oscillations,
we have to look at the dominating terms in (31).
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For k = ±〈j〉, where 〈j〉 = (0, . . . , 0, 1, 0, . . . , 0) with the non-zero entry in
the |j|-th position, the first term on the left-hand side of (31) vanishes and the
second term with the time derivative dzkj /dτ can be viewed as the dominant
term. Recall that we only have to consider j 6= 0. For k ∈ Kj and k 6= ±〈j〉 , the
first term is dominant according to the non-resonance estimates of Section 5.

To derive the equations defining the coefficient functions zkj , we have to study
the non-linearity when (22) is inserted into (3). We get for k = ±〈j〉 that

±2iωj N
−3 dz

±〈j〉
j

dτ
+N−6

d2z
±〈j〉
j

dτ2
(32)

= −iω2
j

∑
j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N)
∑

k1+k2=±〈j〉

zk
1

j1 z
k2

j2 ,

and for k 6= ±〈j〉(
ω2
j − (k · ω)2

)
zkj + 2i (k · ω)N−3

dzkj
dτ

+N−6
d2zkj
dτ2

(33)

= −iω2
j

∑
j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N)
∑

k1+k2=k

zk
1

j1 z
k2

j2 .

In addition, the initial conditions for uj need to be taken care of. They will

yield the initial conditions for the functions z
±〈j〉
j for j 6= 0:

∑
k∈Kj

zkj (0) = ωjuj(0) ,
∑
k∈Kj

(
i (k ·ω) zkj (0) +N−3

dzkj
dτ

(0)
)

= ωj u̇j(0). (34)

6.5. Construction of coefficient functions for the modulated Fourier expansion.
We construct the functions zkj (τ) such that they are solutions of the system
(32)–(33) up to a small defect and satisfy the initial conditions (34) for all j. We

write the functions as a formal series in δ =
√
EN3,

zkj (τ) =
√

2ε
∑
m≥1

δm−1 zkj,m(τ) = N−2
∑
m≥1

δm zkj,m(τ), (35)

insert them into the relations (32)–(34), and compare like powers of δ:

±2iωj N
−3 dz

±〈j〉
j,m

dτ
+N−6

d2z
±〈j〉
j,m

dτ2
(36)

= −iω2
jN
−2

∑
j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N)
∑

k1+k2=±〈j〉

∑
m1+m2=m

zk
1

j1,m1
zk

2

j2,m2
,

and for k 6= ±〈j〉,(
ω2
j − (k · ω)2

)
zkj,m + 2i (k · ω)N−3

dzkj,m
dτ

+N−6
d2zkj,m
dτ2

(37)

= −iω2
jN
−2

∑
j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N)
∑

k1+k2=k

∑
m1+m2=m

zk
1

j1,m1
zk

2

j2,m2
.
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This yields an equation for zkj,m (k 6= ±〈j〉) and for the derivative of z
±〈j〉
j,m with a

right-hand side that depends only on the product zk
1

j1,m1
zk

2

j2,m2
with m1+m2 = m

so that both m1 and m2 are strictly smaller than m. Initial values for z
±〈j〉
j,m are

obtained from (34). These differential equations possess a unique polynomial
solution, since the only polynomial solution to

z − α dz
dτ
− β d

2z

dτ2
= p (38)

with a polynomial p of degree d is given by

z =

d∑
`=0

(
α
d

dτ
+ β

d2

dτ2

)`
p. (39)

We now show in detail how the coefficient functions zkj,m(τ) for the first few
values of m = 1, 2, . . . are constructed. According to the bound (26) we assume
for 1 ≤ j ≤ K that

ωjuj(0) =
√

2ε δ|j|−1aj , u̇j(0) =
√

2ε δ|j|−1bj (40)

(consequently ωju−j(0) =
√

2ε δ|j|−1aj , u̇−j(0) =
√

2ε δ|j|−1bj) with factors aj
and bj whose absolute values are bounded independently of N , ε, and δ.

Case m = 1: For m = 1, the right-hand sides in (36) and (37) are zero. The
relation (37) shows that zkj,1(τ) = 0 for k 6= ±〈j〉. Equation (36) shows that
d
dτ z
±〈j〉
j,1 (τ) = 0 and hence z

±〈j〉
j,1 (τ) is a constant function. Its value is obtained

from (34). It vanishes for j 6= ±1, and is given by

z
±〈1〉
1,1 (0) =

1

2
(a1 ∓ ib1), z

±〈1〉
−1,1(0) =

1

2
(a1 ∓ ib1)

for the only non-vanishing functions with m = 1.

Case m = 2: The products z
±〈1〉
1,1 z

±〈1〉
1,1 and z

±〈1〉
−1,1z

±〈1〉
−1,1 with all combinations

of signs give a non-zero contribution to the right-hand side of (37). Notice that
j = 0 need not be considered, because u0 = 0. This gives the constant functions

z02,2(τ) = −2i z
〈1〉
1,1(0)z

−〈1〉
1,1 (0)N−2(

ω2
2 − 4ω2

1

)
z
2〈1〉
2,2 (τ) = −iω2

2 z
〈1〉
1,1(0)z

〈1〉
1,1(0)N−2

and similar formulas for z0−2,2(τ), z
−2〈1〉
2,2 (τ), and z

±2〈1〉
−2,2 (τ).

From (36) we obtain d
dτ z
±〈2〉
2,2 (τ) = 0, and hence z

±〈2〉
2,2 (τ) is constant. The

initial values are determined from (34), i.e.,(
z
〈2〉
2,2(0) + z

−〈2〉
2,2 (0)

)
+
(
z
2〈1〉
2,2 (0) + z

−2〈1〉
2,2 (0)

)
= a2

i
(
z
〈2〉
2,2(0)− z−〈2〉2,2 (0)

)
+ 2i

ω1

ω2

(
z
2〈1〉
2,2 (0)− z−2〈1〉2,2 (0)

)
= b2,

since the values z
±2〈1〉
2,2 (0) are already known. In the same way we get z

±〈2〉
−2,2(τ).

These functions are the only non-vanishing functions for m = 2.
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Case m = 3: The nonzero terms in the right-hand side of (37) are formed

of products zk
1

j1,m1
zk

2

j2,m2
, where one index among m1,m2 is 1 and the other

is 2. We thus obtain formulas for z
±3〈1〉
1,3 (τ), z

±〈1〉±〈2〉
1,3 (τ), z

±3〈1〉
3,3 (τ), z

±〈1〉±〈2〉
3,3 (τ),

z
±〈1〉
3,3 (τ), and similar formulas with negative index j. All these functions are

constant. The relation (36) leads to differential equations with vanishing right-

hand side for z
±〈3〉
3,3 (τ) and with constant right-hand side for z

±〈1〉
1,3 , which thus

becomes a linear polynomial in τ .

Case 4 ≤ m < K: Assuming that the functions zk
1

j1,p
are known for p ≤ m− 1

and all j1 and k1, the relation (37) permits us to compute zkj,m for k 6= ±〈j〉.
We further obtain z

±〈j〉
j,m from (36) and (34). By this construction many of the

functions are constant and some of them are polynomials in τ , of degree at most
m/2.

Case K ≤ m ≤ K + M with M < K: A new situtation arises for m = K,
because for |j| ≥ K we have, according to the bound (26), that

ωjuj(0) =
√

2ε δK−1aj , u̇j(0) =
√

2ε δK−1bj (41)

with aj , bj = O(1). Hence, for m = K, we get differential equations for all diag-

onal functions z
±〈j〉
j,m with initial values that in general are not zero. Otherwise,

the construction can be continued as before.
Since all coefficient functions are created from diagonal quantities z

〈j〉
j (τ), we

have for all m ≥ 1 that

zkj,m(τ) = 0 if j 6= µ(k) mod 2. (42)

Furthermore, as long as m ≤ K, we have

zkj,m(τ) = 0 if

{
m < |j| or m < µ(k) or

m 6= j mod 2 or m 6= µ(k) mod 2.

6.6. Bounds of the modulation functions. The above construction yields func-
tions zkj,m that are bounded by certain non-positive powers of N . From the
explicit formulas of Section 6.5 we have

z
±〈1〉
1,1 (τ) = O(1)

z
±〈2〉
2,2 (τ) = O(1), z

±2〈1〉
2,2 (τ) = O(1), z02,2(τ) = O(N−2)

z
±〈3〉
3,3 (τ) = O(1), z

±3〈1〉
3,3 (τ) = O(1)

z
±〈1〉±〈2〉
3,3 (τ) = O(1), z

±〈1〉∓〈2〉
3,3 (τ) = O(N−2)

z
±〈1〉
1,3 (τ) = O(N−2) +O(τ), z

±〈1〉
3,3 (τ) = O(N−2)

z
±3〈1〉
1,3 (τ) = O(N−2), z

±〈1〉±〈2〉
1,3 (τ) = O(N−2), z

±〈1〉∓〈2〉
1,3 (τ) = O(1)
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and similarly for negative index j. In the course of this subsection we show that
for m ≤ K +M ,

N−1∑
j=−N

σj

(∑
k∈Kj

|zkj,m(τ)|
)2
≤ C for 0 ≤ τ ≤ 1

with a constant C that depends on K and M , but is independent of N .

�
��

@
@@

(j1,k1,m1) (j2,k2,m2)

(j,k,m)

Fig. 3. Binary decomposition.

The behaviour of zkj,m can best be understood by using rooted binary trees.

For multi-indices k 6= ±〈j〉 we see from (33) that zkj,m is determined by the

products zk
1

j1,m1
zk

2

j2,m2
, where j = j1 + j2, k = k1 + k2, and m = m1 + m2,

as illustrated in Figure 3. Recursively applying this reduction, we see that zkj,m

can be bounded in terms of products of diagonal terms z
±〈`〉
`,p with p < m. For

example, z
〈1〉
3,5 contains a term

(
z
〈1〉
1,1

)2
z
−〈1〉
1,3 . This is illustrated by the binary tree

of Figure 4.

�
��

@
@@

�
��

@
@@

(1, 〈1〉, 1) (1, 〈1〉, 1)

(2, 2〈1〉, 2) (1,−〈1〉, 3)

(3, 〈1〉, 5)

Fig. 4. Example of a binary tree with root (3, 〈1〉, 5).

In such rooted binary trees, there are two types of vertices: leaves of the form
(`,±〈`〉, p) and inner vertices (j,k,m) with k ∈ Kj and k 6= ±〈j〉 which have
two branches. For k ∈ Kj and m ≤ K + M , we denote by Bkj,m the set of all
rooted binary trees of this kind with root (j,k,m). We note that the number of
trees in Bkj,m is independent of N .

We estimate the modulation functions in a time-dependent norm on the space
of polynomials of degree not exceeding K +M ,

‖|z‖|τ =
∑
i≥0

1

i!

∣∣∣diz
dτ i

(τ)
∣∣∣. (43)
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By the weak non-resonance estimates of Section 5, we have for all (j,k) ∈ K
with k 6= ±〈j〉 that

αk
j = −2i

(k · ω)N−3

ω2
j − (k · ω)2

, βk
j = − N−6

ω2
j − (k · ω)2

satisfy |αk
j |+ |βk

j | ≤ C (44)

with a constant C that does not depend on (j,k) ∈ K and N . Since for a
polynomial p(τ) of degree n, we have ‖|dp/dτ‖|τ ≤ n ‖|p‖|τ , the solution (39) of
(38) is bounded by ‖|z‖|τ ≤ C(n)‖|p‖|τ with a constant depending on n. Equation
(37) thus yields the recursive bound, for k 6= ±〈j〉 and for m ≤ K +M ,

‖|zkj,m‖|τ ≤ γ
k
j

∑
j1+j2=j mod 2N

∑
k1+k2=k

∑
m1+m2=m

‖|zk
1

j1,m1
‖|τ · ‖|z

k2

j2,m2
‖|τ (45)

with

γkj =
C ω2

j N
−2

|ω2
j − (k · ω)2|

, (46)

where C depends on K and M , but not on N , j, and k.
We resolve this recurrence relation via the binary trees. We denote by κ+`,p(b)

the number of appearances of (`, 〈`〉, p) and its complex conjugate (−`,−〈`〉, p)
among the leaves of a tree b ∈ Bk

j,m, and by κ−`,p(b) the number of appearances

of (`,−〈`〉, p) and (−`, 〈`〉, p). We then obtain

‖|zkj,m‖|τ ≤
∑

b∈Bk
j,m

Γ (b)

N∏
`=1

m−1∏
p=1

‖|z〈`〉`,p‖|
κ+
`,p(b)
τ ‖|z−〈`〉`,p ‖|

κ−`,p(b)
τ (47)

with a factor Γ (b) that is given recursively as follows: Γ (b) = 1 for a tree with
a single node (j,±〈j〉,m), and

Γ (b) = γkj Γ (b1)Γ (b2)

for a binary tree b having a root (j,k,m) with k 6= ±〈j〉 and composed of
subtrees b1 and b2.

Lemma 6. The estimates of Section 5 yield

Γ (b) ≤ Const.

with a constant independent of N ∈ N (M,γ) (but depending on K,M and γ).

Proof. We have γkj = O(1) for all values of (j,k) with the exception of the cases
corresponding to the second inequality of (21) or to that of (14), where we only
have γkj = O(ωjN) which is unbounded for large j. Nevertheless, we obtain
the statement of the lemma, because the non-resonance estimates of Section 5
permit to prove

γkj γ
k1

j1 γ
k2

j2 = O(1) for j1 + j2 = j mod 2N and k1 + k2 = k, (48)

where we have set γ
±〈`〉
` = 1 and γkj = 0 if j 6∈ Kj .
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Indeed, let k = 〈j − r〉+ h with s =
∑
` ` h`, and assume that k1 is close to

〈j−r〉, so that µ(k2) and |j2| are bounded by 2M ≤ K+M . We distinguish two
situations. If s2 =

∑
` ` k

2
` satisfies s2 6= ±j2, it follows from the first inequality

of Lemma 1 that γk
2

j2
= O(N−2). This is sufficient to get (48). If s2 = j2 or

s2 = −j2, so that γk
2

j2
= O(1), an inspection of the possible values for (j1,k

1)

shows that γk
1

j1
= O(N−1). Also in this case we have (48). ut

By (45) and (47) the functions zkj,m(τ) with k 6= ±〈j〉 are estimated in terms

of the diagonal functions z
±〈`〉
`,p (τ) with p < m. With similar arguments we find

that the derivative of z
±〈j〉
j,m (τ), given by (36), is bounded by

‖| d
dτ
z
±〈j〉
j,m ‖|τ ≤ ωjN

∑
j1+j2=j mod 2N

∑
k1+k2=±〈j〉

∑
m1+m2=m

‖|zk
1

j1,m1
‖|τ · ‖|z

k2

j2,m2
‖|τ .

(49)
Here we note that the factor ωjN , which is large for large |j|, is compensated

by the factors present in zk
1

j1,m1
and zk

2

j2,m2
. This is a consequence of

γk
1

j1 γ
k2

j2 = O((ωjN)−1) for j1 + j2 = j mod 2N and k1 + k2 = ±〈j〉, (50)

which follows from the non-resonance estimates of Section 5 exactly as in the
proof of Lemma 6. The estimate ‖|z‖|τ ≤ |z(0)| + 2 ‖| dzdτ ‖|τ for τ ≤ 1 together
with an induction argument thus yields

‖|z±〈j〉j,m ‖|τ ≤ |z
±〈j〉
j,m (0)|+ C

∑
b∈B±〈j〉j,m

N∏
`=1

m−1∏
p=1

‖|z〈`〉`,p‖|
κ+
`,p(b)
τ ‖|z−〈`〉`,p ‖|

κ−`,p(b)
τ , (51)

where B±〈j〉j,m is the set of binary trees with root (j,±〈j〉,m), and κ±`,p(b) have the

same meaning as in (47).

We arrive at the point where we have to estimate the initial value z
±〈j〉
j,m (0),

defined by (34). It is bounded in terms of the scaled quantities aj , bj , z
k
j,m(0)

for k 6= ±〈j〉, and of d
dτ z

k
j,m(0) for all k ∈ Kj . Using (49) this implies the

boundedness of z
±〈j〉
j,m (0) for |j| ≤ K+M and m ≤ K+M . For large |j| > K+M

and m = K the function z
±〈j〉
j,m (τ) is constant, and we have

z
±〈j〉
j,m (0) =

1

2
(aj ∓ ibj), z

±〈j〉
−j,m(0) =

1

2
(aj ∓ ibj),

because in this case zkj,m(0) = 0 for all k 6= ±〈j〉. By induction we thus obtain
for |j| > K +M and K ≤ m ≤ K +M that

|z±〈j〉j,m (0)|2 ≤ C
∑

|`−j|≤M

(
|a`|2 + |b`|2

)
.

By (51) we obtain a similar estimate for ‖|z±〈j〉j,m ‖|τ , and by (47) for all ‖|zkj,m‖|τ .
Using

N−1∑
j=−N

σj

(
|aj |2 + |bj |2

)
≤ C,
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which follows from the assumption (26) on the initial values, we obtain the
following result.

Lemma 7. For m ≤ K +M , we have for τ ≤ 1

N−1∑
j=−N

σj

(∑
k∈Kj

‖|zkj,m‖|τ
)2
≤ C. (52)

Together with the observation that

zkj,m = 0 for m < min(|j|,K), (53)

Lemma 7 yields (29). Analogous bounds are obtained for the derivatives. As a
further consequence of this reduction process by binary trees, we note that

zkj,m = 0 if k` 6= 0 and m < min(`,K), (54)

and the only non-vanishing coefficient functions for m = min(`,K) are the di-

agonal terms z
±〈`〉
`,m .

6.7. Defect in the modulation equations. We consider the series (35) truncated
after K +M terms,

zkj (τ) =
1

N2

∑
m≤K+M

δm zkj,m(τ). (55)

As an approximation to the solution of (3) we thus take

ωj ũj(t) =
∑
k∈Kj

zkj (τ) ei(k·ω)t. (56)

The construction is such that ũj(0) = uj(0) and ˙̃uj(0) = u̇j(0) for all j. The
functions zkj (τ) do not satisfy the modulation equations (32)-(33) exactly. We
denote the defects, for j = −N, . . . , N − 1 and arbitrary multi-indices k =
(k1, . . . , kN ), by

dkj =
(
ω2
j − (k · ω)2

)
zkj + 2i (k · ω)N−3

dzkj
dτ

+N−6
d2zkj
dτ2

(57)

+ iω2
j

∑
j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N)
∑

k1+k2=k

zk
1

j1 z
k2

j2 .

By construction of the coefficient functions zkj,m, the coefficients of δm in a δ-
expansion of the defect vanish for m ≤ K +M . We thus have

ω−2j dkj =
∑

j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N)
∑

k1+k2=k

2(K+M)∑
m=K+M+1

∑
m1+m2=m

zk
1

j1,m1
zk

2

j2,m2
δmN−4. (58)
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Using the estimate (52) of the modulation functions and Lemma 5, the defect is
thus bounded by

N−1∑
j=−N

σj

(
ω−2j

∑
k

‖|dkj ‖|τ
)2
≤ C

(
δK+M+1N−4

)2
for 0 ≤ τ ≤ 1. (59)

With (50), a stronger bound is obtained for the diagonal defects:

N−1∑
j=−N

σj

(
ω−1j ‖|d

±〈j〉
j ‖|τ

)2
≤ C

(
δK+M+1N−5

)2
for 0 ≤ τ ≤ 1. (60)

The defect dkj vanishes for multi-indices (j,k) that cannot be decomposed as

j = j1 + j2 and k = k1 + k2 with k1 ∈ Kj1 ,k2 ∈ Kj2 .

6.8. Remainder term of the modulated Fourier expansion. We compare the ap-
proximation (56) with the exact solution uj(t) of (3) for initial values satisfying
(10). With the notation of Section 2 this yields, for j = −N, . . . , N − 1,

üj + ω2
j uj +∇−jU(u) = 0

¨̃uj + ω2
j ũj +∇−jU(ũ) = ϑj

where the defect ϑj(t) is given by

ωjϑj(t) =
∑
k

dkj (τ) ei(k·ω)t with τ = N−3t,

and, by (59), bounded by

N−1∑
j=−N

σj |ω−1j ϑj(t)|2 ≤ C
(
δK+M+1N−4

)2
for t ≤ N3. (61)

The initial values satisfy ũj(0) = uj(0) and ˙̃uj(0) = u̇j(0).

The nonlinearity ∇U(u) = b(u,u) is a quadratic form corresponding to the
symmetric bilinear form

b(u,v) =

(
− iωj

∑
j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N) ωj1 ωj2 uj1 vj2

)N−1
j=−N

.

Using Lemma 5 and |ωj | ≤ 2, we thus obtain the bound

‖b(u,v)‖ ≤ 2 ‖Ω−1b(u,v)‖ ≤ 2 c ‖Ωu‖·‖Ωv‖ .

We then estimate the error rj(t) = uj(t) − ũj(t) by standard arguments: we
rewrite the second-order differential equation as a system of first-order differen-
tial equations

ωj ˙̃uj = ωj ṽj
˙̃vj = −ωj (ωj ũj) + bj(ũ, ũ) + ϑj(t).
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We use the variation-of-constants formula and the Lipschitz bound

‖b(u,u)− b(ũ, ũ)‖ ≤ 2 c
(
‖Ωu‖+ ‖Ωũ‖) ‖Ωu−Ωũ‖ ≤ 4 cC

√
ε‖Ωu−Ωũ‖

for ‖Ωu‖ ≤ C
√
ε, ‖Ωũ‖ ≤ C

√
ε. By (61) we have ‖ϑ(t)‖ ≤ CδK+M+1N−4 for

t ≤ N3. The Gronwall inequality then shows that the error satisfies the bound
(28) for t ≤ min(N3, ε−1/2). This completes the proof of Theorem 2.

7. Bounds in terms of the diagonal modulation functions

The following result bounds the norms (43) of the non-diagonal modulation

functions zkj with k 6= ±〈j〉 in terms of those of the diagonal functions z
±〈`〉
` .

Lemma 8. Under the assumptions of Theorem 2, we have the bound

‖|N2zkj ‖|τ ≤ C
N∏
`=1

(
‖|N2z

〈`〉
` ‖|τ + ‖|N2z

−〈`〉
` ‖|τ

)|k`|
+N2ϑkj for τ ≤ 1, (62)

for |j| ≤ N and k = (k1, . . . , kN ) ∈ Kj, with

N−1∑
j=−N

σj

(∑
k∈Kj

|ϑkj |
)2
≤ Ĉ

(
δK+M+1N−3

)2
. (63)

The constants C and Ĉ are independent of E, N and τ .

We recall that N2z
±〈`〉
` (τ) = O(δmin(`,K)).

Proof. The proof uses arguments similar to those in Section 6.6. The defect
equation (57) yields, for k 6= 〈j〉,

‖|N2zkj ‖|τ ≤ γ
k
j

∑
j1+j2=j mod 2N

∑
k1+k2=k

‖|N2zk
1

j1 ‖|τ · ‖|N
2zk

2

j2 ‖|τ + γkj ω
−2
j N2‖|dkj ‖|τ

with γkj of (46). We denote by Bkj the set of binary trees with root (j,k) that

are obtained by omitting the labels m′ at all nodes (j′,k′,m′) of trees in Bkj,m
for all m ≤ K+M , and by κ±` (b) the number of appearances of (`,±〈`〉) among
the leaves of a tree b. We then obtain the bound

‖|N2zkj ‖|τ ≤
∑
b∈Bk

j

Γ (b)
∏
` 6=0

‖|N2z
〈`〉
` ‖|

κ+
` (b)
τ ‖|N2z

−〈`〉
` ‖|κ

−
` (b)
τ +N2ϑkj (64)

with the same factor Γ (b) as in (47), and with ϑkj satisfying the estimate (63)

because of (59) and the bound γkj = O(ωjN). Since every tree in Bkj contains

the leaf (`,±〈`〉) at least |k|`|| times, this yields (together with z
∓〈`〉
−` = z

±〈`〉
` )

‖|N2zkj ‖|τ ≤
∑
b∈Bk

j

Γ (b)
∏
`≥1

(
‖|N2z

〈`〉
` ‖|τ + ‖|N2z

−〈`〉
` ‖|τ

)|k`|
+N2ϑkj . (65)

Since Γ (b) ≤ Const. and the number of trees in Bkj is independent of N , this
implies the stated result. ut
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We also need another bound that follows from (64).

Lemma 9. Under the assumptions of Theorem 2, we have the bound

‖|zkj ‖|τ ≤ C
N∑
`=1

δ|j−`|
(
‖|z〈`〉` ‖|τ + ‖|z−〈`〉` ‖|τ

)
+ ϑkj for τ ≤ 1, (66)

for 0 < j ≤ N and k ∈ Kj, where ϑkj is bounded by (63). The sum in (66) is

actually only over ` with |j − `| < K +M . We recall z−k−j = zkj .

Proof. For a tree b ∈ Bkj , let (`,±〈`〉) be a leaf such that |`| is largest among the
leaves of b. For the other leaves (`i,±〈`i〉) we have ` +

∑
i `i = j and therefore

|j − `| ≤
∑
i |`i| < K + M . Since z

±〈`i〉
`i

is bounded by O(N−2δ|`i|), we obtain

the result from (64). ut

The next lemma bounds the derivatives of the diagonal functions in terms of
their function values.

Lemma 10. Under the assumptions of Theorem 2, we have the bounds

‖|z〈j〉j ‖|τ + ‖|z−〈j〉j ‖|τ ≤ 2
(
|z〈j〉j (τ)|+ |z−〈j〉j (τ)|

)
+ ϑj for τ ≤ 1, (67)

for j = −N, . . . , N − 1, with

N−1∑
j=−N

σj ϑ
2
j ≤ C

(
δK+M+1N−2

)2
. (68)

The constant C is independent of E, N and τ .

Proof. From the defect equation (57) with k = ±〈j〉 we obtain

‖|N2
dz
±〈j〉
j

dτ
‖|τ ≤ 2ωjN

∑
j1+j2=j mod 2N

∑
k1+k2=±〈j〉

‖|N2zk
1

j1 ‖|τ · ‖|N
2zk

2

j2 ‖|τ

+ ω−1j N5‖|d±〈j〉j ‖|τ .

The last term is bounded by (60). We now use (65) for zk
1

j1
and zk

2

j2
and note

that by (50) we have Γ (b1)Γ (b2) = O((ωjN)−1) for all b1 ∈ Bk
1

j1
and b2 ∈ Bk

2

j2
.

This gives us

‖|N2
dz
±〈j〉
j

dτ
‖|τ ≤

C1

∑
j1+j2=j mod 2N

∑
k1+k2=±〈j〉

∏
`≥1

(
‖|N2z

〈`〉
` ‖|τ + ‖|N2z

−〈`〉
` ‖|τ

)|k1` |+|k2` |
+N2ϑj

≤ C2δ
2
(
‖|N2z

〈j〉
j ‖|τ + ‖|N2z

−〈j〉
j ‖|τ

)
+N2ϑj ,
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where ϑj is bounded by (68) because of (60) and (63). For the second inequal-
ity we note that the number of terms in the sums is independent of N , and
that (±j,±〈j〉) (for some combination of signs) must appear among the leaves,
in addition to at least two further leaves that account for the presence of the
factor δ2. On the other hand, we have

‖|z±〈j〉j ‖|τ ≤ |z
±〈j〉
j (τ)|+ ‖|

dz
±〈j〉
j

dτ
‖|τ .

Hence we obtain

(1− C2δ
2)
(
‖|z〈j〉j ‖|τ + ‖|z−〈j〉j ‖|τ

)
≤ |z〈j〉j (τ)|+ |z−〈j〉j (τ)|+ ϑj ,

which yields the result if C2δ
2 ≤ 1

2 . ut

8. Almost-invariant energies of the modulation system

We now show that the system of equations determining the modulation functions
has almost-invariants that bound the mode energies Ej(t) from above. This fact
will lead to the long-time energy bounds of Theorem 1. The construction of the
almost-invariants takes up a line of arguments from [18, Chapter XIII] and [9,
Section 4].

8.1. The extended potential. We introduce the functions

y(t) =
(
ykj (t)

)
(j,k)∈K with ωjy

k
j (t) = zkj (τ) ei(k·ω)t (69)

with τ = N−3t, so that uj(t) ≈ ũj(t) =
∑

k y
k
j (t). By the construction of the

functions zkj from the modulation equations, the functions ykj satisfy

ÿkj + ω2
j y

k
j + iωj

∑
j1+j2=j mod 2N

(−1)(j1+j2−j)/(2N) ωj1 ωj2
∑

k1+k2=k

yk
1

j1 y
k2

j2 = ekj ,

(70)
where the defects ekj (t) = ω−1j dkj (τ) ei(k·ω)t are bounded by (59). The non-

linearity is recognised as the partial derivative with respect to y−k−j of the extended

potential U(y) given by

U(y) = − i

3

∑
j1+j2+j3=0 mod 2N

(−1)(j1+j2+j3)/(2N) ωj1 ωj2 ωj3
∑

k1+k2+k3=0

yk
1

j1 y
k2

j2 y
k3

j3 .

(71)
Hence, the modulation system can be rewritten as

ÿkj + ω2
j y

k
j +∇−k−j U(y) = ekj , (72)

where ∇−k−j U is the partial derivative of U with respect to y−k−j .
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8.2. Invariance under group actions. The extended potential turns out to be
invariant under the continuous group action that, for an arbitrary real vector
λ = (λ1, . . . , λN ) ∈ RN and for θ ∈ R, is given as

Sλ(θ)y =
(
ei(k·λ)θykj

)
j,k
.

Since the sum in the definition of U is over k1 + k2 + k3 = 0, we have

U(Sλ(θ)y) = U(y) for θ ∈ R. (73)

Differentiating this relation wih respect to θ yields

0 =
d

dθ

∣∣∣
θ=0
U(Sλ(θ)y) =

N−1∑
j=−N

∑
k

i(k · λ) ykj∇k
j U(y). (74)

In fact, the full Lagrangian of the system (72) without the perturbations ekj ,

L(y, ẏ) =
1

2

N−1∑
j=−N

∑
k

(
ẏ−k−j ẏ

k
j − ω2

j y
−k
−j y

k
j

)
− U(y),

is invariant under the action of the one-parameter groups Sλ(θ). By Noether’s
theorem, the corresponding Lagrangian system has a set of invariants Iλ(y, ẏ),
which we now study as almost-invariants of the perturbed system (72).

8.3. Almost-invariant energies of the modulation system. We multiply (72) with

i(k · λ)y−k−j and sum over j and k. Using (74), we obtain∑
j

∑
k

i(k · λ)
(
y−k−j ÿ

k
j + ω2

j y
−k
−j y

k
j

)
=
∑
j

∑
k

i(k · λ)y−k−j e
k
j ,

where we notice that the second terms in the sum on the left-hand side cancel.
The left-hand side then equals − d

dtIλ(y, ẏ) with

Iλ(y, ẏ) = −
N−1∑
j=−N

∑
k

i(k · λ)y−k−j ẏ
k
j . (75)

Hence we obtain

d

dt
Iλ(y, ẏ) = −

N−1∑
j=−N

∑
k

i(k · λ)y−k−j e
k
j . (76)

In the following we consider the almost-invariants as functions of the modulation
sequence z(τ) = (zkj (τ)) and its derivative (dz/dτ)(τ) with respect to the slow

time variable τ = N−3t, rather than of y(t) defined by (69) and ẏ = dy/dt. For
λ = ω`〈`〉, a multiple of the `th unit vector, we write

E`
(
z,
dz

dτ

)
= 2N Iω`〈`〉(y, ẏ) = 2N ω` I〈`〉(y, ẏ)
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so that

E`
(
z,
dz

dτ

)
= −2N ω`

N−1∑
j=−N

∑
k

ik` ω
−2
j z−k−j

(
i(k · ω)zkj +N−3

dzkj
dτ

)
. (77)

By the estimates of the modulation functions we have at the initial time∣∣∣E`(z(0),
dz

dτ
(0)
)∣∣∣ ≤ C0E δ2(`−1) for ` = 1, . . . ,K,

N∑
`=K

σ`

∣∣∣E`(z(0),
dz

dτ
(0)
)∣∣∣ ≤ C0E δ2(K−1), (78)

where C0 only depends on the initial values
(
u(0), u̇(0)

)
. From (76) we have

N−3
d

dτ
E`
(
z,
dz

dτ

)
= −i 2N ω`

N−1∑
j=−N

∑
k

k` z
−k
−j ω

−2
j dkj . (79)

Theorem 3. Under the conditions of Theorem 2 we have for τ ≤ 1∣∣∣ d
dτ
E`
(
z(τ),

dz

dτ
(τ)
)∣∣∣ ≤ ϑ`,

where
ϑ` ≤ C E δ`+K+M−1 for ` = 1, . . . ,K

N∑
`=K

σ` ϑ` ≤ C E δ2K+M−1.
(80)

Proof. We insert (58) into (79) to obtain, with L = min(`,K),

N−3
∣∣∣ d
dτ
E`
(
z,
dz

dτ

)∣∣∣ ≤ 2Nω`
∑
|k` z−k−j,m z

k1

j1,m1
zk

2

j2,m2
| δL+K+M+1N−6,

where the sum is over all indices j, j1, j2 with j1 + j2 = j, multi-indices k,k1,k2

with k1 + k2 = k and indices m,m1,m2 ≤ K +M with m ≥ L (note (54)) and
m1+m2 ≥ K+M+1. This sum contains a number of terms that is independent
of N . Estimating the modulation functions by (45) yields∣∣∣ d

dτ
E`
(
z,
dz

dτ

)∣∣∣ ≤ 2Nω`
∑
|k`| γ−k−j γ

k1

j1 γ
k2

j2

( 8∏
i=3

‖|zk
i

ji,mi
‖|
)
δL+K+M+1N−3,

where the number of terms in the sum is still independent of N . As in (48), the
non-resonance estimates of Section 5 yield

ω` k` γ
−k
−j γ

k1

j1 γ
k2

j2 = O(N−1)

for j1+j2 = j mod 2N and k1+k2 = k. Among the terms in the product over i,
two terms satisfy |ji − `| ≤ 2M , and all others |ji| ≤ K +M . For the latter, we

estimate ‖|zki

ji,mi
‖| by a constant, for the two others we use the Cauchy-Schwarz

inequality together with the estimate (52) to arrive at the stated result. ut



Long-time energy distribution in FPU lattices 27

8.4. Almost-invariant energies and diagonal modulation functions. The follow-

ing lemma shows in particular that |z±〈`〉` (τ)|2 is bounded in terms of the almost-
invariant E`.
Theorem 4. Under the conditions of Theorem 2, there exists c > 0 independent
of E and N such that

E`
(
z(τ),

dz

dτ
(τ)
)
≥ (1− cδ2) 4N

(
|z〈`〉` (τ)|2 + |z−〈`〉` (τ)|2

)
− ϑ` and

E`
(
z(τ),

dz

dτ
(τ)
)
≤ (1 + cδ2) 4N

(
|z〈`〉` (τ)|2 + |z−〈`〉` (τ)|2

)
+ ϑ`

for τ ≤ 1, with ϑ` bounded as in (80).

Proof. E` has the four terms |z±〈`〉±` |2 in the sum (77) and further terms containing

zkj for (j,k) ∈ K with k 6= ±〈j〉 and k` 6= 0. For such (j,k) we note that

ω−2j (k`ω`)(k ·ω) is bounded independently of N , and from Lemmas 8 and 10 we
have the bound∣∣zkj (τ)

∣∣+
∣∣∣ d
dτ
zkj (τ)

∣∣∣ ≤ Cδ(|z〈`〉` (τ)|+ |z−〈`〉` (τ)|
)

+ ϑkj + ϑ̃`

with ϑkj bounded as in (63), and with ϑ̃` bounded as in (68). This yields the
result. ut

8.5. Bounding the mode energies by the almost-invariant energies. We are now
in the position to bound the mode energies Ej(t) = Ej(u(t), u̇(t)) of (8) in terms
of the almost-invariants

E`(t) = E`
(
z(τ),

dz

dτ
(τ)
)

for τ = N−3t.

Theorem 5. Under the conditions of Theorem 2, we have

Ej(t) ≤ (C + cδ2)

N∑
`=1

δ2|j−`| E`(t) + ϑj for t ≤ min(N3, ε−1/2),

where ϑj is bounded as in (80) and C, c are independent of E and N . The constant
C only depends on C0 of (78), and c depends on C0 of (26). The sum is actually
only over ` with |j − `| < K +M .

Proof. We insert in εj(t) the modulated Fourier expansion (27) for ωjuj(t) and
u̇j(t) and use the remainder bound (28). We use Lemmas 9 and 10 to bound the

modulation functions zkj in terms of the diagonal functions z
±〈`〉
` , and Theorem 4

to bound the diagonal functions in terms of the almost-invariants E`. This yields
the stated result. ut
Theorem 6. Under the conditions of Theorem 2, we have

|E1(t)− E1(t)| ≤ C E δ2 for t ≤ min(N3, ε−1/2).

Proof. We insert in ε1(t) the modulated Fourier expansion (27). Using the esti-
mate (52) we obtain

E1(t) = 4N
(
|z〈1〉1 (τ)|2 + |z−〈1〉1 (τ)|2

)
+O(E δ2).

Together with Theorem 4 this gives the result. ut
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8.6. Dependence of the almost-invariant energies on the initial values.

Lemma 11. In the situation of Theorem 2, consider perturbed initial values

(ũ(0), ˙̃u(0)) whose difference to (u(0), u̇(0)) is bounded in the norm (24) by∥∥(u(0)− ũ(0), u̇(0)− ˙̃u(0)
)∥∥ ≤ ϑ with ϑ ≤ C̃ δK+M+1N−2.

Then, the difference of the almost-invariant energies of the associated modulation
functions (zkj ) and (z̃kj ) is bounded by∣∣∣E`(z(τ),

dz

dτ
(τ)
)
− E`

(
z̃(τ),

dz̃

dτ
(τ)
)∣∣∣ ≤ C ϑ δ`N−1 for ` = 1, . . . ,K

N∑
`=K

σ`

∣∣∣E`(z(τ),
dz

dτ
(τ)
)
− E`

(
z̃(τ),

dz̃

dτ
(τ)
)∣∣∣ ≤ C ϑ δKN−1

for τ ≤ 1, with a constant C that is independent of E and N .

Proof. We follow the lines of the proof of (52), taking differences in the recursions
instead of direct bounds. Omitting the details, we obtain

N−1∑
j=−N

σj

(∑
k∈Kj

‖|zkj − z̃kj ‖|τ
)2
≤ C ϑ2

for τ ≤ 1, with a constant C that is independent of E and N . Together with the
definition of E` and the bounds (52), this yields the result. ut

8.7. From short to long time intervals. By the estimates of the modulation func-
tions we have for the almost-invariants at the initial time the estimates (78),
where C0 can be chosen to depend only on the constant C0 of (26). We apply
Theorem 3 repeatedly on intervals of length 1. As long as the solution u(t) of (3)

satisfies the smallness condition (26) with a larger constant Ĉ0 in place of C0,
Theorem 2 gives a modulated Fourier expansion corresponding to starting values
(u(tn), u̇(tn)) at tn = n. We denote the sequence of modulation functions of this
expansion by zn(τ). The estimate (28) of Theorem 2 for t = 1 allows us to apply

Lemma 11 with ϑ ≤ Ĉ1δ
K+M+1N−4 (with Ĉ1 depending on Ĉ0) to obtain, for

τ = N−3, ∣∣∣E`(zn(τ),
dzn

dτ
(τ)
)
− E`

(
zn+1(0),

dzn+1

dτ
(0)
)∣∣∣ ≤ Ĉ δ`+K+M+1N−5

for ` = 1, . . . ,K,
N∑
`=K

σ`

∣∣∣E`(zn(τ),
dzn

dτ
(τ)
)
− E`

(
zn+1(0),

dzn+1

dτ
(0)
)∣∣∣ ≤ Ĉ δ2K+M+1N−5

with Ĉ depending on Ĉ0. Theorem 3 now yields the same estimates with τ = 0,

possibly with a different constant Ĉ depending on Ĉ0. Summing up we obtain∣∣∣E`(zn(0),
dzn

dτ
(0)
)
− E`

(
z0(0),

dz0

dτ
(0)
)∣∣∣ ≤ Ĉ δ`+K+M+1N−5tn

for ` = 1, . . . ,K,
N∑
`=K

σ`

∣∣∣E`(zn(0),
dzn

dτ
(0)
)
− E`

(
z0(0),

dz0

dτ
(0)
)∣∣∣ ≤ Ĉ δ2K+M+1N−5tn,
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and the same estimates hold when the argument 0 of zn is replaced by τ ≤ N−3.

Again Ĉ may be different and depends on Ĉ0. For tn ≤ c0N
2δ−M−1 with c0 =

C0/Ĉ, the first expression is smaller than C0δ`+KN−3, and the second one is
smaller than C0δ2KN−3. Hence we obtain, for n ≤ c0N2δ−M−1 and τ ≤ N−3,∣∣∣E`(zn(τ),

dzn

dτ
(τ)
)∣∣∣ ≤ 2 C0 δ2`N−3 for ` = 1, . . . ,K,

N∑
`=K

σ`

∣∣∣E`(zn(τ),
dzn

dτ
(τ)
)∣∣∣ ≤ 2 C0 δ2KN−3.

By Theorem 5 we therefore obtain, for t ≤ c0N2δ−M−1,

Ej(t) ≤ (C + cδ2) δ2jN−3 ≤ 2 C δ2jN−3 for ` = 1, . . . ,K,

N∑
j=K

σj Ej(t) ≤ (C + cδ2) δ2KN−3 ≤ 2 C δ2KN−3,

where C only depends on C0 and hence on C0, but not on Ĉ0. Provided that

Ĉ0 has been chosen such that Ĉ0 ≥ 2 C, we see that the solution satisfies the
smallness condition (26) up to times t ≤ c0N

2δ−M−1, so that the construction
of the modulated Fourier expansions on each of the subintervals of length 1 is
indeed feasible with bounds that hold uniformly in n. The proof of Theorem 1
is thus complete.

9. Including the first near-resonance

The non-resonance estimates of Section 5 are crucial for the construction of the
modulated Fourier expansion. The restriction max(|j|, µ(k)) ≤ 10 in Lemma 1
leads to the rather severe restriction K +M ≤ 10 in Theorem 1, which together
with the condition K < M yields M ≤ 4 and hence limits the result to a time
scale t ≤ N2δ−5. We discuss the case K = 6, M = 5 (so that K + M = 11) in
order to stretch the time interval by a further factor δ−1.

A difficulty now arises in the construction of zkj with j = 5 and the multi-
index k = (−3, 0, 0, 2, 0, 0, . . . , 0) ∈ Kj , because here ωj−k·ω = ω5−2ω4+3ω1 =
O(N−5); see Lemma 1. We introduce the lowest-order resonance module

M = {n · (−3, 0, 0, 2,−1, 0, . . . , 0) |n ∈ Z},

which is included in the larger resonance module

M⊂
{

k ∈ ZN
∣∣∣∣ N∑
`=1

` k` = 0,

N∑
`=1

`3 k` = 0

}
.

We remove from the modulated Fourier expansion (22) pairs (j,k) for which
k − 〈j〉 ∈ M or k + 〈j〉 ∈ M. To keep the defect small, we have to modify the

definition of the diagonal coefficient functions z
±〈j〉
j .

We consider the pair (j,k) with j = 5 and k = (−3, 0, 0, 2, 0, . . .), for which
k−〈j〉 ∈ M. The use of (33) would lead to a small denominator of size O(N−6),
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which then makes the construction of the modulated Fourier expansion impos-

sible. Instead of using (33) we set zkj = 0 and include the terms zk
1

j1
zk

2

j2
with

j1 + j2 = j = 5 and k1 +k2 = k = (−3, 0, 0, 2, 0, . . .) in the defining formula (32)

for z
〈j〉
j . This leads to

2iω5N
−3 dz

〈5〉
5

dτ
+N−6

d2z
〈5〉
5

dτ2
= −iω2

5 eiατz
〈4〉−〈1〉
3 z

〈4〉−2〈1〉
2 + . . .

with α = N3(2ω4 − 3ω1 − ω5), which is small of size O(N−2). Since, by con-

struction, each of the coefficient functions zki
ji

(τ) contains a factor N−2, we are
concerned with a differential equation of the form

dz

dτ
+ β

d2z

dτ2
= p(τ) eiατ , z(0) = z0, (81)

where α and β are of size O(N−2), and p(τ) is a polynomial with coefficients
that are uniformly bounded in N . For large N , this differential equation is of
singular perturbation type, and the general solution will have oscillations with
a high frequency of size O(N2). We are interested in a particular solution that
does not have such high oscillations. The ansatz dz

dτ (τ) = A(τ) eiατ transforms
(81) into a linear differential equation for A(τ) with polynomial right-hand side,
for which a polynomial solution can be found as in (39). Integration of A(τ) eiατ

then yields a smooth solution of (81) of the form z0 + C(τ) eiατ − C(0), where
C(τ) is a polynomial with uniformly bounded coefficients.

The only difference to the computations of Section 6 is that the coefficient
functions zkj (τ) are no longer polynomials, but linear combinations of polynomi-

als multiplied with exponentials eiατ , where α = O(N−2). Such functions also
satisfy ‖|z‖|τ ≤ C for τ ≤ 1.

In the following we write h ∼ k if h − k ∈ M. For a given multi-index k
we collect all modulation functions zhj (τ) with h ∼ k and instead of (69) we
consider the functions

ωjy
k
j (t) =

∑
h∼k

ei(h·ω)tzhj (τ)

with τ = N−3t, so that ykj depends only on the equivalence class [k] = k+M of

k. The construction of the modulation functions zkj has been modified in such a

way that in the modulation equations (70) for the above-defined ykj , the sum is

now over equivalence classes of multi-indices [k1], [k2] with k1+k2 ∼ k instead of
multi-indices k1, k2 with k1+k2 = k (cf. also [8] for the construction of resonant
modulated Fourier expansions). Consequently, in the extended potential U of
(71) the sum is now over k1 + k2 + k3 ∼ 0. Therefore, the group invariance
property (74) is no longer true for all λ ∈ RN , but only for λ ⊥ M, i.e., if
3λ1 − 2λ4 + λ5 = 0. Only then Iλ is an almost-invariant. This does not affect
the almost-invariant energies Ej with j 6= 1, 4, 5, but instead of E1, E4, E5 we have
only two independent almost-invariants

2 I1 + 3 I4 and I4 + 2 I5
(where Ij = Ej/ωj is the corresponding action). Though Theorem 5 is still
valid in this modified setting, it does not bound the normal mode energies Ej
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any longer in terms of almost-invariants. A way out is to bound the critical
E1, E4, E5 in terms of the remaining almost-invariants, using that ω`I` = E` ≥ 0
by Theorem 4 (which remains valid in the present modified setting):

E1 ≤ N ω1(2I1 + 3I4)

E4 ≤ 2N ω4(I4 + 2I5)

E5 ≤ N ω5(I4 + 2I5).

However, we then obtain essentially the same bound for E4 and E5 and conse-
quently for E4 and E5. These considerations lead to the following extension of
Theorem 1 to the case K = 6, M = 5.

Theorem 7. Fix γ > 0 and ρ ≥ 1. Then, there exist δ0 > 0 and c > 0, C > 0
such that the following holds: if

(1) the dimension of the system satisfies N ≥ 32 and N ∈ N (5, γ),

(2) the total energy E is bounded such that δ :=
√
EN3 ≤ δ0,

(3) the initial normal mode energies satisfy Ej(0) = 0 for j 6= ±1,

then, over long times

t ≤ cN2 δ−6,

the normal mode energies satisfy the estimates

|E1(t)− E1(0)| ≤ C E δ2, (82)

Ej(t) ≤ C E δ2(j−1), j = 1, . . . , 4, (83)

E5(t) ≤ C E δ6, (84)
N∑
j=6

ρ2jEj(t) ≤ C E δ8. (85)

The proof uses a variant of Theorem 2 where K = 6, M = 5, and the initial
energies in the modes satisfy (83)–(85). The partly resonant modulated Fourier
expansion is constructed as described above. One verifies that Theorems 4 and
5 remain valid also in this modified situation, and an analogue of Theorem 3
holds for the remaining almost-invariants.

The inclusion of further near-resonances to arrive at even longer time-scales
appears feasible in principle, but is beyond the scope of this paper.

10. Quartic and higher-order potentials

We consider the Fermi–Pasta–Ulam β-model, i.e., the lattice (1) with potential
V (x) = x4/4 (this corresponds to α = 0 and β = 1 in the problem of Section 2).
For the discrete Fourier coefficients we obtain the system

üj + ω2
j uj = ωj

∑
j1+j2+j3=j mod 2N

(−1)(j1+j2+j3−j)/(2N) ωj1 ωj2 ωj3 uj1 uj2 uj3
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Fig. 5. Normal mode energies Ej(t) as functions of time for the FPU β-problem with initial
values (11); increasing j corresponds to decreasing values of Ej(t). For even j we have Ej(t) =
0.

with frequencies ωj as in Section 2. This is a complex Hamiltonian system with
potential

U(u) =
1

4

∑
j1+j2+j3+j4=0 mod 2N

(−1)(j1+j2+j3+j4)/(2N) ωj1 ωj2 ωj3 ωj4 uj1 uj2 uj3 uj4 .

The normal mode energies are defined as in Section 2.
We performed numerical experiments with the FPU β-model. Figure 5 shows

the mode energies Ej(t) as functions of time for E = N−2. It is observed that
time intervals proportional to N3 are again a natural time scale for the slow
motion of the energies. Further numerical experiments indicate that the mode
energies behave like

E2j−1(t) ≈ E δ2(j−1)fj(N−3t) for j ≥ 2, with δ = EN. (86)

Theorem 8. Consider the potential V (x) = xq+1 with an integer q ≥ 2, which
gives a nonlinearity of degree q in (3). Fix γ > 0, ρ ≥ 1, and let M and K be
positive integers satisfying M < K and K + M = 10. Then, there exist δ0 > 0
and c > 0, C > 0 such that the following holds: if

(1) the dimension of the system satisfies N ≥ 41, N ∈ N (M,γ), and N is
an integral multiple of q − 1,

(2) the total energy E is bounded such that δ :=
√
Eq−1N5−q ≤ δ0,

(3) the initial normal mode energies satisfy Ej(0) = 0 for j 6= ±1,
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then, over long times

t ≤ cN2 δ−M−1,

the normal mode energies satisfy the estimates

|E1(t)− E1(0)| ≤ C E δ2, (87)

E1+(j−1)(q−1)(t) ≤ C E δ2(j−1), j = 1, . . . ,K, (88)

N∑
j=K

ρ2jE1+(j−1)(q−1)(t) ≤ C E δ2(K−1). (89)

The other mode energies are identically zero.

To our knowledge, this is the first rigorous result on the long-time behaviour
of the mode energies in the FPU β-model for large particle numbers N . The
proof by modulated Fourier expansions is very similar to that of Theorem 1
and is therefore not presented in detail. We have an analogue of Theorem 2,
now with δ =

√
Eq−1N5−q, and valid on time intervals t ≤ min(N3, ε−(q−1)/2)

with ε = E/(2N). Theorems 3 to 6 remain valid with subscript ` replaced by
1 + (`− 1)(q − 1).

The proof again gives explicit formulas for the dominant terms for δ � 1:

E1+(j−1)(q−1)(t) = 2E δ2(j−1)C
(
|aj(t)|2 + O(δ2 +N−2)

)
,

where C = |c−|2+2(j−1)(q−1)+|c+|2+2(j−1)(q−1) with c± = 1√
2ε

(
ω1u1(0)±i u̇1(0)

)
as in (19), and the first functions aj(t) are given by

a1(t) =
1

2
, a2(t) =

3

π2 2q−2(q + 1)(q − 1)

(
ei(qω1−ωq)t − 1

)
.

All the linear combinations of frequencies appearing in these formulas are of size
O(N−3). In particular, we have

qω1 − ωq =
(q + 1)q(q − 1)π3

24N3
+O(N−5).

For the β-model (q = 3), the period of a2(t) is approximately 4 times smaller
than that for the α-model (q = 2). In Figure 5 we have therefore chosen an
interval that is 4 times smaller than in Figure 2, so that for large N the same
number of periods is covered.

The decay of the mode energies with powers of δ = EN � 1 in the β-model
was observed numerically by Flach, Ivanchenko and Kanakov [12]. The mode
energy values E2j−1 ≈ E(3δ/8π2)2(j−1) stated in [12] are qualitatively similar,
though not identical to the expressions obtained with our derivation.
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11. Conclusion and perspectives

We have given a rigorous analysis of the FPU α-model for large particle numbers
N with initial excitation in the first mode and total energy E distinctly smaller
than the inverse of the third power of the particle number, that is, δ =

√
EN3 �

1. Our results show the presence of several time-scales in the problem: On the
fast time scale t ∼ N , there is almost-harmonic oscillation. On the time scale
t ∼ N3, there is energy flow into the higher modes and the formation of a packet:
the mode energies have bounds that decay geometrically with the mode number
(with a rate proportional to δ at least for the first modes) and they behave
quasi-periodically in time. These energy bounds persevere over a longer time
scale t ∼ N2δ−5 (metastability). Analogous results are obtained for the FPU
β-model (for EN � 1) and for higher-order nonlinearities.

It is instructive to compare and contrast our results and techniques with those
of Bambusi and Ponno [1]. That paper considers the scaling δ ∼ 1 as opposed to
our δ � 1. It obtains results on metastability for time scales t ∼ N3. The proofs
in [1] use a resonant normal form, which turns out to be integrable as a pair of
uncoupled KdV equations for the FPU α-model. Integrability is lost, however,
in the resonant normal forms of higher-order nonlinearities [2]. In contrast, we
work with a non-resonant modulated Fourier expansion in time, for which the
associated modulation system possesses a full set of almost-invariant energies
that bound the mode energies from above. Integrability plays no role here. Both
[1] and the present paper work far from the thermodynamic limit E/N ∼ 1 as
N →∞.

The techniques developed in this paper are not restricted to the particular
case of the FPU α- or β-model with excitation of only the first mode. They allow
for extensions to:

– other single excited modes (of low or high frequency), several excited modes,
packets of excited modes

– other potentials, other nonlinearities (that are combinations of convolutions
and multipliers in mode coordinates)

– multidimensional lattices
– Hamiltonian partial differential equations such as nonlinear wave equations

and Schrödinger equations
– numerical discretizations.

The availability of (weak) non-resonance estimates for the frequencies is a key
issue, which influences the actual time scales and has to be studied from case
to case. In each case, however, there appear the phenomena of formation of a
packet of modes with geometrically decaying energies and metastability of the
packet over longer time scales.

For numerical experiments relating to some of the above issues in the FPU
problem we refer to [4,5,19] and further papers cited therein. Formation of a
packet and metastability in Hamiltonian partial differential equations have been
studied, analytically using modulated Fourier expansions and also numerically,
in the doctoral thesis of Gauckler [15].
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