Geometric numerical integration illustrated by the Störmer/Verlet method
Ernst Hairer, Christian Lubich and Gerhard Wanner
Abstract. The subject of geometric numerical integration deals with numerical integrators that preserve geometric properties of the flow of a differential equation, and it explains how structure preservation leads to an improved long-time behaviour. This article illustrates concepts and results of geometric numerical integration on the important example of the Störmer/Verlet method. It thus presents a cross-section of the recent monograph by the authors, enriched by some additional material.
After an introduction to the Newton-Störmer-Verlet-leapfrog method and its various interpretations, there follows a discussion of geometric properties: reversibility, symplecticity, volume preservation, and conservation of first integrals. The extension to Hamiltonian systems on manifolds is also described. The theoretical foundation relies on a backward error analysis, which translates the geometric properties of the method into the structure of a modified differential equation, whose flow is nearly identical to the numerical method. Combined with results from perturbation theory, this explains the excellent long-time behaviour of the method: long-time energy conservation, linear error growth and preservation of invariant tori in near-integrable systems, a discrete virial theorem, preservation of adiabatic invariants.
Key Words. Geometric numerical integration, Störmer/Verlet method, symplecticity, symmetry and reversibility, conservation of first integrals and adiabatic invariants backward error analysis, Shake, numerical experiments.