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ASYMPTOTIC EXPANSIONS FOR REGULARIZED
STATE-DEPENDENT NEUTRAL DELAY EQUATIONS∗

NICOLA GUGLIELMI† AND ERNST HAIRER‡

Abstract. Singularly perturbed delay differential equations arising from the regularization of
state-dependent neutral delay equations are considered. Asymptotic expansions of their solutions
are constructed and their limit for ε → 0+ is studied. Due to discontinuities in the derivative of the
solution of the neutral delay equation and the presence of different time scales when crossing breaking
points, new difficulties have to be managed. A two-dimensional dynamical system is presented which
characterizes whether classical or weak solutions are approximated by the regularized problem. A
new type of expansion (in powers of

√
ε) turns out to be necessary for the study of the transition

from weak to classical solutions. The techniques of this article can also be applied to the study of
general singularly perturbed delay equations.
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1. Introduction. We start by considering systems of neutral delay equations of
the form

ẏ(t) = f
(
y(t), ẏ

(
α(y(t))

))
for t > 0,

y(t) = ϕ(t) for t ≤ 0
(1.1)

with vector functions f(y, z), ϕ(t) and scalar deviating argument α(y) satisfying
α(y(t)) < t (nonvanishing delay). For convenience, we assume that f(y, z) is de-
fined for all y, z ∈ R

n, α(y) for all y ∈ R
n, and ϕ(t) for all t ∈ R and that these

functions are sufficiently differentiable. All results and techniques presented in this
paper carry over straightforwardly to situations where f(y, z) also depends on t and
on y(α(y(t))) and where several different nonvanishing delays are present. Neutral
delay equations arise in several applications, for example, in the two-body problem of
classical electrodynamics (see, e.g., [Dri65, Dri84]), in optimal control problems (see,
e.g., [Kis91]), in the modeling of transmission lines (see, e.g., [RH92]), and in classical
light dispersion theory [MCG07].

If we introduce the derivative ẏ(t) = z(t) as a new variable, we obtain

ẏ(t) = z(t),

0 = f
(
y(t), z

(
α(y(t))

)) − z(t)
(1.2)

with y(t) = ϕ(t) and z(t) = ϕ̇(t) for t ≤ 0. Collecting y(t) and z(t) in one vector
Y (t), this system can be written as MẎ (t) = F(Y (t), Y (α(MY (t)))) with a constant,
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singular matrix M (in our case MY = M
(
y
z

)
=

(
y
0

)
). This is the general form of a

differential-algebraic delay equation. Codes that are written for such systems (like
RADAR5 [GH01, GH08]) can therefore be applied to neutral state-dependent delay
equations.

The problem (1.1) typically has a solution with jump discontinuities in its first
derivative, and a classical solution can cease to exist there [ÈN73, BZ03, GH07]. If
ϕ̇(0) is different from the right-hand side of (1.1) at t = 0, the first derivative of the
solution y(t) has a jump discontinuity at 0. Consequently, the right-hand side of (1.1)
becomes in general discontinuous at points ξ > 0, where α(y(ξ)) = 0, and this happens
also with the first derivative of the solution y(t). The same situation arises at points
ξ̃ > ξ satisfying α(y(ξ̃)) = ξ. Points ξ, ξ̃, . . . are called breaking points in the literature.

A standard way of avoiding these discontinuities is by regularization, where the
differential-algebraic equation is turned into an ordinary differential equation. The
special form (1.2) suggests we consider for a small positive parameter ε the system of
singularly perturbed (nonneutral) delay differential equations

ẏ(t) = z(t),

ε ż(t) = f
(
y(t), z

(
α(y(t))

)) − z(t)
(1.3)

with y(t) = ϕ(t) and z(t) = ϕ̇(t) for t ≤ 0. The fact that z(t) appears with a minus
sign in the right-hand side lets us expect that in the limit ε → 0+, the solution of
(1.3) will be close to that of (1.2). Any code for (nonneutral but stiff) delay equations
can then be used to solve the problem. Among further possibilities of regularizing the
problem (1.1), let us mention the recent articles [FG11] and [GH11].

With such a kind of regularization one is naturally confronted with the following
questions: (i) Given a neutral delay equation (1.1), does the solution of the regularized
delay equation (1.3) approximate the solution of (1.1)? Which solution is approxi-
mated in the absence of a classical solution of (1.1)? (ii) Given a singularly perturbed
delay equation (1.3), what does the solution look like for small positive ε > 0? Our
paper tries to answer these questions and some surprising results occur. We should
mention that the techniques of this paper extend straightforwardly to more general
singularly perturbed delay equations, in particular to problems where ẏ(t) is some
nonlinear function of y(t) and z(t).

An important application of the regularization of neutral delay equations occurs
when exploring numerically the presence of periodic orbits (see [BG09]). In fact, if
the initial datum does not lie close to the periodic orbit, the numerical integration
of the neutral system might terminate after the integration has overcome a certain
number of breaking points. The use of regularized equations is a convenient means
to avoid such terminations.

Neutral state-dependent delay equations have very interesting dynamics, due to
the presence of breaking points. In section 2 we discuss the situation where a classical
solution ceases to exist. There are several possibilities of defining weak (or generalized)
solutions beyond such a point, and we discuss in detail the generalization that is
relevant for our regularization. Section 3 summarizes the main results of the article.
The rest of the paper deals with the singularly perturbed delay equation (1.3). We
study asymptotic expansions in powers of ε for the solution up to the first breaking
point (section 4) and beyond it (section 5). We have two different expansions—one
approximating a classical solution and the other a generalized solution. In most
situations the asymptotic expansions and the exact solution of (1.3) approach the
solution of (1.1) in the limit ε → 0. However, there are exceptional situations where
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a classical solution exists beyond the first breaking point, but the solution of (1.3)
approaches a weak solution (in the sense of section 2.1) for small ε > 0. It is possible
to characterize this situation with the help of a two-dimensional dynamical system
(section 6). Section 7 gives rigorous estimates for the defect and the remainder of
truncated asymptotic expansions. Finally we discuss in section 8 the situation when
a weak solution turns again into a classical solution. This requires a subtle analysis
and leads to scaled asymptotic expansions in powers of

√
ε. The case of an emerging

classical solution is always correctly reproduced by the regularized problem (1.3).

2. Features of neutral delay equations. By the method of steps, the prob-
lem (1.1) represents an ordinary differential equation between breaking points. The
solution y(t) is continuous at t = 0 (by definition), but its derivative has a jump
discontinuity at t = 0 if

ϕ̇(0) �= f
(
ϕ(0), ϕ̇

(
α(ϕ(0))

))
.(2.1)

We shall assume this throughout the article, and we use the notation

ẏ+0 = f
(
ϕ(0), ϕ̇

(
α(ϕ(0))

))
and ẏ−0 = ϕ̇(0).(2.2)

2.1. Weak solutions. The first breaking point t0 is reached when α(y(t)) = 0
for the first time. Since α(y(t)) < 0 for t < t0, the left-hand derivative satisfies
(assuming y(t) enters transversally the manifold defined by {y ; α(y) = 0})

d

dt
α
(
y(t)

)∣∣∣
t=t−0

= α′(y(t0))f(y(t0), ẏ−0 ) > 0.(2.3)

If the right-hand derivative of α(y(t)) is also positive, then the solution leaves the
manifold in the opposite direction and, by the method of steps, a classical solution
continues to exist. If, however,

α′(y(t0))f(y(t0), ẏ+0 ) < 0,(2.4)

we arrive at a contradiction. The solution cannot leave the manifold into the region
{y ; α(y) > 0} because of (2.4) and it cannot return into {y ; α(y) < 0} because of
(2.3). In this situation, the solution terminates at the first breaking point t = t0.

The reason for this termination is the fact that for α(y(t)) = 0 we require

ẏ
(
α(y(t))

) ∈ {
ẏ+0 , ẏ

−
0

}
, two particular values.

If we relax this condition and require only that

ẏ
(
α(y(t))

) ∈ [
ẏ+0 , ẏ

−
0

]
, a whole segment,1

the solution can be continued in a weak sense. We introduce a scalar variable u(t)
and assume that for α(y(t)) = 0,

ẏ
(
α(y(t))

)
= u(t) ẏ−0 + (1− u(t)) ẏ+0 ,

where 0 ≤ u(t) ≤ 1. This yields

ẏ(t) = f
(
y(t), u(t) ẏ−0 + (1− u(t)) ẏ+0

)
,

0 = α
(
y(t)

)
,

(2.5)

which is a differential-algebraic equation. Differentiating the algebraic constraint with

1The segment is the set [ẏ+0 , ẏ−0 ] = {θẏ−0 + (1 − θ)ẏ+0 ; 0 ≤ θ ≤ 1}.
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respect to t yields the relation

α′(y(t))f
(
y(t), u(t) ẏ−0 + (1− u(t)) ẏ+0

)
= 0(2.6)

that has to be satisfied by the scalar function u(t). The condition (2.3) and the
termination assumption (2.4) guarantee the existence of u(t0) ∈ (0, 1) satisfying (2.6).
If we assume in addition

α′(y(t))fz
(
y(t), u(t) ẏ−0 + (1− u(t)) ẏ+0

)
(ẏ−0 − ẏ+0 ) �= 0,(2.7)

the implicit function theorem permits us to express u(t) as a function of y(t), and (2.5)
can be solved. This assumption makes the differential-algebraic equation a problem
of index 2 [HW96, section VII.1]. The solution of (2.5) is called a weak or generalized
or ghost solution [ÈN73, BZ03].

Remark. If the function f(y, z) is nonlinear in z, the relation (2.6) can have
several solutions u(t0) in the open interval (0, 1). Consequently, a weak solution of
the problem (1.1) need not be unique. Moreover, it is possible that the problem
has a classical solution and weak solutions at the same time. This is the case when
α′(y(t0))f(y(t0), ẏ+0 ) > 0 and there exist u(t0) ∈ (0, 1) satisfying (2.6).

Remark. Our definition of weak solutions corresponds to a sliding mode2 in the
sense of Utkin [Utk92]. It is closely related to differential inclusions and Filippov so-
lutions [Fil88]; see also [HNW93, p. 199]. Recall that a Filippov solution is defined by

ẏ(t) = u(t) f
(
y(t), ẏ−0

)
+ (1− u(t)) f

(
y(t), ẏ+0

)
,

0 = α
(
y(t)

)
,

which coincides with (2.5) only if f(y, z) is linear in z. The Filippov solution has the
advantage of being unique. However, it will turn out that for ε→ 0+ the regularized
problem (1.3) approaches a weak solution (2.5) in the sense of Utkin rather than a
Filippov solution.

2.2. Solution escaping from the manifold. As long as the solution u(t) of
(2.5) satisfies 0 < u(t) < 1 we are concerned with a weak solution of the neutral delay
equation. If it leaves this interval at time t = t1, we have (generically) the following
two possibilities:

• u(t1) = 1, u̇(t1) > 0: solution returns to the region {y ; α(y) < 0};
• u(t1) = 0, u̇(t1) < 0: solution passes through the manifold into the region
{y ; α(y) > 0}.

In both situations we switch again to the neutral delay differential equation ẏ(t) =
f(y(t), ẏ(α(y(t)))) and continue the solution in the classical sense.

Figure 2.1 illustrates this with two examples. The left picture shows the solution
of

ẏ(t) = 4− 2 t− ẏ
(
y(t)− 3

)
, t > 0,

with y(t) = 0 for t ≤ 0. Until the first breaking point t0 = 1 it is given by y(t) =
4t − t2, then it follows the manifold y(t) = 3 until t1 = 2, and it leaves it along
y(t) = −1 + 4t− t2. The right picture of Figure 2.1 shows the solution of

ẏ(t) = 2 + 2 t− 3 ẏ
(
y(t)− 3

)
, t > 0,

with y(t) = 0 for t ≤ 0. This time it is given by y(t) = 2t+ t2 until t0 = 1, stays in the
manifold y(t) = 3 until t1 = 2, and passes through it as y(t) = (41+6t+e−6(t−2))/18.

2In control theory, one speaks of “sliding mode control” if the control function (here u(t)) forces
the system to “slide” along the manifold {y ; α(y) = 0}.
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Fig. 2.1. Solution y(t) of neutral delay differential equations having a weak solution on the
interval [1, 2]. Left: solution returns into {y ; α(y) < 0}; right: solution passes through the manifold.

The arrows from below the manifold {y ; α(y) = y − 3 = 0} indicate the slopes
α′(y(t)) f(t, y(t), ẏ−0 ); those from above the slopes, α′(y(t)) f(t, y(t), ẏ+0 ). (Note the
t-dependence of f in this example.) A change of sign of one of these slopes permits
the solution to escape from the manifold. This is equivalent to the above discussion
of conditions on u(t).

3. Main results. The aim of this article is to study the structure of the solution
of (1.3) when ε → 0+ and to investigate the relationship between the limit solution
and that of the neutral delay equation (1.1). This section gives an overview of the
main results. Details are given in sections 4 through 8.

3.1. Until the first breaking point. If the neutral delay equation (1.1) has its
first breaking point at t0, then the assumption (2.3) implies that the regularized delay
equation (1.3) has a breaking point at t0(ε) = t0+O(ε). We let y(t) (and z(t) = ẏ(t))
be the solution of (1.1) and yε(t), zε(t) that of (1.3). For t between 0 and the first
breaking point we then have

yε(t)− y(t) = O(ε), zε(t)− z(t) = O(ε) +O(e−t/ε).

This part follows from singular perturbation theory for ordinary differential equations
and is explained in section 4. The precise form of the exponentially decaying transient
is important for the solution after the first breaking point. It is obtained from the
study of asymptotic expansions.

3.2. Classical or weak solution. Beyond the first breaking point we can be
concerned with a classical solution of (1.1) or with a weak solution, and the solution
need not be unique. On the other hand, the solution of the singularly perturbed delay
equation (1.3) exists beyond this point and is there uniquely defined. To study which
solution is approximated in the limit ε→ 0+, we introduce the scalar function

g(θ) =

{
α′(y(t0)) f(y(t0), θ ẏ−0 + (1− θ) ẏ+0

)
for θ ≤ 1,

α′(y(t0)) f(y(t0), ẏ−0 ) for θ ≥ 1,
(3.1)

and we notice that g(1) > 0 by (2.3). Geometrically, g(θ) represents the magnitude
of the vector projection of f

(
y(t0), θ ẏ

−
0 +(1− θ) ẏ+0

)
onto the normal to the manifold

defined by {y ; α(y) = 0}. This function determines the behavior of the solution for
the neutral delay equation (1.1) as well as that for the singularly perturbed problem.
For (1.1) we have that

• g(0) > 0 implies the existence of a classical solution,
• g(0) < 0 implies termination of a classical solution (see (2.4)),
• the existence of θ0 ∈ (0, 1) satisfying g(θ0) = 0 and g′(θ0) �= 0 implies the
presence of a weak solution with ẏ(t+0 ) = f(y(t0), θ0 ẏ

−
0 +(1−θ0) ẏ+0 ); see (2.5).
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The question of whether the solution of the regularized problem (1.3) approximates
a classical or weak solution of (1.1) beyond the first breaking point is determined by
the solution of the following two-dimensional dynamical system:

θ′ = −θ ζ, θ(0) = 1,

ζ′ = − ζ + g(θ), ζ(0) = g(1).
(3.2)

Its stationary points are (0, g(0)), which is attractive for g(0) > 0, and (θ0, 0) with
g(θ0) = 0, θ0 ∈ (0, 1), which is attractive when g′(θ0) > 0. The following theorem is
a summary of the results proved in sections 5 through 7.

Theorem 3.1. Consider the solutions of the neutral delay equation (1.1) and its
regularization (1.3) beyond the first breaking point t0.

(a) If the solution of (3.2) converges to (0, g(0)) with g(0) > 0, then the solution
of the regularized delay equation (1.3) is O(ε)-close to the classical solution of (1.1).

(b) If the solution of (3.2) converges to (θ0, 0), where g(θ0) = 0 and g′(θ0) > 0,
then the solution of the regularized delay equation (1.3) is O(ε)-close to the weak
solution of (1.1) satisfying ẏ(t+0 ) = f(y(t0), θ0 ẏ

−
0 + (1− θ0) ẏ

+
0 ).

It comes as a surprise to us that even when a classical solution exists beyond
the first breaking point, the solution of the regularized equation can converge to a
weak solution. A concrete example will be presented in section 6.2. Fortunately,
Theorem 3.1 gives a precise characterization of this situation. In particular, if the
function g(θ) does not admit a zero in the interval (0, 1) (no weak solution), then
the solution of the regularized problem correctly approaches the classical solution.
Theorem 3.1 also tells us which weak solution is selected by the regularization in the
presence of several weak solutions.

Similar to the initial point t = 0 we also have a transient layer right after the first
breaking point. On an ε-independent compact interval starting at the first breaking
point t0 we shall prove in section 7 the estimates

yε(t)− y(t) = O(ε), zε(t)− z(t) = O(ε) +O(e−(t−t0)/ε).

As before, yε(t), zε(t) denotes the unique solution of (1.3), and y(t), z(t) is the solution
of (1.1) according to Theorem 3.1.

3.3. Escaping from sliding mode. At first glance, the transition from a weak
solution (sliding mode) to a classical solution seems to be more delicate. It is inter-
esting that the regularization (1.3) always correctly approximates such a transition.
To be more precise, let us distinguish the two situations discussed in section 2.2.

If the solution of (1.1) returns to the region {y ; α(y) < 0} at t = t1, we can prove

yε(t)− y(t) = O(ε), zε(t)− z(t) = O(ε)

in an ε-independent neighborhood of t1. An exponentially decaying transient phase
is still present, but it is multiplied by ε2 for the y-component and by ε for the z-
component, so that they are dominated by the smooth perturbation terms.

If the solution of (1.1) leaves the sliding mode at t = t1 into the opposite region
{y ; α(y) > 0}, the analysis is much more involved. We shall prove that in an ε-
independent neighborhood of t1 we have

yε(t)− y(t) = O(ε ln
√
ε), zε(t)− z(t) = O(

√
ε),

which still tends to zero for ε → 0. Remarkably, the expression α(yε(t)) for the
solution yε(t) of (1.3) satisfies at t = t1

α
(
yε(t1)

)
= −ε ln√ε+O(ε)
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and has a leading error term that does neither depend on f(y, z) nor on α(y). These
statements are obtained by patching together three different asymptotic expansions:
in powers of ε for t ≤ t1 − ε1/3 and a different one for t ≥ t1 + ε1/3, and an expansion
in powers of

√
ε on the interval [t1 − ε1/3, t1 + ε1/3]. A rigorous formulation of the

results and detailed proofs are given in sections 8.2 (Theorem 8.5) and 8.3.

3.4. Subsequent breaking points. One can ask whether similar results hold
also at breaking points t̃ that are induced by t0 and not by 0, i.e., for which we
have α(y(t̃)) = t0. The main difference is that the deviated argument is no longer
close to zero but is now close to t0. This question is addressed in the recent article
[GH11]. There it is shown that the present analysis can be extended straightforwardly
and, although the function g(θ) in the dynamical system (3.2) becomes slightly more
complicated, the same conclusions can be drawn.

4. Asymptotic expansion up to the first breaking point. As long as the
solution of (1.3) satisfies α

(
y(t)

) ≤ 0, we are concerned with a singularly perturbed
ordinary differential equation

ẏ(t) = z(t)

ε ż(t) = F
(
y(t)

) − z(t)
with F (y) = f

(
y, ϕ̇(α(y))

)
,(4.1)

and we can apply standard techniques for the study of its solution; see [O’M91],
[HW96, section VII.3]. This theory tells us that the solution can be split into a
smooth and transient part (or outer and inner solution or smooth and nonsmooth)
and expanded into a series in powers of ε as follows:

y(t) =
N∑
j=0

εj yj(t) + ε
N−1∑
j=0

εj ηj(t/ε) +O(εN+1),

z(t) =

N∑
j=0

εj zj(t) +

N∑
j=0

εj ζj(t/ε) +O(εN+1).

(4.2)

Here, yj(t) and zj(t)—called smooth coefficient functions—are defined on an ε-
independent interval [0, T ]. The functions ηj(τ) and ζj(τ)—called transient coeffi-
cient functions—are defined for all τ ≥ 0, and they decay exponentially fast to zero
for τ → ∞, i.e., they are bounded by c e−γτ with some c > 0 and γ > 0. The integer
N is an arbitrarily chosen truncation index.

These expansions have to match the initial values, which means that

y0(0) = ϕ(0), yj(0) + ηj−1(0) = 0 for j ≥ 1,

z0(0) + ζ0(0) = ϕ̇(0), zj(0) + ζj(0) = 0 for j ≥ 1.
(4.3)

The coefficient functions are obtained by inserting the expansion (4.2) into (4.1),
separating smooth and transient parts, and comparing like powers of ε. The smooth
part yields for ε = 0 the relations

ẏ0(t) = z0(t) = F (y0(t)), z0(t) = F (y0(t)).

The initial value y0(0) = ϕ(0) is given from (4.3). The algebraic relation determines
the initial value z0(0) = F (ϕ(0)) and by (4.3) also that for ζ0(0). The transient part
(here, prime denotes the derivative with respect to τ) gives

η′0(τ) = ζ0(τ), ζ′0(τ) = −ζ0(τ),
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which yields ζ0(τ) = ζ0(0) e
−τ and η0(τ) = C − ζ0(0) e

−τ . Since the transient coeffi-
cient functions have to decay exponentially for τ → ∞, it follows C = 0 so that the
initial value satisfies η0(0) = −ζ0(0).

In a next step we have to solve the differential-algebraic system

ẏ1(t) = z1(t), ż0(t) = F ′(y0(t)) y1(t)− z1(t)

with initial value y1(0) given from y1(0) + η0(0) = 0. This is a linear differential
equation for y1(t) and gives an explicit formula for z1(t). The initial value ζ1(0) is
then determined from z1(0) + ζ1(0) = 0. The transient functions are defined by

η′1(τ) = ζ1(τ), ζ′1(τ) = F ′(y0(0)) η0(τ) − ζ1(τ).

This shows that ζ1(τ) and η1(τ) are polynomials of degree one multiplied by e−τ .
We continue this procedure to compute further terms in the ε-expansion (4.2). The
construction of the smooth coefficient functions is straightforward. For the transient
coefficient functions we notice that they are defined by differential equations

η′j(τ) = ζj(τ), ζ′j(τ) = − ζj(τ) + F ′(y0(0)) ηj−1(τ) + · · · ,

where the dots represent a linear combination of products τ j0
∏m

i=1 ηji−1(τ) with
m ≥ 1, j0 ≥ 0, j1 ≥ 1, . . . , jm ≥ 1, and j0 + j1 + · · ·+ jm = j. It follows by induction
on j that ζj(τ) and ηj(τ) are of the form

pj1(τ)e
−τ + pj2(τ)e

−2τ + · · ·+ pjj(τ)e
−jτ(4.4)

with polynomials pjk(τ) of degree ≤ j for k = 1 and of degree ≤ j−k for k = 2, . . . , j.
The case j = 1 has been treated before. Assume the statement to be true up to j.
The inhomogeneity of the differential equation for ζj+1(τ) is then a linear combination
of terms qk(τ)e

−kτ , where qk(τ) denotes a polynomial of degree ≤ j − k + 1. The
solution ζj+1(τ) is then of the same form with the exception that, due to resonance,
the degree of q1(τ) is increased by one. This proves the statement for ζj+1(τ). The
function ηj+1(τ) is obtained by integration of ζj+1(τ) and has the stated form, because
ηj+1(τ) → 0 for τ → ∞.

The breaking point t0(ε) of the system (1.3) is the time instant t for which

a(t, ε) := α
(
y0(t) + εy1(t) + · · ·) = 0.

Recall that ϕ(t) is defined and smooth for all t ∈ R and that F (y) = f(y, ϕ̇(α(y)))
is defined for all y ∈ R

n. Consequently, the smooth coefficient functions yj(t) are
defined also beyond the point t0. Since ∂a

∂t (t0, 0) = α′(y0(t0))ẏ0(t0) > 0, which is
equivalent to (2.3), the implicit function theorem guarantees the existence of t0(ε) =
t0 + O(ε), such that a(t0(ε), ε) = 0. The smoothness of the appearing functions
implies that t0(ε) can be expanded into powers of ε up to errors of size O(εN+1).
Finally, Theorem 3.2 of [HW96, p. 391] shows that the remainder in (4.2) is bounded
uniformly for 0 ≤ t ≤ t0(ε).

5. Asymptotic expansion beyond the first breaking point. For t > t0(ε)
until the following breaking point, the problem (1.3) becomes

ẏ(t) = z(t),

ε ż(t) = f
(
y(t), z̃

(
α(y(t))

)) − z(t),
(5.1)
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where

z̃(t) = s(ε, t) + p(ε, t, ε e−τ) e−τ +O(εN+1) with τ = t/ε(5.2)

is the solution expansion (4.2) on the interval [0, t0(ε)]. Here, the function s(ε, t) =
s0(t)+ εs1(t)+ · · · is the smooth part3 of the expansion, and p(ε, t, u) is a polynomial
of degree at most N in ε and t and of degree at most N − 1 in u. This special
structure follows from the fact that the transient coefficient functions ζj(τ) are of the
form (4.4). Using the notation (2.2) we have s(0, 0) = ẏ+0 and p(0, 0, 0) = ẏ−0 − ẏ+0
(the jump discontinuity of the derivative at t = 0; see (2.1)).

Initial values for (5.1) are the solution values of the system (4.1) at t = t0(ε). Since
t0(ε) admits an expansion in powers of ε (see end of section 4), the smooth coefficient
functions yj(t0(ε)) also have such an expansion. Furthermore, the transient functions
are all dominated by an O(εN+1) error term. Therefore, we have at the breaking
point expansions of the form

y
(
t0(ε)

)
= a0 + a1ε+ · · ·+ aNε

N +O(εN+1),

z
(
t0(ε)

)
= b0 + b1ε+ · · ·+ bNε

N +O(εN+1)
(5.3)

with a0 = y0(t0) and b0 = z0(t0). These initial values satisfy

α′(a0) a1 = 0, α′(a0) b0 > 0.(5.4)

The first relation is obtained by computing the first derivative of α(y(t0(ε))) = 0 with
respect to ε at ε = 0, and the second one is equivalent to (2.3).

For the solution of (5.1) we make the ansatz (with coefficient functions different
from those of section 4)

y(t0(ε) + t) =

N∑
j=0

εj yj(t) + ε

N−1∑
j=0

εj ηj(t/ε) +O(εN+1),

z(t0(ε) + t) =

N∑
j=0

εj zj(t) +

N∑
j=0

εj ζj(t/ε) +O(εN+1),

(5.5)

where, similar to section 4, yj(t), zj(t) are smooth coefficient functions defined on a
compact interval [0, T ], and ηj(τ), ζj(τ) are transient coefficient functions defined for
all τ ≥ 0 and converging exponentially fast to zero for τ → ∞. For t = 0 these
expansions have to match (5.3), i.e.,

y0(0) = a0, yj+1(0) + ηj(0) = aj+1, zj(0) + ζj(0) = bj for j ≥ 0.(5.6)

We insert the expansions (5.5) into the singularly perturbed problem (5.1) and
compare like powers of ε in the smooth as well as transient parts of the system. This

3In fact, we have sj(t) = yj(t), where yj(t) are the smooth coefficient functions of (4.2). We
change the notation to avoid a confusion with the coefficient functions of (5.5).
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yields

ẏj(t) = zj(t), η′j(τ) = ζj(τ) for j ≥ 0(5.7)

for the first (trivial) equation. Putting

A = y1(t) + η0(τ) + ε
(
y2(t) + η1(τ)

)
+ · · · and B = ε−1 α

(
y0(t) + εA

)
,

we obtain for the nontrivial part∑
j≥0

εj+1żj(t) +
∑
j≥0

εjζ′j(τ) +
∑
j≥0

εjzj(t) +
∑
j≥0

εjζj(τ)

= f
(
y0(t) + εA, s

(
ε, εB

)
+ p

(
ε, εB, ε e−B

)
e−B

)
+O(εN+1)

(5.8)

whenever B ≥ 0. This is the case between t0(ε) and the following breaking point. On
intervals, where B < 0, the right-hand side of (5.8) has the simple form

· · · = f
(
y0(t) + εA, ϕ̇

(
α
(
y0(t) + εA

)))
+O(εN+1).(5.9)

For the construction of the coefficient functions of (5.5) we distinguish the follow-
ing two cases:

• α(y0(t)) = 0 for t ∈ [0, T ]: in this case the expression B is uniformly bounded
in ε, and the exponential term in (5.8) gives a contribution to the smooth
part of the system;

• α(y0(t)) > 0 for t ∈ (0, T ]: in this case the exponential term will contribute
only to the transient part of the system.

5.1. Expansion for a solution close to the manifold. In this section we
construct coefficient functions of (5.5) such that α(y0(t)) = 0 for t ∈ [0, T ]. The
truncated expansion (5.5) will then be O(ε)-close to the manifold {y ; α(y) = 0}.
Together with (5.7), this implies that

α′(y0(t))z0(t) = 0.(5.10)

Expanding α(y0(t)+εA) into a Taylor series around y0(t) and using α(y0(t)) = 0, the
expression B in (5.8) is seen to become

B = α′(y0(t))
(
y1(t) + η0(τ) + ε

(
y2(t) + η1(τ)

))
+
ε

2
α′′(y0(t))

(
y1(t) + η0(τ)

)2
+ · · · .

For the construction of the coefficient functions in (5.5), we expand the nonlinearity
into powers of ε, we separate the smooth and transient parts in (5.8) and respectively
(5.9), and we compare like powers of ε. The ε0 term in (5.8), i.e., the equation
obtained by putting ε = 0, yields

ζ′0(τ) + z0(t) + ζ0(τ) = f
(
y0(t), ẏ

+
0 + (ẏ−0 − ẏ+0 )e

α′(y0(t))(y1(t)+η0(τ))
)
.(5.11)

Its smooth term (i.e., τ -independent term) is

z0(t) = f
(
y0(t), ẏ

+
0 + (ẏ−0 − ẏ+0 )e

α′(y0(t))y1(t)
)
,(5.12)

where ẏ+0 and ẏ−0 are as in (2.2). The construction of the coefficient functions is done
in the following steps.
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Step 1a. Multiplying (5.12) by α′(y0(t)) and using (5.10) yields

0 = α′(y0(t)) f(y0(t), ẏ+0 +(ẏ−0 −ẏ+0 )u0(t)
)

with u0(t) = e−α′(y0(t))y1(t).(5.13)

If there exists c > 0 such that α′(y0(0)) f(y0(0), ẏ+0 + (ẏ−0 − ẏ+0 ) e
−c) = 0 (for a

justification see Step 1c), and if α′(y0(0)) fz(y0(0), ẏ+0 +(ẏ−0 − ẏ+0 ) e
−c)(ẏ−0 − ẏ+0 ) �= 0,

an application of the implicit function theorem shows that the relation (5.13) permits
us to express the scalar function u0(t) (satisfying u0(0) = e−c) in terms of y0(t).

Step 1b. The relations (5.7) and (5.12) give the system

ẏ0(t) = z0(t), z0(t) = f
(
y0(t), ẏ

+
0 + (ẏ−0 − ẏ+0 )u0(t)

)
.

Inserting u0(t) from Step 1a, this yields a differential equation for y0(t) and an explicit
formula for z0(t). The initial values y0(0) and z0(0) + ζ0(0) are available from (5.6).
This therefore fixes ζ0(0).

Step 1c. We obtain the transient part by subtracting the smooth part (5.12) from
(5.11), then substituting ετ for t, and finally taking the coefficient of ε0. This yields

ζ′0(τ) + ζ0(τ) = f
(
y0(0), ẏ

+
0 + (ẏ−0 − ẏ+0 ) e

−α′(y0(0))(y1(0)+η0(τ))
)

− f
(
y0(0), ẏ

+
0 + (ẏ−0 − ẏ+0 ) e

−c
)
,

(5.14)

where c = α′(y0(0))y1(0). Introducing the scalar functions

η̂0(τ) = α′(y0(0))(y1(0) + η0(τ)
)
, ζ̂0(τ) = α′(y0(0))ζ0(τ)

leads to η̂ ′
0(τ) = ζ̂0(τ) , and left-multiplying (5.14) by α′(y0(0)) gives

ζ̂ ′
0(τ) + ζ̂0(τ) = α′(y0(0)) f

(
y0(0), ẏ

+
0 + (ẏ−0 − ẏ+0 ) e

−η̂0(τ)
)
.(5.15)

The initial value η̂0(0) = 0 is given by (5.4), because y0(0) = a0 and y1(0)+η0(0) = a1
(see (5.3)), and ζ̂0(0) is given by Step 1b. Section 5.2 discusses the situation when the
expression B becomes negative for t in certain intervals. Section 6 studies conditions
guaranteeing that the solution components η̂0(τ) and ζ̂0(τ) of this system converge
exponentially fast to c and 0, respectively.

A logical reasoning would start with the dynamical system for (η̂0(τ), ζ̂0(τ)) and
assuming that its solution converges exponentially fast to (c, 0). This then provides
the positive number c which was required in Step 1a.

Step 1d. The right-hand side of (5.14) converges exponentially fast to zero for
τ → ∞ (i.e., it is bounded by a function c e−γτ with positive c and γ), so that this is
also true for the solutions of (5.14), in particular for that corresponding to the initial
value given by Step 1b. The function η0(τ) is obtained by integration of η′0(τ) = ζ0(τ).
For a suitably chosen initial value, it converges exponentially fast to zero. This initial
value then determines y1(0) by the continuity requirement (5.6) of the solution at the
breaking point.

Step 2a. We next differentiate (5.13) with respect to t. Under the assumption

α′(y0(t))fz(y0(t), ẏ+0 + (ẏ−0 − ẏ+0 )u0(t)
)
(ẏ−0 − ẏ+0 ) �= 0,(5.16)

the scalar function α′(y0(t))ẏ1(t) and hence also α′(y0(t))z1(t) can be expressed in
terms of y1(t) and the known functions y0(t) and ẏ0(t). The smooth part of the
coefficient of ε in (5.8) gives

ż0(t) + z1(t) = fz
(
y0(t), ẏ

+
0 + (ẏ−0 − ẏ+0 )u0(t)

)
(ẏ−0 − ẏ+0 )

·u0(t)α′(y0(t)) y2(t) + · · · ,
(5.17)
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where the dots represent an expression depending only on y0(t) and y1(t). Pre-
multiplication of this equation with α′(y0(t)) therefore implies that α′(y0(t))y2(t) can
be expressed in terms of y1(t) and known functions.

Step 2b. As a consequence of Step 2a and formula (5.17), not only the function
α′(y0(t))y2(t) but also z1(t) can be expressed in terms of y1(t) and known functions.
Inserting the resulting formula for z1(t) into ẏ1(t) = z1(t) yields a differential equation
for y1(t). The initial value, already determined in Step 1d, thus gives the function
y1(t). From the relation z1(t) = ẏ1(t) this step thus yields z1(t) and, by (5.6), the
initial value ζ1(0).

Step 2c. The transient coefficient of ε in (5.8) yields η′1(τ) = ζ1(τ) and

ζ′1(τ) + ζ1(τ) = −G′(e−η̂0(τ)
)
e−η̂0(τ) α′(y0(0))(y2(0) + η1(τ)) + r

(
τ, η0(τ)

)
,(5.18)

where G(θ) := f(y0(0), ẏ
+
0 + (ẏ−0 − ẏ+0 ) θ) for θ ∈ R, the functions η̂0(τ) and η0(τ) are

given from Steps 1c and 1d, and r(τ, η) collects the remaining terms. The computation
of the ε-coefficient in (5.8) shows that the inhomogeneity r(τ, η0(τ)) depends at most
polynomially on τ and contains η0(τ) as a factor, so that it converges exponentially
fast to zero for τ → ∞. Premultiplication of these equations by α′(y0(0)) gives a
linear nonautonomous system for

η̂1(τ) = α′(y0(0))(y2(0) + η1(τ)), ζ̂1(τ) = α′(y0(0)) ζ1(τ).

We let g(θ) = α′(y0(0))G(θ). Since η̂0(τ) → c exponentially fast (see Step 1c), the
functions g′(e−η̂0(τ)) and α′(y0(0)) r(τ, η0(τ)) converge exponentially fast to g′(e−c)
and to 0, respectively. Initial values are given by Steps 2a – 2b. Assuming g′(e−c) > 0
(see Theorem 6.1(a) below), the linear system obtained by replacing g′(e−η̂0(τ)) with

g′(e−c) is asymptotically stable. This implies that the solutions η̂1(τ) and ζ̂1(τ)
converge exponentially fast to zero.

Step 2d. The right-hand side of (5.18) converges exponentially fast to zero, so
that this is also true for its solution with initial value given by Step 2b. The function
η1(τ) is obtained by integration of η′1(τ) = ζ1(τ). For a suitably chosen initial value,
it converges exponentially fast to zero. This initial value then determines y2(0) by
the continuity requirement (5.6) of the solution at the breaking point.

This analysis extends straightforwardly to further terms in the asymptotic expan-
sion. The only difference is that in the differential equation for ηk(τ) and ζk(τ), the
function r in (5.18) will depend on ηj(τ) for j = 0, 1, . . . , k − 1.

5.2. Multiple breaking points. In the situation of section 5.1 it is possible
that the solution η̂0(τ) in Step 1c stays nonnegative for all τ > 0. In this case the
asymptotic expansion of section 5.1 is valid on an ε-independent nonempty interval.

It may also happen that η̂0(τ) changes sign, i.e., there exists τ1 > 0 such that

η̂0(τ1) = 0 and η̂ ′
0 (τ1) = ζ̂0(τ1) ≤ 0. (Equality can be excluded, because η̂0(τ1) =

ζ̂0(τ1) = 0 implies η̂ ′′
0 (τ1) = ζ̂ ′

0 (τ1) > 0 by (5.22) and (2.3), so that the function cannot
change sign at τ1.) In this situation the regularized problem (1.3) has a breaking point
at t1(ε) = t0(ε) + ε τ1 + O(ε2) (as a consequence of the implicit function theorem),
and the differential equation (5.9) has to be considered beyond t1(ε). Therefore,
the differential equations (5.14) and (5.15) have to be modified as follows: the first
expression in the right-hand side of (5.14) is now the ε-independent term of (5.9) which
is f(y0(0), ẏ

−
0 ) because of α(y0(t)) = 0. The second expression remains unchanged,

because we do not touch the functions y0(t), z0(t), and u0(t). Beyond τ1 and as long
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as η̂0(τ) remains negative, the differential equations (5.14) and (5.15) thus have to be
replaced by

ζ′0(τ) + ζ0(τ) = f
(
y0(0), ẏ

−
0

)− f
(
y0(0), ẏ

+
0 + (ẏ−0 − ẏ+0 ) e

−c
)
,(5.19)

ζ̂ ′
0(τ) + ζ̂0(τ) = α′(y0(0)) f

(
y0(0), ẏ

−
0

)
.(5.20)

The solution of (5.20) with initial value ζ̂0(τ1) < 0 converges to the positive value
α′(y0(0)) f(y0(0), ẏ−0 ) > 0 (see (2.3)). Consequently, there exists τ2 > τ1 for which
the solution of η̂ ′

0(τ) = ζ0(τ) satisfies η̂0(τ2) = 0 and η̂ ′
0(τ2) > 0. This gives rise to a

further breaking point t2(ε) = t0(ε)+ε τ2+O(ε2) of the singularly perturbed problem
(1.3). Beyond this breaking point we have to consider again (5.15). This situation
may repeat itself, and we can be concerned with an odd number of breaking points
that are all O(ε)-close to t0.

The considerations of this section can be incorporated in the previous construction
of the asymptotic expansion. All we have to do is to replace in (5.14) and (5.15) the
function η̂0(τ) with max(0, η̂0(τ)). In this way the correct differential equation is
chosen for positive and also for negative η̂0(τ). The smooth part of the expansion
is not influenced by the presence of several breaking points that are ε-close to the
termination instant t0.

5.3. Expansion for a solution transversal to the manifold. Here we con-
sider the situation where α(y0(0)) = 0 at the breaking point, but soon after α(y0(t))
becomes positive. More precisely, opposed to (5.10), we assume that

α′(y0(t)) z0(t) > 0

at t = 0, which by continuity implies the inequality also in a neighborhood of 0. We
still have (5.8), but with B replaced by

B = ε−1α
(
y0(t)

)
+ α′(y0(t))

(
y1(t) + η0(τ) + ε

(
y2(t) + η1(τ)

))
+ · · ·

= α′(y0(0))z0(0) τ + α′(y0(t))
(
y1(t) + η0(τ) + ε

(
y2(t) + η1(τ)

))
+ · · · .

This implies that the term e−B in (5.8) no longer contributes to the smooth part.
Step 1a. Putting ε = 0 we get

ẏ0(t) = z0(t), z0(t) = f
(
y0(t), s0(α(y0(t)))

)
with initial value y0(0) given by (5.6). Here, the function s0(t) is the leading smooth
term in the expression (5.2). Recall that s0(0) = ẏ+0 .

Step 1b. Regarding the transient part, we obtain η′0(τ) = ζ0(τ) and

ζ′0(τ) + ζ0(τ) = f
(
y0(0), ẏ

+
0 + (ẏ−0 − ẏ+0 ) e

−α′(y0(0))(z0(0)τ+y1(0)+η0(τ))
)

− f
(
y0(0), ẏ

+
0

)(5.21)

with ẏ+0 and ẏ−0 given by (2.2). Introducing the scalar functions

η̂0(τ) = α′(y0(0))(z0(0)τ + y1(0) + η0(τ)
)
, ζ̂0(τ) = α′(y0(0))(z0(0) + ζ0(τ)

)
and left-multiplying the above equations by α′(y0(0)) gives η̂ ′

0(τ) = ζ̂0(τ) and

ζ̂ ′
0(τ) + ζ̂0(τ) = α′(y0(0)) f(y0(0), ẏ+0 + (ẏ−0 − ẏ+0 ) e

−η̂0(τ)
)
.(5.22)



ASYMPTOTIC EXPANSIONS FOR NEUTRAL DELAY EQUATIONS 2441

These are exactly the same differential equations as those obtained in (5.15). The

difference is that here we are interested in solutions η̂0(τ), ζ̂0(τ) that approach ex-
ponentially fast dτ + c and d (with d = α′(y0(0))z0(0) > 0 and c = α′(y0(0))y1(0)),
respectively. Initial values η̂0(0), ζ̂0(0) are given, because y1(0)+η0(0) and z0(0)+ζ0(0)
are determined by the matching condition (5.6). The stability investigation of sec-

tion 6 studies conditions on the problem guaranteeing that η̂0(τ)−dτ−c and ζ̂0(τ)−d
converge exponentially fast to zero.

Step 1c. The right-hand side of (5.21) converges exponentially fast to zero, so
that this is also true for its solution ζ0(τ) with initial value given by Step 1a and by
(5.6). The function η0(τ) is obtained by integration of η′0(τ) = ζ0(τ). For a suitably
chosen initial value, it converges exponentially fast to zero. This initial value then
determines y1(0) by the continuity requirement (5.6).

This procedure can be repeated and gives further coefficient functions of the
asymptotic expansion. The main difference is that the differential equation (5.22) will
be linear and thus easier to analyze (as was the case for the expansion of section 5.1).
The analysis in section 6 shows that η̂0(τ) never becomes negative in the present
situation. Therefore, considerations like those of section 5.2 are not necessary.

6. Global dynamics of transient coefficient functions. Both construc-
tions of asymptotic expansions (in sections 5.1 and 5.3) have led to the same two-
dimensional dynamical system,

η′ = ζ, η(0) = 0,

ζ′ = − ζ + g(e−η), ζ(0) = ζ0 > 0,
(6.1)

with initial value ζ0 = α′(a0) b0 > 0 (see (5.4)) and

g(θ) =

{
α′(a0) f

(
a0, ẏ

+
0 + (ẏ−0 − ẏ+0 ) θ

)
for θ ≤ 1,

α′(a0) f
(
a0, ẏ

−
0

)
for θ ≥ 1.

(6.2)

To study its global dynamics, we introduce the new variable θ = e−η, so that the
system (6.1) becomes

θ′ = −θ ζ, θ(0) = 1,

ζ′ = − ζ + g(θ), ζ(0) = ζ0 > 0.
(6.3)

The properties of the function g(θ) of (6.2) are as follows:
(G1) We always assume g(1) > 0; this is equivalent to (2.3).
(G2) If g(0) < 0, then the solution of (1.1) terminates at the breaking point t0;

this is the inequality of (2.4).
(G3) If g(0) > 0, then a classical solution exists beyond the breaking point t0.
The properties of the flow of (6.3) (see Figures 6.1 and 6.2) are as follows:

(F1) The solution of (6.3) stays for all times in the half-plane θ > 0.
(F2) Stationary points of (6.3) are (θ, ζ) = (0, g0) (with the abbreviation g0 = g(0))

and (θ, ζ) = (e−c, 0), where c is a root of g(e−c) = 0.
(F3) In the upper half-plane ζ > 0 the flow is directed to the left, i.e., θ(τ) is

monotonically decreasing; in the lower half-plane it is directed to the right.
(F4) Above the curve ζ = g(θ) the flow is directed downward, i.e., ζ(τ) is mono-

tonically decreasing; below this curve it is directed upward.
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6.1. Discussion of the validity of the asymptotic expansions. We shall
prove that the solution of the initial value problem (6.3) determines the behavior of
the singularly perturbed delay equation (1.3) beyond the first breaking point.

Theorem 6.1. Suppose that the function g(θ) of (6.2) satisfies (G1).
(a) If the solution of (6.3) converges to a stationary point (θ, ζ) = (e−c, 0) for

which g′(e−c) > 0, and if the solution of the nonlinear equation (5.13) is chosen
according to α′(y0(0)) y1(0) = c, then the asymptotic expansion of section 5.1 is such
that η0(τ), ζ0(τ) converge exponentially fast to zero for τ → ∞.

(b) If g0 = g(0) > 0 and if the solution of (6.3) converges to the stationary point
(θ, ζ) = (0, g0), then the asymptotic expansion of section 5.3 is such that η0(τ), ζ0(τ)
converge exponentially fast to zero for τ → ∞.

Proof. The Jacobian matrix of the dynamical system (6.3) is( −ζ −θ
g′(θ) −1

)
.

At a stationary point (e−c, 0) its characteristic equation is λ2 + λ + e−cg′(e−c) = 0,
and at (0, g0) it is (λ + 1)(λ + g0) = 0. Under the assumptions of the theorem the
eigenvalues have negative real part, so that the stationary points are asymptotically
stable. Backsubstitution via the relation θ = e−η gives information for the solution
of system (6.1).

(a) In the situation (a) the solution (η(τ), ζ(τ)) of (6.1) converges exponentially
fast to (c, 0). This is precisely the condition required in the end of Step 1c (section 5.1)

for the functions (η̂0(τ), ζ̂0(τ)). This guarantees that the functions (η0(τ), ζ0(τ)) con-
verge exponentially fast to 0 (Step 1d of section 5.1).

(b) In the situation (b) it follows by integration of η′(τ) = ζ(τ) that η(τ) ap-
proaches exponentially fast a function g0τ + c. This is the condition required in the
end of Step 1b (section 5.3).

It is of interest to study conditions on the original problem (1.1), which determine
the kind of asymptotic expansion for the regularization (1.3). We expect that if (G1)
and (G2) hold, so that the solution of (1.1) terminates at t0, the solution of (1.3) has
a weak solution beyond t0, and it is given by the expansion of section 5.1. However,
if (G1) and (G3) hold, so that a classical solution continues to exist beyond the
breaking point, we expect a classical solution of (1.3) which is given by the expansion
of section 5.3. The following two lemmas give sufficient conditions for this to be true.

Lemma 6.2. Suppose (G1) and (G2), and the roots of g(e−η) = 0 are discrete
(e.g., g(θ) is strictly monotone for 0 < θ < 1). Then there exists a root c > 0 of
g(e−η) = 0 such that the solution of (6.3) converges to (θ, ζ) = (e−c, 0), which implies
that the transient functions (ηj(τ), ζj(τ)) of the asymptotic expansion of section 5.1
converge to 0 exponentially fast.

Proof. Property (F3) and the fact that the only stationary point on the vertical
axis is below the origin imply that the solution of (6.3), which starts in the upper
half-plane, crosses the horizontal axis at a point (d0, 0) with 0 < d0 < 1. It therefore
lies on the graph of a function ζ = ψ(θ), which satisfies ψ(d0) = 0, ψ(1) = ζ(0), and
is positive between d0 and 1. On a point (θ, ζ) of the reflected curve ζ = −ψ(θ),
the tangent vector is (−θζ, ζ + g(θ)), whereas the flow of (6.3) points in the direction
(−θζ,−ζ+g(θ)). Consequently, the solution passing through (d0, 0) lies strictly above
this reflected curve and crosses the horizontal axis at some point (d1, 0), where d1 > d0
can be larger than 1. We now consider the graph of the solution in the lower half-plane
and denote it again by ζ = ψ(θ). The same argumentation as before shows that the
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solution passing through (d1, 0) lies strictly below the reflected curve ζ = −ψ(θ) and
crosses the horizontal axis at d2 which satisfies d0 < d2 < d1. This procedure can be
repeated. It implies that the solution is bounded for all times. Furthermore, it does
not tend to a limit cycle. Indeed, if this were to happen, the limit cycle has to cross
the horizontal axis at some d0, and the above analysis shows that the solution cannot
come back to this point. The Poincaré–Bendixson Theorem therefore proves that the
solution converges to a stationary point of system (6.3).

Lemma 6.3. Suppose (G1) and (G3) and g(θ) > 0 for all 0 < θ < 1. Then
the solution of (6.3) converges to (θ, ζ) = (0, g0), so that the transient functions
(ηj(τ), ζj(τ)) of the asymptotic expansion of section 5.3 converge to 0 exponentially
fast.

Proof. Since g(θ) > 0 for 0 < θ < 1 the vector field points upward on the
horizontal axis ζ = 0. Therefore, the solution of (6.3) starting with positive ζ(0) stays
in the first quadrant. By property (F4) it is bounded, and property (F3) implies that
θ(τ) is monotonically decreasing. This excludes the situation of a limit cycle and
proves that the solution converges to the stationary point (0, g0).

These two lemmas cover the most important situations, probably all of practical
interest. But what happens when these sufficient conditions are not satisfied?

Let (G1) and (G2) be satisfied, which characterizes the situation of a terminating
solution at the breaking point. In this case, (0, g0) is repulsive, so that the expansion
of section 5.3 is not possible. Generically, we thus have the situation of Lemma 6.2
and, as expected, the expansion of section 5.1 describes the solution of (1.3).

Let (G1) and (G3) be satisfied, which characterizes the existence of a classical so-
lution beyond the breaking point of (1.1). Typically, the solution of the regularization
(1.3) will be given by the asymptotic expansion of section 5.3, but in exceptional cases
it can be given by the expansion of section 5.1; see the example in the following sec-
tion. This unexpected result shows that care has to be taken with the regularization
(1.3) of (1.1).

6.2. An illustrative example. We consider the singularly perturbed delay
equation with scalar nonlinearity independent of y and lag term α(y) = y − 1:

ẏ(t) = z(t),

ε ż(t) = f
(
z
(
y(t)− 1

))− z(t)

with y(t) = 0 for t ≤ 0. As long as y(t) ≤ 1, the solution is given by

y(t) = f(0) t+ ε f(0)
(
e−t/ε − 1

)
, z(t) = f(0)

(
1− e−t/ε

)
.

We assume f(0) > 0 so that neglecting exponentially small terms, the first breaking
point is at t0(ε) = f(0)−1 + ε. The solution of (6.1), or equivalently of (6.3), with

g(θ) = f
(
f(0)(1− θ)

)
for θ ≤ 1,

and g(θ) = f(0) for θ > 1, determines which asymptotic expansion is relevant beyond
this breaking point. As a concrete example we consider

f(z) = γ (1− β1z)(1− β2z).(6.4)

The phase portraits of various choices of the parameters are given in Figures 6.1
and 6.2, where stationary points are marked by circles, and the initial value for the
essential solution curve is indicated by a black point.
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Fig. 6.1. Phase portrait of the differential equation (6.3) for the problem of section 6.2 with
function f(z) = γ (1 − β1z)(1 − β2z) and parameters satisfying (G1) and (G2). Left: γ = 2.3,
β1 = 0.4, β2 = 1; right: γ = 2.3, β1 = 0.4, β2 = 3.
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Fig. 6.2. Phase portrait of the differential equation (6.3) for the problem of section 6.2 with
function f(z) = γ (1 − β1z)(1 − β2z) and parameters satisfying (G1) and (G3). Left: γ = 2.3,
β1 = 0.6, β2 = 1; right: γ = 2.3, β1 = 0.6, β2 = 3.

Case 1: Asymptotic expansion of section 5.1. For this special situation we obtain
y0(t) = 1, z0(t) = 0, and y1(t) = c, where c > 0 is such that g(e−c) = 0, i.e., c =
− ln(1−(β1γ)

−1). The transient functions η0(τ) and ζ0(τ) are given from the solution
of (6.1) (resp., (6.3)). By Theorem 6.1 this expansion is relevant for both problems
of Figure 6.1 and for the problem corresponding to the right picture of Figure 6.2.
This is expected for the problems of Figure 6.1, because there g(0) = f(f(0)) < 0 and
the limit problem for ε = 0 does not have a solution beyond the breaking point t0.
The first terms of the asymptotic expansion yield an excellent approximation to the
solution of (1.3). In the right picture of Figure 6.1 the function θ(τ) is seen to become
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larger than one on a nonempty time interval (i.e., η̂0(τ) is negative on this interval),
which implies that (1.3) has three breaking points O(ε)-close to t0 (cf. section 5.2).

Case 2: Unexpected asymptotic expansion of section 5.1. For the parameters
corresponding to the right picture of Figure 6.2, the phase portrait shows that the
solution of (6.3) converges to the stationary point (e−c, 0) and not to (0, g0), which
is also stable. Theorem 6.1 therefore proves the validity of the asymptotic expansion
of section 5.1. This is a rather surprising phenomenon: on the one hand the limit
problem for ε = 0 has a classical solution y(t) = 1+ f(f(0)) t on a nonempty interval
beyond the breaking point t0. On the other hand the solution of (1.3) remains for
small ε > 0 close to the manifold y = 1.

Case 3: Asymptotic expansion of section 5.3. By Theorem 6.1 the construction of
section 5.3 is relevant if g(0) = f(f(0)) > 0 and if the solution of (6.3) converges to the
stationary point (0, g0). This happens in the situation of the left picture of Figure 6.2.
We have z0(t) = f(f(0)), y0(t) = 1+ f(f(0)) t , and the transient functions η0(τ) and
ζ0(τ) are given by (6.3).

Summarizing our findings of these examples we conclude as follows: for g(0) <
0 (termination of the solution for the limit problem) the expansion of section 5.1
is always relevant (the stationary point (0, g0) is unstable); however, for g(0) > 0
(existence of classical solution beyond the first breaking point for the limit problem)
the stationary point of (6.3) determines which of the expansions, that of section 5.3
or that of section 5.1, is relevant.

7. Estimation of the defect and remainder. We consider the asymptotic
expansion (5.5) corresponding to the situation of section 5.1. We truncate the series,
and we define

ŷ
(
t0(ε) + t

)
=

N∑
j=0

εj yj(t) + ε

N−1∑
j=0

εj ηj(t/ε),

ẑ
(
t0(ε) + t

)
=

N∑
j=0

εj zj(t) +

N−1∑
j=0

εj ζj(t/ε).

By construction of the coefficient functions we have uniformly on compact ε-indepen-
dent intervals (and neglecting O(εN ) terms)

˙̂y(t) = ẑ(t),

ε ˙̂z(t) = f
(
ŷ(t), s

(
ε, α(ŷ(t))

)
+ p

(
ε, α(ŷ(t)), εû(t)

)
û(t)

)
− ẑ(t),

ε ln û(t) = −α(ŷ(t)),
(7.1)

where the last line should be considered as a definition of û(t). Recall that for the dom-
inant transient terms η0(τ), ζ0(τ), the expressions η(τ) = α′(y0(0))(y1(0)+η0(τ)) and
ζ(τ) = α′(y0(0))ζ0(τ) are a solution of the two-dimensional dynamical system (6.1)
A stability assumption on this system permits us to prove the following asymptotic
expansion for the solution.

Theorem 7.1. Consider the regularized neutral delay equation (5.1) beyond the
breaking point t0(ε). Suppose that the solution of (6.1) with initial values η(0) = 0,
ζ(0) = α′(y0(0))f(y0(0), ẏ−0 ) > 0 converges to a stationary point ζ = 0, η = c > 0,
where

α′(y0(0))fz(y0(0), ẏ+0 + (ẏ−0 − ẏ+0 ) e
−c

)
(ẏ−0 − ẏ+0 ) > 0.(7.2)
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For sufficiently small ε, there then exists an interval t0(ε) ≤ t ≤ T (with T > t0
independent of ε), where the problem (5.1) admits a unique solution which satisfies

y(t) = ŷ(t) +O(εN ), z(t) = ẑ(t) +O(εN ).(7.3)

Proof. Similar to (7.1) we introduce the function u(t) by ε lnu(t) = −α(y(t)) for
the system (5.1). We differentiate this algebraic relation (index reduction), so that
(5.1) becomes equivalent to the singularly perturbed ordinary differential equation
(again neglecting the O(εN+1) terms)

ẏ(t) = z(t),

ε ż(t) = f
(
y(t), s

(
ε, α(y(t))

)
+ p

(
ε, α(y(t)), εu(t)

)
u(t)

)
− z(t),

ε u̇(t) = − u(t)α′(y(t)) z(t).
(7.4)

This permits us to apply techniques of the standard theory for ordinary differential
equations; see, for example, [HW96, Chap. VI.3].

(a) The asymptotic stability of the system (6.1) implies that for an arbitrarily
given δ > 0 there exists a T0 > 0 such that its solution with initial values specified in
the theorem satisfies |η(τ) − c| ≤ δ and |ζ(τ)| ≤ δ for τ > T0. We treat the solution
of our problem separately on the interval [t0(ε), t0(ε) + ε T0] and for t ≥ t0(ε) + ε T0.

(b) We divide the second and third equations in (7.4) by ε and obtain an ordinary
differential equation satisfying a Lipschitz condition with a Lipschitz constant of size
O(ε−1). A standard application of Gronwall’s lemma implies that the estimate (7.3)
holds on the interval [t0(ε), t0(ε) + ε T0], which is of length O(ε).

(c) It remains to investigate time intervals with t ≥ t0(ε)+εT0. To study the sta-
bility of the system (7.4), we consider the Jacobian of the second and third equations
with respect to (z, u) at (y, z, u) = (y0(0), z0(0), e

−c) and ε = 0. It is given by( − I d
− e−cα′(y0(0)) 0

)
with d := fz

(
y0(0), ẏ

+
0 + (ẏ−0 − ẏ+0 ) e

−c
)
(ẏ−0 − ẏ+0 ).

If n denotes the dimension of y, this matrix has n − 1 eigenvalues equal to −1, and
the remaining two eigenvalues are the roots of the equation λ2 + λ + μ = 0, where
μ = e−cα′(y0(0))d > 0 by (7.2). Hence, all eigenvalues of this matrix have negative
real part. By diagonalization it is possible to find an inner product for which the
matrix has a strictly negative logarithmic norm. A continuity argument shows that
there exists an ε-independent neighborhood of (y, z, u) = (y0(0), z0(0), e

−c), where the
matrix has a logarithmic norm smaller than a negative constant. Consequently, for
sufficiently small δ and ε, there exists an ε-independent T1 such that y = y0(t)+O(ε)
and u = exp(−α′(y0(t))(y1(t) + η0(t/ε)) +O(ε)) are in this neighborhood for all t in
the interval ε T0 ≤ t ≤ T1. On this interval the theory of asymptotic expansions for
singularly perturbed ordinary differential equations proves the statement (see, e.g.,
[HW96, Chap. VI.3, pp. 388–392]).

It is of interest to study how far the validity of the asymptotic expansion and of
the estimate (7.3) can be extended. Recall that the dominating smooth functions of
the expansion are given by the system

ẏ0(t) = z0(t), z0(t) = f
(
y0(t), ẏ

+
0 + (ẏ−0 − ẏ+0 )u0(t)

)
,(7.5)

where the function u0(t) is defined by the relation

α′(y0(t))f(y0(t), ẏ+0 + (ẏ−0 − ẏ+0 )u0(t)
)
= 0;(7.6)
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see (5.13). This is a differential-algebraic system. As long as

α′(y0(t))fz(y0(t), ẏ+0 + (ẏ−0 − ẏ+0 )u0(t)
)
(ẏ−0 − ẏ+0 ) > 0,(7.7)

which reduces to (7.2) for t = 0, the implicit function theorem guarantees that (7.6)
can be solved for u0(t). Together with the definition of z0(t) this then leads to
an ordinary differential equation for y0(t). We assume throughout this article that
the functions y0(t), z0(t), and u0(t) exist as far as we interested and that there the
assumption (7.7) holds. To extend the interval of validity of the asymptotic expansion,
we consider the system (7.4) for t ≥ T1 (with T1 as in the proof of Theorem 7.1). We
adapt the inner product norm to the new arguments of the Jacobian and prove that
the estimate (7.3) is valid on an interval [T1, T2]. This procedure can be iterated as
long as u0(t) ∈ [c0, 1] with c0 > 0. If u0(t) crosses the value 1, the system (5.1)
will have a new breaking point; if u0(t) approaches 0, the function y1(t) will become
unbounded and the asymptotic expansion is no longer valid. Both situations will be
studied in detail in section 8.

8. Asymptotic expansion of emerging classical solution. We consider the
neutral delay equation (1.1) with terminating solution at t = t0 (cf. condition (2.4)).
Beyond this point, a weak solution

(
y0(t), z0(t)

)
is defined by (7.5)–(7.6). As long as,

with ẏ+0 , ẏ
−
0 defined in (2.2),

α′(y0(t))f(y0(t), ẏ+0 ) < 0, α′(y0(t))f(y0(t), ẏ−0 ) > 0,(8.1)

a classical solution cannot exist. However, a solution emerges tangentially from the
manifold at a point t = t1, when one of the expressions in (8.1) changes sign. If the
first expression changes sign, we have u0(t1) = 0 for the function defined in (7.6),
and the solution continues in the region {y ; α(y) > 0}. If the second expression
in (8.1) changes sign, we have u0(t1) = 1, and the solution goes back to the region
{y ; α(y) < 0}.

In this section we are interested to see whether the regularization (1.3) can cor-
rectly reproduce this behavior. We consider the situation of section 5.1, where the
regularized solution remains close to the manifold {y ; α(y) = 0} on a nonempty
interval beyond the first breaking point. In fact, it lies in the region {y ; α(y) > 0}.

8.1. Solution, escaping through a breaking point. In this section we as-
sume that the function α′(y0(t))f(y0(t), ẏ−0 ) changes sign (from positive to negative)
at t = t1. Because of (7.7) this is equivalent to u0(t1) = 1 and u̇0(t1) > 0 for the func-
tion given by (7.6). The discussion at the end of section 7 shows that the asymptotic
expansion of section 5.1 does not blow up in a neighborhood of t1. In fact, there will
be a breaking point close to t1. To see this we observe that

α
(
y(t)

)
= ε α′(y0(t)) y1(t) +O(ε2) = −ε lnu0(t) +O(ε2),

so that the existence of a breaking point t1(ε) = t1 + O(ε) is a consequence of the
implicit function theorem. Until this breaking point, the expansion of section 5.1 is
valid. Beyond it we are concerned with the ordinary differential equation (4.1), and
the analysis of section 4 yields an asymptotic expansion for the solution of (1.3) on an
interval t1(ε) ≤ t ≤ T (with T independent of ε). Initial values are given by continuity
as an expansion in powers of ε. Since for t = t1(ε) we have z(t1(ε)) = f(y(t1(ε)), ẏ

−
0 )

and ϕ̇(0) = ẏ−0 by (2.2), the transient parts of the expansion will be of size O(ε2) for
the y-component and of size O(ε) for the z-component.
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Fig. 8.1. Solution y(t) of the singularly perturbed delay equation (8.2) with ε = 0.1 · 2−n for
n = 0, 1, 2, . . . , and with ε = 0 (broken thick line).

Example. Consider the singularly perturbed delay equation

ẏ(t) = z(t),

ε ż(t) = d(t)− z
(
α(y(t))

) − z(t), α(y) = y − 3, d(t) = 4− 2t,
(8.2)

with initial functions y(t) = z(t) = 0 for t ≤ 0. For ε = 0, the solution until the
first breaking point t0 = 1 is z(t) = 4 − 2t, y(t) = 4t− t2. We have a weak solution
y(t) = 3, z(t) = 0 on the interval [1, 2], and after the point t1 = 2 a classical solution
emerges from the manifold y = 3, which is given by z(t) = 4− 2t, y(t) = −1+4t− t2.

For small ε > 0, the solution until the first breaking point t0(ε) = 1 + ε+O(ε2)
is z(t) = 4 + 2ε− 2t− (4 + 2ε)e−t/ε and y(t) = (4 + 2ε)t− t2 + ε(4 + 2ε)(e−t/ε − 1).
Beyond this breaking point, the smooth part of the asymptotic expansion is

y(t) = 3− ε ln(t/2) +O(ε2), z(t) = −ε/t+O(ε2),

and we see that there exists a further breaking point near t1 = 2. For various choices
of ε, the solution component y(t) is plotted in Figure 8.1. The nonsmooth transients
are well visible at the first breaking point; they are by a factor ε smaller (and not
visible) at the second breaking point.

8.2. Refined asymptotic expansion close to the breaking point. More
challenging is the situation where the function α′(y0(t))f(y0(t), ẏ+0 ) changes sign at
t = t1 (this time from negative to positive). This is equivalent to u0(t1) = 0 and
u̇0(t1) < 0 for the function u0(t) defined by (7.6). We have the following asymptotic
behavior for t close to t1.

Lemma 8.1. For the asymptotic expansion of section 5.1 consider the situation
where the function u0(t) of (7.6) is positive for t0 ≤ t < t1 and satisfies u0(t) =
a(t1 − t) +O((t1 − t)2) for t→ t1 with a > 0. The smooth coefficient functions of the
expansion then satisfy asymptotically for t→ t1 (t < t1)

εjyj(t) ∼

⎧⎪⎨⎪⎩
ε ln(t1 − t) for j = 1,

ε
( ε

(t1 − t)2

)j−1

for j ≥ 2
(8.3)

and

εjzj(t) ∼ (t1 − t)
( ε

(t1 − t)2

)j

.(8.4)



ASYMPTOTIC EXPANSIONS FOR NEUTRAL DELAY EQUATIONS 2449

Here, the symbol ∼ means that the left-hand function divided by the right-hand func-
tion converges to a nonzero vector.

Proof. We follow the recursive construction of the smooth coefficient functions
(section 5.1) and analyze their behavior close to t1. The definition of u0(t) in (5.13)
implies that α′(y0(t))y1(t) = − lnu0(t) ∼ − ln(t1 − t). Differentiating this relation
with respect to time and using ẏ1(t) = z1(t) proves that α′(y0(t))z1(t) is asymptot-
ically equal to 1/(t1 − t) plus a smooth function multiplied by y1(t). From Step 2a
(section 5.1) we obtain that

u0(t)α
′(y0(t))y2(t) = a(t)y1(t) +

1

t1 − t
+ · · ·(8.5)

is of the same structure. The differential equation that determines y1(t) is linear with
an inhomogeneity that contains a summand proportional to 1/(t1 − t). This proves
(8.3) for j = 1 and by differentiation (8.4).

For the next step we divide (8.5) by u0(t) ∼ (t1 − t) and we differentiate the
relation with respect to time. Using z2(t) = ẏ2(t) this proves that α′(y0(t))z2(t) is
asymptotically equal to 1/(t1 − t)3 and contains a summand that depends linearly
on y2(t). The function y2(t) is thus determined by a linear differential equation with
an inhomogeneity containing a summand proportional to 1/(t1 − t)3. This proves the
statement for j = 2 and, by an induction argument, for all j. Note that we lose two
powers of (t1 − t) when increasing j by one.

Due to the factor ε/(t1−t)2 in (8.3)–(8.4), the asymptotic expansion of section 5.1
does not give any information for t1 − √

ε < t < t1. (All terms in the expansion are
of comparable size.) We therefore need a refined analysis close to the point t1. Since
we need to cover an interval of length O(

√
ε), we consider the two-scale ansatz

y(t) = y0(t) + ε η(τ), z(t) = z0(t) +
√
ε ζ(τ), u(t) = u0(t) +

√
ε ν(τ),(8.6)

where the variable τ is given by t = t1+
√
ε τ and the functions y0(t), z0(t), and u0(t)

are those of (7.5)–(7.6). The functions η(τ), ζ(τ), and ν(τ) are to be determined so
that y(t), z(t), and u(t) satisfy the system (7.4), which is equivalent to (5.1). The
perturbations then have to satisfy the system (with t = t1 +

√
ε τ)

η′(τ) = ζ(τ),
√
ε ζ′(τ) = fz

(
y0(t), ẏ

+
0 + (ẏ−0 − ẏ+0 )u0(t)

)
(ẏ−0 − ẏ+0 ) ν(τ) − ζ(τ)

+
√
εR

(
ε, t, η(τ), ν(τ)

)
,

(8.7)

where the smooth function εR collects −εż0(t) as well as linear terms in εη(τ) and
ε
√
εν(τ), and quadratic and higher order terms in (εη(τ),

√
εν(τ)) with coefficients

depending smoothly on ε and t. The third equation of (7.4), which is responsible for
the singularity in the previous expansion, now becomes (again with t1 +

√
ε τ)

ε
(
u̇0(t) + ν′(τ)

)
= −(

u0(t) +
√
ε ν(τ)

)
α′(y0(t) + ε η(τ)

)(
z0(t) +

√
ε ζ(τ)

)
.(8.8)

Since u0(t1 +
√
ε τ) =

√
ε τ u̇0(t1) + O(ε) and α′(y0(t))z0(t) = 0 by (5.10), the

right-hand expression of (8.8) contains a factor ε and we are concerned with a regular
differential equation for ν(τ). To solve the system (8.7)–(8.8) we expand the functions
in powers of

√
ε,

η(τ) = η0(τ) +
√
ε η1(τ) + ε η2(τ) + ε

√
ε η3(τ) + · · · ,

ζ(τ) = ζ0(τ) +
√
ε ζ1(τ) + ε ζ2(τ) + ε

√
ε ζ3(τ) + · · · ,

ν(τ) = ν0(τ) +
√
ε ν1(τ) + ε ν2(τ) + ε

√
ε ν3(τ) + · · · .

(8.9)
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Fig. 8.2. Solutions ν0(τ) of (8.11) with parameters c = −1/3 and d = 6.

For the leading terms we get the system

η′0(τ) = ζ0(τ),

0 = fz
(
y0(t1), ẏ

+
0

)
(ẏ−0 − ẏ+0 ) ν0(τ) − ζ0(τ),

ν′0(τ) = −(
u̇0(t1) τ + ν0(τ)

)
α′(y0(t1))ζ0(τ) − u̇0(t1).

(8.10)

Inserting ζ0(τ) from the second relation into the third equation, we are led to the
nonautonomous scalar differential equation

ν′0(τ) = −d (c τ + ν0(τ)
)
ν0(τ) − c,(8.11)

where c = u̇0(t1) < 0 and d = α′(y0(t1))fz(y0(t1), ẏ+0 )(ẏ
−
0 − ẏ+0 ) > 0 by our assump-

tion (7.7). Solutions of this differential equation are drawn in Figure 8.2.
Lemma 8.2. The differential equation (8.11) with fixed parameters c < 0 and

d > 0 possesses a unique solution satisfying ν0(τ) → 0 for τ → −∞. It is defined for
all τ ∈ R, it is positive and monotonic increasing, and it asymptotically behaves like

ν0(τ) ∼ −(dτ)−1 for τ → −∞,

ν0(τ) ∼ −cτ for τ → ∞.

Proof. The slope of the vector field equals −c > 0 on the straight lines ν0 = 0
and ν0 = −cτ . It is zero on the hyperbola given by −d(cτ + ν0)ν0 − c = 0. Therefore,
the set A = {(τ, ν) ; ν > 0, 0 < −d(cτ + ν)ν − c < −c} is positively invariant for
the differential equation (8.11). Moreover, the function h(τ, ν) = d (c τ + ν0)ν0 − c
satisfies (h(τ, ν) − h(τ, ν̂))(ν − ν̂) < 0 on A, so that solutions are contractive there.
This implies the existence of a unique solution satisfying ν0(τ) → 0 for τ → −∞.

The asymptotic behavior at −∞ follows from neglecting the quadratic term in
the differential equation, and that at +∞ can be seen from the differential equation
for the function ν0(τ) + cτ .

Once the function ν0(τ) is known, ζ0(τ) is uniquely given by the second relation
of (8.10), and the function η0(τ) is obtained by integration of the first relation. The
integration constant can be used for matching initial values.
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To obtain further coefficient functions, we insert the expansion (8.9) into (8.7)–
(8.8), we substitute t = t1 +

√
ετ , and we expand everything into powers of

√
ε.

Comparing like powers of
√
ε then yields the equations

η′k(τ) = ζk(τ),

0 = fz
(
y0(t1), ẏ

+
0

)
(ẏ−0 − ẏ+0 ) νk(τ)− ζk(τ) + eζ(τ),

ν′k(τ) = −(
u̇0(t1) τ + ν0(τ)

)
α′(y0(t1))ζk(τ) − νk(τ)α

′(y0(t1))ζ0(τ) + eν(τ).

(8.12)

Here, the remainder term eζ(τ) is a linear combination of τk−1, of ζ′k−1(τ), of τ
l1ηl2(τ)

with l1+ l2 ≤ k−1, of τ l1νl2(τ) with l1+ l2 ≤ k−2, and of τ l1
∏l2

i=1 ηri(τ)
∏l3

i=1 νsi(τ)

with l1 +
∑l2

i=1(ri + 2) +
∑l3

i=1(si + 1) ≤ k + 1 and l2 + l3 ≥ 2. This follows from
the fact that the function εR of (8.7) is a linear combination of terms ε(

√
ετ)l, l ≥ 0,

of εl0(
√
ετ)l1εη(τ) with l0, l1 ≥ 0, of εl0(

√
ετ)l1ε

√
εν(τ) with l0, l1 ≥ 0, and of4

εl0(
√
ετ)l1 (εη(τ))l2 (

√
εν(τ))l3 with nonnegative li satisfying l2 + l3 ≥ 2. The remain-

der term eν(τ) is a linear combination of τk, of τ l0 (τ l1+νl1−1)
∏l3

i=1 ηri(τ) with l1 ≥ 1,

l3 ≥ 1, and l0 + l1 +
∑l3

i=1(ri + 2) ≤ k+ 2, and of τ l0(τ l1 + νl1−1)ζl2
∏l3

i=1 ηri(τ) with

l1 ≥ 1, l2 ≥ 0, l3 ≥ 0, and l0 + l1 + l2 +
∑l3

i=1(ri + 2) ≤ k + 1.
Inserting ζk(τ) from the second into the third relation of (8.12) and using (8.10)

yields

ν′k(τ) = −d (c τ + 2ν0(τ)
)
νk(τ) + e(τ),(8.13)

where e(τ) = eν(τ) − (u̇0(t1) τ + ν0(τ))α
′(y0(t1))eζ(τ), and the constants c, d are

as in (8.11). This is a linear differential equation with inhomogeneity depending on
previously computed coefficient functions.

Lemma 8.3 (negative τ). With the function ν0(τ) of Lemma 8.2 the linear differ-
ential equations (8.13) possess unique solutions νk(τ) that grow at most polynomially
for τ → −∞. The system (8.12) then uniquely determines ζk(τ), and ηk(τ) up to an
additive constant. These functions admit, for τ → −∞, an asymptotic expansion of
the form

νk(τ), ζk(τ) ∼
∑

j≤k−1

c0j τ
j +

k∑
l=1

(ln |τ |)l
∑

j≤k−l

clj τ
j ,

ηk(τ) ∼
∑
j≤k

d0j τ
j +

k∑
l=1

(ln |τ |)l
∑

j≤k−l+1

dlj τ
j + d (ln |τ |)k+1.

Proof. The function ν0(τ) of Lemma 8.2 has, for τ → −∞, an asymptotic expan-
sion of the form

ν0(τ) ∼ c−1

τ
+
c−3

τ3
+
c−5

τ5
+ · · · .

The coefficients cj can be computed recursively after inserting the expansion into the
differential equation (8.11). This expansion can also be obtained from the explicit

4For vector valued η(τ) the product η(τ)l has to be understood as the value of an l-linear function
applied with all arguments equal to η(τ).



2452 NICOLA GUGLIELMI AND ERNST HAIRER

representation (8.23), given below. By (8.10), the function ζ0(τ) then also has such
an expansion, and the asymptotic expansion for η0(τ) is obtained by integration,

η0(τ) ∼ d ln |τ |+ d0 +
d−2

τ2
+
d−4

τ4
+ · · · .

This proves the statement for k = 0. For the moment the integration constant d0 is
a free parameter, but we shall see later that it has to be chosen as d0 = O(ln ε).

We next consider the linear differential equation (8.13) for k ≥ 1. Denoting
a(τ) = −d(cτ + 2ν0(τ)) = 2γ2τ − 2dν0(τ) and A(τ) =

∫ τ

0 a(σ) dσ its integral, the
variation of constants formula yields

νj(τ) = CeA(τ) + eA(τ)

∫ τ

−∞
e−A(σ)e(σ) dσ.

The only solution that does not increase exponentially fast for τ → −∞ is the one
given by C = 0. Assume that the inhomogeneity e(τ) has an asymptotic expansion
of the form

e(τ) ∼
∑
j≤n

e0jτ
j +

m∑
l=1

(ln |τ |)l
∑

j≤n−l+1

elj τ
j ;(8.14)

then the quotient q(τ) = e(τ)/a(τ) has a similar expansion with different coefficients
and n replaced by n − 1, and the derivative q′(τ) has a similar expansion with n
replaced by n− 2. Integration by parts shows that∫ τ

−∞
e−A(σ)e(σ) dσ =

∫ τ

−∞
e−A(σ)A′(σ)

e(σ)

a(σ)
dσ

= − e−A(τ) e(τ)

a(τ)
+

∫ τ

−∞
e−A(σ) d

dσ

(
e(σ)

a(σ)

)
dσ.

Recursively applying integration by parts proves that the solution (with C = 0) has
a similar asymptotic expansion as the inhomogeneity, but with n replaced by n− 1.

The proof of the lemma now proceeds by induction on k. Assume that the asymp-
totic expansion is true for ηl(τ), ζl(τ), νl(τ) with l < k. The inhomogeneity e(τ) of
(8.13) then satisfies (8.14) with m = k and n = k. Consequently, the solution νk(τ)
is of the stated form. Since eζ(τ) satisfies (8.14) with m = k and n = k − 1, we also
obtain the statement for ζk(τ). The asymptotic expansion for ηk(τ) is obtained by
integration of that of ζk(τ).

Choice of the transition point. An asymptotic expansion is useful only if the
summands decrease (in absolute value) up to a sufficiently large truncation index.
Because of the asymptotic behavior (8.3)–(8.4), the expansion of section 5.1 is mean-
ingful only for t < t1 such that ε(t1 − t)−2 is some positive power of ε. For the
expansion (8.9), whose asymptotic behavior is given in Lemma 8.3, the summands
decrease if

√
ε |τ | = t1 − t is some positive power of ε. Both expressions contain the

same power of ε if we fix the transition from one asymptotic expansion to the other at
the point t∗ = t1−ε1/3 = t1−√

ετ∗ with τ∗ = ε−1/6. This motivates the consideration
of the interval [t1 −√

ετ∗, t1 +
√
ετ∗] in Theorem 8.5 below.

Matching initial values. At the point t∗ = t1 − ε1/3 the solution of (1.3) does not
have any transient layer. This means that the solution is completely determined by
imposing the value of y(t∗). Due to the asymptotic behavior (8.3) this value is of the
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form y0(t
∗)+ εη∗ with η∗ = O(ln ε). To get a smooth transition we put η(−τ∗) = η∗.

In the expansion (8.9) we arbitrarily fix η0(−τ∗) = η∗ and ηj(−τ∗) = 0 for j ≥ 1.
Note that the above construction of “smooth” coefficient functions does not need any
initial values for ζj(τ) and νj(τ).

Lemma 8.4 (positive τ). The coefficient functions of the expansion (8.9), deter-
mined in Lemmas 8.2 and 8.3, are bounded for τ → ∞ by

νk(τ) = O(τk+1), ζk(τ) = O(τk+1), ηk(τ) = O(τk+2).

Proof. We consider the functions ωj(τ) = cjτ
j+1 + νj(τ), where c0 = u̇0(t1),

c1 = 1
2 ü0(t1), . . . are the Taylor coefficients of u0(t) such that

u(t1 +
√
ε τ) = u0(t1 +

√
ε τ) +

√
ε ν(τ) =

√
ε ω0(τ) + ε ω1(τ) + ε

√
ε ω2(τ) + · · · .

From (8.11) we see that the coefficient function ω0(τ) satisfies the differential inequal-
ity ω′

0(τ) = −dω0(τ)(ω0(τ) − c τ) ≤ d c τ ω0(τ) (recall that c = c0 < 0 and d > 0).
This implies, for τ ≥ 0,

0 < ω0(τ) < ω0(0) e
−γ2τ2

with γ2 = −d c
2
> 0,(8.15)

and ν0(τ) = ω0(τ) − c0τ approaches exponentially fast the line −c τ . By (8.10), the
components of ζ0(τ) behave like ν0(τ), and after integration the function η0(τ) is seen

to be of the form C1 + C2τ
2 + O(τ−1e−γ2τ2

); cf. [HW97, p. 133]. To study higher
order coefficient functions, we notice that (8.8) and (8.7) yield a differential equation

ω′
k(τ) = a(τ)ωk(τ) + hk(τ), a(τ) = d c τ − 2 dω0(τ) < − 2 γ2 τ,(8.16)

where the inhomogeneity is a linear combination of terms, each of which contains one
factor ωj(τ) with 0 ≤ j ≤ k − 1. By induction on k we shall prove that ωk(τ) =

O(τ3k e−γ2τ2

) and that the stated estimates in the lemma are true.
Assume that these estimates hold up to the level k. The dominant terms of the

inhomogeneity hk+1(τ) are ωk(τ)α
′(y0(t1))ζ1(τ) and ωk(τ)α

′′(y0(t1))(τ ẏ0(t1), ζ0(τ))
and ωk(τ)α

′′(y0(t1))(η0(τ), z0(t1)), and they are all bounded by O(τ3k+2 e−γ2τ2

). The

variation of constants formula thus yields ωk+1(τ) = O(τ3k+3 e−γ2τ2

). The estimates
for the coefficient functions νk+1(τ), ζk+1(τ), and ηk+1(τ) then follow at once from
their definition.

We are now able to prove the validity of the ansatz (8.6) and of the asymptotic
expansion (8.9) close to the breaking point t1.

Theorem 8.5. We denote (with t = t1 +
√
ετ)

ŷ(t) = y0(t) + ε η̂(τ), ẑ(t) = z0(t) +
√
ε ζ̂(τ),(8.17)

where the functions y0(t) and z0(t), defined by (7.5)–(7.6), are assumed to exist for t

in an open ε-independent interval centered at t1. The functions η̂(τ) and ζ̂(τ) (and
also ν̂(τ)) denote the series (8.9) truncated after the terms with factor (

√
ε)N+1.

For sufficiently small ε, there then exists on the interval [t1 − √
ετ∗, t1 +

√
ετ∗] with

τ∗ = ε−1/6 a solution of (5.1) which satisfies

y(t) = ŷ(t) +O(ε · εN/3), z(t) = ẑ(t) +O(
√
ε · εN/3).(8.18)

Proof. We start by estimating the defect for negative τ . By Lemma 8.3 the
coefficient functions satisfy νk(τ), ζk(τ) = O(|τ |k−1 ln |τ |) and ηk(τ) = O(|τ |k ln |τ |)
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for τ → −∞. Inserting the truncated series η̂(τ), ζ̂(τ), and ν̂(τ) into the differential
equation yields a defect of sizeO((

√
ε τ)N ) in the second equation of (8.7) and a defect

of size O(ε(
√
ε τ)N ) in (8.8). Notice that the presence of ln |τ | in the above estimates

and the presence of ln ε in the initial value of η0(τ) are compensated with a factor√
ε. On the interval [−τ∗, 0] we have

√
ε|τ | ≤ ε1/3, so that the defects are bounded

by O(εN/3) and O(ε · εN/3), respectively.
We next estimate the defect for positive τ . By Lemma 8.4 the coefficient functions

satisfy νk(τ), ζk(τ) = O(|τ |k+1), and ηk(τ) = O(|τ |k+2) for τ → +∞. Inserting

the functions η̂(τ), ζ̂(τ), and ν̂(τ) into the system (8.7)–(8.8) yields a defect of size
O(τ(

√
ετ)N+1) in (8.7) and of size O((

√
ετ)N+3) in (8.8). On the interval [0, τ∗], the

defects are bounded by O(εN/3) and O(ε · εN/3), respectively.
Before proceeding with the proof of the theorem we note that the second equation

of (8.7) is of the form

√
ε ζ′(τ) = −ζ(τ) + g(τ),(8.19)

where g(τ) = fz
(
y0(t), ẏ

+
0 + (ẏ−0 − ẏ+0 )u0(t)

)
(ẏ−0 − ẏ+0 ) ν(τ) +

√
εR(ε, t, η(τ), ν(τ))

with t = t1 +
√
ετ . It follows from the variation of constants formula together with

integration by parts that this equation has a unique solution without transient layer.
It has an asymptotic expansion given by

ζ(τ) = g(τ)−√
ε g′(τ) + ε g′′(τ) − ε

√
ε g′′′(τ) + · · · .(8.20)

We continue with the proof of (8.18). Since neither the solution of (5.1) nor the
approximation (8.17) has a transient phase at t∗ = t1 − √

ε τ∗ (with τ∗ = ε−1/6),
we can use the representation (8.20) for the function ζ(τ). Inserting it into the first
equation of (8.7) and into (8.8), we obtain a regular differential equation

η′(τ) = S
(
τ, η(τ), ν(τ)

)
,

ν′(τ) = −d(cτ + ν(τ)
)
ν(τ) + T

(
τ, η(τ), ν(τ)

)
,

(8.21)

where S and T are smooth functions and satisfy (for |τ | ≤ ε−1/6)

‖S(τ, η, ν)− S(τ, η̂, ν̂ )‖ ≤ √
ε L1‖η − η̂ ‖+ L2|ν − ν̂|,

|T (τ, η, ν)− T (τ, η̂, ν̂ )| ≤ ε1/3L3‖η − η̂ ‖+ ε1/6L4|ν − ν̂|.
(8.22)

After Taylor expansion and division by ε, the right-hand side of (8.8) contains terms√
ετη(τ) and

√
ετ2ν(τ), which give rise to the factors

√
ε|τ | ≤ ε1/3 and

√
ε|τ |2 ≤ ε1/6

in the second estimate of (8.22) (notice that |τ | ≤ ε−1/6).
The approximations η̂(τ) and ν̂(τ) of (8.17) satisfy (8.21) with a defect of size

O(εN/3). The function h(τ, ν) = −d(cτ + ν)ν, appearing in (8.21), satisfies h(τ, ν)−
h(τ, ν̂) = −d(cτ+ν+ν̂)(ν−ν̂). Since cτ+ν0(τ) > 0 for all τ , we obtain the differential
inequalities (with a slightly increased value of L4)

D+‖η(τ) − η̂(τ)‖ ≤ √
εL1‖η(τ) − η̂(τ)‖ + L2|ν(τ) − ν̂(τ)| + C1ε

N/3,

D+|ν(τ) − ν̂(τ)| ≤ ε1/3L3‖η(τ) − η̂(τ)‖ + ε1/6L4|ν(τ) − ν̂(τ)|+ C2ε
N/3,

where we make use of Dini derivatives as in [HW96, p. 392]. Solving this inequality for
the scaled variables (η, ε−1/6ν) yields the bounds ‖η(τ)− η̂(τ)‖+ε−1/6|ν(τ)− ν̂(τ)| ≤
Ceε

1/6(τ+τ∗)εN/3−1/6 for τ ≥ −τ∗. This yields the estimates |ν(τ) − ν̂(τ)| ≤ CεN/3
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for τ ∈ [−τ∗, τ∗]. Inserting them into the differential inequality for ‖η(τ)− η̂(τ)‖ and
into (8.20) yields the estimates (8.18).

A few explicit formulas. The solution of (8.11) can be expressed in terms of the

error function. The change of variables ν0(τ)+c τ = κ(τ) e−γ2τ2

leads to a differential
equation for κ(τ) which can be solved by separation of variables. This gives

ν0(τ) + c τ =
γ e−γ2τ2

C + d
∫ γτ

−∞ e−σ2dσ
, γ2 = −d c

2
> 0.(8.23)

The only solution satisfying ν0(τ) → 0 for τ → −∞ (or more precisely ν0(τ) ∼
−(dτ)−1) is obtained when the integration constant is chosen as C = 0. Using the

fact that
∫∞
−∞ e−σ2

dσ =
√
π, we get the representation

ν0(τ) + c τ =
γ e−γ2τ2

d (
√
π − ∫∞

γτ e−σ2dσ)
,

which is more suitable for large positive τ . This shows that at the critical point t = t1,
i.e., τ = 0, we have asymptotically for ε→ 0 that

α
(
y(t1)

)
= − ε lnu(t1) = − ε ln

(√
ε (c τ + ν0(τ) + · · ·) = − ε ln

√
ε− ε ln

√
2|c|
πd + · · ·

and the dominant term of the distance of the solution y(t1) of (1.3) to the manifold
{y ; α(y) = 0} is independent of the problem. For t = t1 +

√
ε τ and large positive τ

this analysis shows that

α
(
y(t)

)
= − ε lnu(t) = γ2 (t− t1)

2 − ε ln
√
ε− ε ln

√
|c|
2πd + · · ·

and the solution is seen to leave the manifold like a parabola.

8.3. Escaping solution without breaking point. We finally arrive at the
study of the solution of (1.3), when it leaves the manifold {y ; α(y) = 0} opposite the
side where it entered. The proof of Lemma 8.4 shows that for t∗ = t1 +

√
ε τ∗ with

τ∗ = ε−1/6 we have

0 ≤ u(t∗) ≤ √
ε e−γ2τ∗2

=
√
ε e−γ2ε−1/3

,

which is smaller than every power of ε. Therefore, the term u(t) in (7.4) does not
contribute to the smooth part of the solution of (1.3). Since there is no reason for a
transient phase at t∗, we can replace the function u(t) by zero, and we are concerned
with a singularly perturbed differential equation

ẏ(t) = z(t),

ε ż(t) = f
(
y(t), s

(
ε, α(y(t))

)) − z(t).
(8.24)

The standard well-developed theory for singularly perturbed ordinary differential
equations can be applied. We are in the lucky situation, where we know that a
transient is absent, so that the asymptotic expansion is of the form

y(t) =

N∑
j=0

εj yj(t) +O(εN+1), z(t) =

N∑
j=0

εj zj(t) +O(εN+1).(8.25)
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Fig. 8.3. Solution y(t) of the singularly perturbed delay equation (8.26) with ε = 0.05 · 2−n,
n = 0, . . . , 4; for ε = 0.0125, the truncated asymptotic expansions are included for three situations.

We only have to match the initial value for y(t) at t = t∗. The value for z(t) is
automatically correct (because of the absence of a transient layer). We put yj(t

∗) = 0
for j ≥ 1, and y0(t

∗) = y∗, where y∗ = y∗(ε) is the approximation at t∗ obtained with
the truncated asymptotic expansion (8.6)–(8.9).

The coefficient functions of (8.25) are obtained by inserting the series into (8.24)
and by comparing like powers of ε as follows: express z0(t) in terms of y0(t), then
solve an ordinary differential equation for y0(t), express z1(t) in terms of y1(t) and
known functions, then solve an ordinary differential equation for y1(t), etc.

Example. This time we consider the singularly perturbed delay differential equa-
tion

ẏ(t) = z(t),

ε ż(t) = d(t)− 3 z
(
α(y(t))

) − z(t), α(y) = y − 3, d(t) = 2 + 2t,
(8.26)

with initial functions y(t) = z(t) = 0 for t ≤ 0. For ε = 0, the solution until the first
breaking point t0 = 1 is z(t) = 2 + 2t, y(t) = 2t+ t2. As in the previous section, we
have a weak solution y(t) = 3, z(t) = 0 on the interval [1, 2], but after the point t1 = 2
a classical solution emerges the manifold y = 3 in the opposite direction. There, the
solution is given by z(t) = (1− e−6(t−2))/3, y(t) = 41/18 + t/3 + e−6(t−2)/18.

For positive ε we have the solution z(t) = 2t + 2(1 − ε)(1 − e−t/ε), y(t) = t2 +
2(1− ε)(t− ε(1− e−t/ε)) until the first breaking point t0(ε) = 1+ ε+O(ε2). Beyond
this breaking point, the smooth part of the asymptotic expansion is

y(t) = 3− ε ln
(2− t

3

)
+O(ε2), z(t) =

ε

2− t
+O(ε2),

and we see that already the ε-term has a singularity at t1 = 2 (see Figure 8.3). The
asymptotic expansion of section 5.1 approximates the solution only on intervals [t0, T ]
with T < t1. Close to t1 = 2 the solution satisfies

y
(
t1 +

√
ε τ

)
= 3− ε ln

(√
ε ω0(τ) + ε ω1(τ) + ε

√
ε ω2(τ) + · · ·

)
,

where the coefficient functions ωj(τ) are the solution of ω′
0 = −(6ω0 + 2τ)ω0 , ω

′
1 =

−(12ω0+2τ)ω1−ω0 (4−6 η0−6ω′
0), ω

′
2 = −(12ω0+2τ)ω2−ω1ζ1−ω0(ζ

′
1−6η1−6ω0),

with bounded initial values at −∞, and η0 = − ln(
√
ε ω0), η1 = −ω2/ω1, ζ1 =

6ω1 − 6η0 + 4− 6ω′
0.
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Away from the critical point t1 the solution admits the expansion (8.25), where
y0(t) is the solution for ε = 0, and y1(t) = 1 + (C − 2t)e−6(t−2) with C chosen to
match the previous expansion at t∗ = 2 + ε1/3.

Figure 8.3 shows the exact solution of (8.26) for several values of ε. For the
particular value ε = 0.0125, the approximations obtained by truncated asymptotic
expansions are included. On the interval (1, 2) we see the smooth part of the expansion
(5.5). Away from the initial transient phase it is an excellent approximation as long
as one is not close to t1 = 2, where this expansion has a singularity. The scaled
expansion (8.6)–(8.9) approximates the solution on a O(ε1/3) neighborhood of t1 = 2.
Surprisingly it is also an excellent approximation on the whole interval (1, 2). This
can be explained by the fact that the functions y0(t), z0(t), u0(t) are polynomials, so
that no error is introduced by replacing them with their Taylor polynomials. Finally,
the expansion (8.25) approximates the solution from the instant (close to 2 + ε1/3)
where the previous expansion loses its value.

We remark that the given analysis presents interesting analogies—we refer in par-
ticular to the time scales for the several observed phenomena—to the results given in
[MPN11] for a singularly perturbed scalar state-dependent delay differential equation.

Acknowledgments. We thank the referees for their critical reading of our article
and their useful suggestions.
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