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1.1 Introduction

The numerical treatment of ordinary differential equations has continued
to be a lively area of numerical analysis for more than a century, with
interesting applications in various fields and rich theory. There are three
main developments in the design of numerical techniques and in the
analysis of the algorithms:

e Non-stiff differential equations. In the 19th century (Adams, Bash-
forth, and later Runge, Heun and Kutta), numerical integrators have
been designed that are efficient (high order) and easy to apply (ex-
plicit) in practical situations.

o Stiff differential equations. In the middle of the 20th century one
became aware that earlier developed methods are impractical for a
certain class of differential equations (stiff problems) due to stability
restrictions. New integrators (typically implicit) were needed as well
as new theories for a better understanding of the algorithms.

o Geometric numerical integration. In long-time simulations of Hamil-
tonian systems (molecular dynamics, astronomy) neither classical ex-
plicit methods nor implicit integrators for stiff problems give satisfac-
tory results. In the last few decades, special numerical methods have
been designed that preserve the geometric structure of the exact flow
and thus have an improved long-time behaviour.

The basic developments (algorithmic and theoretical) of these epochs
are documented in the monographs [HNW93], [HW96], and [HLWO06].
Within geometric numerical integration we can also distinguish between
non-stiff and stiff situations. Since here the main emphasis is on con-
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servative Hamiltonian systems, the term “stiff” has to be interpreted as
“highly oscillatory”.

The present survey is concerned with geometric numerical integra-
tion with emphasis on theoretical insight for the long-time behaviour of
numerical solutions. There are several degrees of difficulty:

e Non-stiff Hamiltonian systems — backward error analysis. The main
theoretical tool for a better understanding of the long-time behaviour
of numerical methods for structured problems is backward error analy-
sis (Sect. 1.2). Rigorous statements over exponentially long times have
been obtained in [BG94, HL97, Rei99] for symplectic integrators. Un-
fortunately, the analysis is restricted to the non-stiff situation, and
does not provide any information for problems with high oscillations.

e Highly oscillatory problems — modulated Fourier expansion. The
main part of this survey treats Hamiltonian systems of the form

i+ Q% =-VU(q), (1.1)

where (2 is a diagonal matrix with real entries between 0 and a large
w, and U(q) is a smooth potential function. The additional difficulty
is the presence of two time scales, and the crucial role of harmonic
actions in the long-time analysis. Basic work for the analytic solution
is in [BGG87]. Section 1.3 presents the technique of modulated Fourier
expansions which permits to prove simultaneously the conservation of
energy and actions for the analytic and the numerical solution (where
the product of the time step size and w is of size one or larger). This
is developed in [HLO1, CHLO03] for one high frequency and in [CHLO5]
for several high frequencies.

e Non-linear wave equations. An extension to infinite dimension with
arbitrarily large frequencies permits to treat the long-time behaviour
of one-dimensional semi-linear wave equations. Long-time conser-
vation of harmonic actions along the analytic solution is studied in
[Bou96, Bam03]. The technique of modulated Fourier expansion yields
new insight into the long-time behavior of the analytic solution [CHLO7b],
of pseudo-spectral semi-discretizations [HLOS8], and of full discretiza-
tions [CHLO7a]. This is discussed in Sect. 1.4.

In Sect.1.5, an interesting analogy between highly oscillatory differ-
ential equations and linear multistep methods for non-stiff problems
G = —VU(q) is established (see [HLO4]). The inverse of the step size
plays the role of w, and the parasitic solutions of the multistep method
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correspond to high oscillations in the solution of (1.1). The near con-
servation of the harmonic actions thus yields the bounded-ness of the
parasitic solutions over long times, and permits to prove that special
linear multistep methods are suitable for the long-time integration of
Hamiltonian systems (like those arising in the computation of planetary
motion).

1.2 Backward error analysis

An important tool for a better understanding of the long-time behaviour
of numerical methods for ordinary differential equations is backward
error analysis. We present the main ideas, some important consequences,
and also its limitations in the case of highly oscillatory problems.

1.2.1 General idea

The principle applies to general ordinary differential equations § = f(y)
and to general (numerical) one-step methods y,4+1 = Pr(yy,), such as
Runge-Kutta, Taylor series, composition and splitting methods. It con-
sists in searching for a modified differential equation

2= fu(z) = f(2) + hfa(2) + B2 f3(2) + ..o, 2(0)=wo,  (1.2)

where the vector field is written as a formal series in powers of the step
size h, such that the numerical solution for the original problem is equal
(in the sense of formal power series) to the exact solution of the modified
differential equation (see Fig.1.1).

I | ey
method | Yo, Y1, Y2, y37"'|
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Fig. 1.1. Idea of backward error analysis

To obtain the coefficient functions f;(y), we note that we have the
relation z(t+h) = @ (2(t)) for the (formal) solution of (1.2). Expanding
both sides of this relation into a power series of h and comparing equal
powers of h, permits us to compute the functions fJ(y) in a recursive
manner.
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The importance of backward error analysis resides in the fact that for
differential equations with certain structures (Hamiltonian, reversible,
divergence-free, etc.) solved with suitable geometric integrators (sym-
plectic, symmetric, volume-preserving, etc.), the modified differential
equation has the same structure as the original problem. The study
of the modified differential equation then gives insight into the numer-
ical solution. The rest of this section is devoted to make these state-
ments more precise for the important special case of the Stérmer—Verlet
(leapfrog) discretisation.

1.2.2 Stormer—Verlet discretisation

For ease of presentation we restrict our considerations to the special
Hamiltonian system

G=f(g) with f(y)=-VU(q), (1.3)

where U(q) is a smooth potential function. Its most obvious discretisa-
tion (augmented with an approximation to the velocity p = ¢) is

"t =2q" g = B2 f(g)

(1.4)
qn+1 _qnfl — 2hpn

Due to pioneering work on higher order variants by Stormer, and due to
its importance in molecular dynamics simulations recognised by Verlet,
it is often called Stormer—Verlet method. In the literature on partial
differential equations it is known as the leapfrog discretisation.

Introducing p™t1/2 := (¢"*! — ¢")/h as an intermediate slope, this
method can be written as

h
e = )
qn+1 — qn+hpn+1/2 (15)
7 T h n
Pt = 4 D (g

which is clearly recognised as a symmetric one-step method for (1.3). It
is a geometric integrator par excellence: the numerical flow (¢",p™) —
(g™, p™t1) is symplectic when f(q) = —VU(q), it is volume preserving
in the phase space, and it is time reversible (see [HLWO03]). It is also
the basic scheme for various extensions to higher order methods: com-
position and splitting methods, partitioned Runge Kutta methods, and
symmetric multistep methods.
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1.2.3 Formal backward error analysis

We search for a modified differential equation such that its solution
(¢(t),p(t)), which should not be confused with the solution of (1.3),
formally interpolates the numerical solution of (1.4), i.e

q(t +h) —2q(t) + q(t —h) = h*f(q(t))
qt +h)—q(t—h) = 2hp(t).

Expanding the left hand sides into Taylor series around h = 0, eliminat-
ing higher derivatives by successive differentiation, and expressing the
resulting differential equations in terms of ¢ and p, yields

p = 1@+ (1" @@+ F@0F@) ~ 2 (1@ (.p.5.0)

(1.6)

f'(q
12
+6f"(q)(f(q),p.p) +24 f" (@) (f'(@)p,p) + 3 f" (@) (f(q), F(q))
+6 (@) (@) p,p) + 6 £ @ (@ ()) + O(0°) (L.7)
i =p- %Qf’(q)p 180( (@) (psp.p) +3"(0)(f(a),p)

+6/(0)f (@p) + O(h°).

Due to the symmetry of the method, the modified differential equation
becomes a series in even powers of h.

For the case of a Hamiltonian system (1.3), i.e., f(q) = —=VU(q), the
modified differential equation (1.7) is also Hamiltonan

p: _quh(p7Q)a q:Vth( aQ)

with modified Hamiltonian

H(p.0) = LIl +0G) + 2 (207 (@) (.0) — V"))

- % (U(4)(Q) (p, 2, p,p) = 6U" () (U (a), . P) (1.8)

+3U"(@)(U'(0),U'(a) — 12U (@)p]?) + O(h°).

An important consequence of this observation is the following: since
the numerical solution of the Stormer Verlet discretisation is (at least
formally) equal to the exact solution of the modified differential equa-
tion, we have that Hp(p™,q") = const. As long as the numerical so-
lution stays in a compact set, this implies that the energy H(p,q) =
1||p||?+U(g) remains close to a constant, i.e., H(p", ¢") = const +O(h?)
without any dirft.
The next section shows how this statement can be made rigorous.
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1.2.4 Rigorous backward error analysis

For a rigorous analysis, the modified differential equation constructed in
the previous sections has to be truncated suitably:

2= fan(z) = f2)+hfa(z) +.. BN N(z),  2(0) =yo. (1.9)

Obviously, equality does not hold any more in Fig. 1.1 and an error of size
O(hN*1) is introduced. More precisely, if y,+1 = ®(y,) denotes the
one-step method, and ¢ +(y) the flow of the truncated differential equa-
tion (1.9), we have ||®,(yo) — ©n n(yol| < CnhNT1 for arbitrary N. The
freedom of choosing the truncation index N can be used to minimise this
estimate. For analytic f(y) and for standard numerical integrators (such
as partitioned Runge-Kutta methods including the Stormer—Verlet dis-
cretisation), the choice N ~ h~! yields an estimate

1©1(y0) — @ ,nlyoll < hyMe=o/<h, (1.10)

where « and ~y are constants that only depend on the numerical method,
M is an upper bound of f(y) on a disc of radius 2R around the initial
value yo, and w = M/R is related to a Lipschitz constant of f(y). A
detailed proof can be found in [HLWO06, Chap. IX].

Notice that (1.10) yields an estimate for one step only (local error).
To get estimates for the global error and information on the long-time
behaviour, knowledge on the propagation of perturbations is needed.

e (Conservation of energy. In the case of a symplectic method applied
to a Hamiltonian system, the modified equation is Hamiltonian (see
Section 1.2.3). The truncated modified Hamiltonian Hy n(p, q) is ex-
actly conserved along the solution of (1.9). Therefore, local deviations
in Hy 4 (p", ¢") are just summed up, and one obtains from (1.10) that
this modified Hamiltonian is conserved along the numerical solution

/2@h) on exponentially long

up to exponentially small errors O(e™”
time intervals 0 < t < O(e?/2*"). This implies the absence of any
drift in the numerical Hamiltonian H (p™, ¢").

e Integrable Hamiltonian systems. Symplectic integrators applied to a
nearly integrable Hamiltonian system give raise to a modified equation
that is a perturbed Hamiltonian system. The celebrated KAM theory
can be used get insight into the long-time behaviour of numerical
integrators, e.g., linear growth of the global error.

e Chaotic systems. In the presence of positive Lyapunov exponents, the
numerical solution remains close to the exact solution of the truncated
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modified equation only on time intervals of length O(h~!). Energy is
well conserved by symplectic integrators also in this situation.

1.2.5 Limitation in the presence of high oscillations

The estimate (1.10) does not give any useful information if the product
wh is of size one or larger. Recall that w is a kind of Lipschitz constant of
the vector field f(y) which, in the case of a stable Hamiltonian system,
can be interpreted as the highest frequency in the solution. This means
that for highly oscillatory differential equations the step size is restricted
to unrealistic small values.

From the example of the harmonic oscillator H(p, q) = 1(p? + w?q?)
it can be seen that the estimate (1.10) cannot qualitatively be improved.
In fact, for all reasonable integrators, the scaled numerical solution
(wq™, p™) depends on the step size h only via the product wh.

The aim of the next section is to present a theory that permits to
analyse the long-time behaviour of numerical time integrators in the
presence of high oscillations.

1.3 Modulated Fourier expansion

In this section we consider Hamiltonian systems

i+Q=9(). gle)=-VU(q), (1.11)

where, for ease of presentation, €2 is a diagonal matrix and U(q) is a
smooth potential function. Typically,  will contain diagonal entries w
with large modulus. We are interested in the long-time behaviour of
numerical solutions when w times the step size h is not small, so that
classical backward error analysis cannot be applied.

1.3.1 Modulated Fourier expansion of the analytic solution

We start with the situation, where {2 contains only diagonal entries
which are either 0 or w, and we split the components of ¢ accordingly,
i.e.,, ¢ = (qo,q1) and 2 = diag (0,wlI). Both, gy and ¢; are allowed to be
vectors. There are two time scales in the solution of equation (1.11):

o fast time wt in oscillations of the form e“?;

e slow time t due to the zero eigenvalue and the non-linearity.
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In the absence of the non-linearity g(¢), the solution of (1.11) is a linear
+iwt For the general case we make the ansatz

= k() e, (1.12)

kEZ

combination of 1, ¢, and e

where z¥(t) are smooth functions with derivatives bounded uniformly
in w. The function 2°(¢) is real-valued, and 2 *(¢) is the complex con-
jugate of z¥(t). Inserting (1.12) into the differential equation (1.11),
expanding the non-linearity into a Taylor series arount 2%, and compar-
ing coefficients of e*** yields
..k . . 2 2
(B R Y s i g
P+ 2ikwif + (1 — m!

m>0 s(a)=k

where @ = (a1,...,q,) is a multi-index, s(a) = Z;n:1 a;, and
g™ (29) 22 = g™ (29)(2*1,...,2%). The second sum is over multi-
indices o = (a1, ..., Q) with a; # 0.

To obtain smooth functions ZJk (t) with derivatives bounded uniformly
for large w, we separate the dominating term in the left-hand side of
(1.13), and eliminate higher derivatives by iteration. This gives a second
order dlfferentlal equation for 20, first order differential equations for
21 and 27!, and algebraic relatlons for all other variables. Under the
“bounded energy” assumption on the initial values

1301 + 124(0)]* < E, (1.14)

it is possible to prove that the coefficient functions are bounded (on in-
tervals of size one) as follows: 23(t) = O(1), zF'(t) = O(w™1), 25 (1) =
O(w™?), and z¥(t) = O(w™*172) for the remaining indices (j, k), see
[HLWO06, Sect. XIIL5].

The time average of the potential U(q) along the analytic solution
(1.12) only depends on the smooth coefficient functions z¥(¢) and is

formall iven by (with z = ...,z_l,zo,zl,zQ,...
y) 8 y

U(z) ) + Z =Y Ut(E0)z (1.15)
m>1 'sa) 0

It is an interesting fact and crucial for the success of the expansion
(1.12) that the functions y*(t) = 2¥(t) et are solution of the infinite
dimensional Hamiltonian system

it + Q% = —V_kU(y), (1.16)
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where V_j, indicates the derivative with respect to the component “—k”
of the argument y. Its Hamiltonian

Hy.3) =5 > (075" + (70 ) +Uly)  (117)
keZ

is therefore a conserved quantity of the system (1.16), and hence also of
(1.13). Since qo(t) = 23(t) + O(w™3), Go(t) = 23(t) + O(w™2), qi(t) =
) et 27 () e WL O(w ) =yl () +yr L)+ O(w2) and ¢ (t) =
iw(yi(t) —yi ' (t)) + O(w?) by the estimates for z¥, the quantity (1.17)
is O(w™1) close to the total energy of the system
. 1/
H(q(t).q(t) = 3 (Il40I* + 12¢(@®)]17) + U (a(2)).- (1.18)
The averaged potential U(y) is invariant under the one-parameter
ikt k

group of transformations y* — e*7y*. Therefore, Noether’s theorem

yields the additional conserved quantity

I(y,y) = —w) k(y ™)y (1.19)
keZ

for the system (1.16). It is O(w™!) close to the harmonic energy

1(a(t). 4(6)) = 2 (1 @I + <[ ()]?) (1.20)

of the highly oscillatory part of the system.

The analysis of this section can be made rigorous by truncating the
arising series and by patching together estimates on short intervals to
get information on intervals of length w™" (with arbitrary N). In this
way one can prove that the harmonic energy (1.20) remains constant up
to oscillations of size O(w 1) on intervals of length w=, a result first
obtained by [BGG87].

1.3.2 Ezxponential integrators

Since ¢"T! — 2cos(hQ) g™ + ¢"~! = 0 is an exact discretisation of the
equation ¢+ Q2g = 0, it is natural to consider the numerical scheme

" —2cos(hQ) ¢" + ¢! = h2Tg(Pq") (1.21)

as discretisation of (1.11). Here, ¥ = ¢(h2) and ® = ¢(h2), where the
filter functions (&) and ¢(&) are even, real-valued functions satisfying
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¥(0) = ¢(0) = 1. Special cases are the following;:
A @
(G

(hQ) = sinc?(3nQ)  ¢(h2) =1 [Gau61]
(hQ) = sinc (hQ2) o(hQ) =1 [Deu79]
(©) ¥ (hQ) = sinc?(hS2) o(h€2) = sinc (hQ2)  [GASSS99]

where sinc (§) = siné&/€. It is also natural to complete formula (1.21)
with a derivative approximation p™ given by

"t — ¢ = 2h sinc (hQ) p™, (1.22)

because, for q(t) = exp(iQ2t) ¢", the derivative p(t) = {(t) satisfies this
relation without error.
Written as a one-step method, we obtain

n h n
o= "+ Yag(®Rg™)
g = cos(hf2) ¢ + QLsin(hQ) p" (1.23)
= Qsin(hQ) ¢" + cos(hQ) P + g Uy g(@g™t),

where Uy = 11 (h§2) with 91 (&) = 9(€)/ sinc (§). Notice that, for Q — 0,
this integrator reduces to the Stormer—Verlet discretisation (1.5).

1.3.3 Modulated Fourier expansion of numerical solution

We are interested in the long-time behaviour of numerical approxima-
tions to the highly oscillatory Hamiltonian system (1.11). Our focus
will be on the near conservation of the total energy (1.18) and of the
harmonic energy (1.20) over long times.

In complete analogy to what we did in Sect.1.3.1 for the analytic
solution, we separate the fast and slow modes by the ansatz

" =q(tn)  with  g(t) =) 2F(t)e!, (1.24)
keZ

where t, = nh, and the coefficient functions are again assumed to be
smooth with derivatives bounded uniformly in w. Inserting this ansatz
into the numerical scheme (1.21), expanding the functions z¥(t 4 h) into
Taylor series around A = 0 and the non-linearity into a Taylor series
ikwt vields

L£F( = h? Z Z T g™ (20) (2)*, (1.25)

m>0 s(a

around 2°, and finally comparing coefficients of e
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where, with the abbreviations s; = sin(4khw) and ¢ = cos(3khw), the
differential operator is given by

—5228 + 2ihsozE + hPeaph 4+ 2ihPsap FE 4 ...
L-Ic(hD>zk:( k<0 2k <0 2k%0 T 3 2k 2 )

— Sk 18k 4128 + 2ihsop it + h2eorEh + %ih‘o’st'é']f +...

Asin (1.13) we separate the dominating term in the left-hand expression
of (1.25). This gives a second order differential equation for zJ, first
order differential equations for z{ and z; ! and algebraic relations for
the other functions, provided that si for k £ 0 and sp_15k41 for k # +1
are bounded away from zero. To achieve this, we assume the numerical
non-resonance condition

|sin(3khw)| > ev/h  for  k=1,2,...,N (1.26)

with some fixed N > 2.

The functions ¢;(§) and ¢(§) in the one-step formulation (1.23) of
the exponential integrator have the role to suppress or weaken numerical
resonance, when hw is close to an integral multiple of w. For the product
hw we therefore suppose

11 (hw)| < C |sinc ($hw)], |p(hw)| < C'|sinc ($hw)| (1.27)

with some moderate constant C'. Moreover, in addition to the standard
assumption of a small step size h, we restrict our considerations to large
frequencies w and, in particular, to

hw > ¢ for some given ¢y > 0, (1.28)

which is precisely the situation where standard backward error analysis
(Sect. 1.2) is not applicable.

These assumptions permit us to carry over the analysis from the an-
alytic solution to the numerical solution of the exponential integrator.
The coefficient functions ka can be bounded in a similar way and they
decay rapidly with increasing k. With the averaged potential U(z) of

(1.15), the system (1.25) can be written as
LE(hD)2* = —h*U V_,U(Pz), (1.29)

where ®z is the vector composed of ®zF. We would like to extract
from this relation a conserved quantity. Notice that the Hamiltonian
(1.17) can be obtained from (1.16) by taking the scalar product of the
Hamiltonian equation (1.16) with 27*, by summing up over all k € Z,
and by writing the appearing expressions as total differentials. Here,
we can try the same. Taking the scalar product of the equation (1.29)
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with U~'® 2% and summing up over all k € Z, the right-hand side is
recognised as the total derivative of U(®z). On the left-hand side, this
procedure yields linear combinations of expressions of the form

§R<27k7 (Zlc)(%)>7 %<Z-7k7(zk)(22+1)>

which all, by miracle, can be written as a total derivative, e.g.,

REZ = SR(5(G2), REE) = IR(ED -5 ED),
37 = $9((E9),  SEO) = 8(EF) - E7).

This yields a conserved quantity for the system (1.25) that is O(h) close
to the Hamiltonian (1.18) of (1.11).

If we take the scalar product of (1.29) with ikw =%, we get in a similar
manner a second conserved quantity. This one turns out to be O(h) close
the harmonic energy (1.20).

To make the analysis rigorous we truncate all appearing series after N
terms, and we then patch together the estimates on small time intervals.
Under the assumptions of this section this proves that the numerical
solution of the exponential integrator satisfies

H(q",p") = H(¢"p") + O(h)
1(q"p") = 1(¢°,p") + O(h)

on intervals of length O(h~N*1), where the constant symbolising the
O(h) reminder may depend on N.

1.3.4 Several high frequencies and resonance

The results of the previous sections can be extended to more than one
high frequencies. We consider the Hamiltonian system (1.11), where the
entries of the diagonal matrix Q are w; = \jw (for j = 0,...,¢) with
Ao =0and A\; > 1for j > 1. As before, w is a large parameter. The
Hamiltonian of this system is

14
Hig, ) = 5 > (sl +llas 1) + U (o). (1.30)

where the components ¢; of ¢ can themselves be vectors in different
dimensions. With the aim of extending the analysis of Sect. 1.3.1 we are
led to consider oscillators e¥“it and products thereof, i.e., e/®®)t where
k- w is the scalar product of k = (ky, ..., k) € Z° and w = (w1, .., wy).



Oscillations over long times in numerical Hamiltonian systems 13

To avoid redundancy in a linear combination of such expressions, we
introduce the resonance module

M={keZ kih + ...+ kede = 0}, (1.31)

and we consider the equivalence relation k ~ j defined by k—j € M. We
choose a set K of representatives which is such that |k| = |ki|+. ..+ |k
is minimal within the equivalence class k+ M, and such that with k €
also —k € K. Extending (1.12) we make the ansatz

q(t) = Z 2K (t) ellkw)t (1.32)
ke
for the solution of (1.11). Here, the smooth function z¥ is partitioned
into z}-‘ in the same as ¢ into g;.

The whole programme of Sects. 1.3.1 and 1.3.3 can now be repeated
to get information on the long-time behaviour of the analytic and the
numerical solution in the case of several high frequencies. Let us just
mention a few crucial steps.

Inserting (1.32) into the differential equation (1.11), a Taylor series
expansion and a comparison of the coefficients of e®¥“)t yields

. . - 1 m (07
4 2i(k-w)E 4 (wF — (k-w)?) 2 = Z p. Z g™ (%) 2%, (1.33)

m>0 " s(a)~k

where a = (a1, . . ., ) is @ multi-index of elements in K, a; # 0, and
s(a) = Z;”Zl aj. Since there is only a fixed finite number of frequencies
and since we restrict all considerations to indices k € K with k| < N,
the situation is very similar to that for one high frequency. We obtain a
second order differential equation for 2, first order differential equations
for zjim where (j) € K is the vector with value 1 at position j and
0 else, and algebraic relations for the remaining coefficient functions.
As in Sect. 1.3.1, the equations (1.33) can be interpreted as a complex

Hamiltonian system with potential

Uz) = U + 3 % S Um(0):, (1.34)
(a)~0

m>1 s

where z = (z¥)xex. This is again a time average of the potential U(q).

This time, the potential (1.34) is invariant under the one-parameter
group of transformations zX — W72k for all p 1 M. We always
have (A1,...,XA¢) L M, but there may be many more vectors per-
pendicular to M. For example, if the \; are rationally independent,
then M = {0} and all vectors p are perpendicular to M. Therefore,
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Noether’s theorem yields for every p L M a conserved quantity which,
with y*(t) = 2¥(t) el “)t is given by
Tuy.y) =—i>_ (k- pw)(y™) 75" (1.35)
kek

This invariant turns out to be O(w~1!) close to

£
T (a(0):d(0) = 3 5 T {a(0),d(0)

where
Li(q(t),4(t)) = %(de(t)ll2 +willg(0)]1%)

is the harmonic energy corresponding to the frequency wj.

It is possible to continue the analysis as for the case with one high
frequency. This yields the long-time near conservation of the quantities
I,,(q(t),4(t)). These ideas can be extended to the numerical solution of
exponential integrators, and they lead to statements on the near con-
servation of total and harmonic energies over long time intervals (see
[CHLO5] for an elaboration of the details).

1.3.5 Stormer—Verlet as exponential integrator
Applying the Stérmer Verlet discretisation (1.4) to the highly oscillatory
differential equation (1.11) yields

qn+1 _Qqn_i_qn—l = —(hQ) 2qn_|_h2 qn
B ( n) 9(q") (1.36)
q —q = 2hp".

This can be written as an exponential integrator
Gt —2cos(h) G* + GV = h2Ug(dGM)
¢t — ¢! = 2h sinc (hQ) p",

where ¥ = 1 (hQ), ® = ¢(hQ) with 1(£) = $(&) = 1, the diagonal
matrix € is related to Q via

1 2 ~ . (hQ\ _ hQ
=3 (h§2)* = cos(h£2) or sm(?) =5

and the numerical approximations are related by

~T n

=q and sinc (hQ) p" = p".

This interpretation permits us to apply all the results that we know
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for the long-time behavior of exponential integrators (1.21) to get infor-
mation for the numerical solution of the Stormer—Verlet discretisation.

A linear stability analysis (i.e., vanishing non-linearity in (1.36)) shows
that a necessary condition for stability is hw; < 2 which corresponds to
h@; < m. Assumption (1.27) is therefore automatically satisfied for hw;.

The results of Sect. 1.3.3 imply that H(§", ") and I(¢", ") are con-
served up to an error of size O(h) on intervals of length O(h=N+1). Here,
H and T are defined in the same way as H and I, but with @; in place
of w;. Rewritten in the original variables, this implies that on intervals
of size O(h~N+1)

H(q",p") + @ Ip"|1> = const + O(h)
16" + B 2 = const +O(h),
where
hw /2)? EY /
W(hW)ZW- 100kl ot

101
If hw is not too close to 2, say hw < 1/2,

the perturbation in the above formula
is small and, what is even more impor-
tant, bounded without any drift.

The extension to several high frequencies is more delicate, and one
has to pay attention. We still have that I (@™, ") is well conserved over

1072

long times when g is perpendicular to the resonance module M corre-
sponding to the frequencies @;. However, p need not be perpendicular
to M. This means that a quantity is nearly conserved over long times by
the numerical solution, but not by the analytic solution of the problem.
Also the converse situation is possible.

1.4 Nonlinear wave equation

We consider the one-dimensional wave equation (non-linear Klein-Gordon)
02u—0*u+pu+glu) =0 (1.37)

for t > 0 and —7 < z < « subject to periodic boundary conditions. We
assume p > 0, a smooth non-linearity g(u) satisfying ¢(0) = ¢’(0) = 0,
and initial data that are small in a Sobolev norm of sufficiently high
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differentiation order s:

(IlaC 02, + [0t 0)]2)

We expand the solution into a Fourier series

1/2
<e, O<e<l (1.38)

o0 o

u(z,t) = Z uj(t)e?, Opu(z,t) = Z v;(t)e?,
j=—00 Jj=—00
so that, in terms of the Fourier coefficients, the wave equation (1.37)
becomes

Ofuj + wjz-uj + Fig(u) =0 for jeZ, (1.39)

where w; = 1/j?+ p and F;v denotes the jth Fourier coefficient of a
function v(z). We consider only real solutions, so that u_; = ;. The
system (1.39) can be viewed as an infinite-dimensional version of (1.11)
with an infinite number of frequencies.

1.4.1 Modulated Fourier expansion of the analytic solution

For the analytic solution we an make an ansatz analogous to (1.12) and
(1.32),

ui(t) = Y zf(et) el
lkl|<2N
where we use the multi-index notation k = (ki, k2, ks, ...) with k; € Z,
||k|| = |k21| +|]€2|+ |]€3|+ ,and k-w = kiwi + kows + kaws + ... .
We insert this ansatz by a modulated Fourier expansion into the wave
equation and compare the coefficients of el¥“)*_ This yields relations of
the form

(w? — k- w]?)zf +2i(k - w)ek + 22X+ ... =0, (1.40)

where ¥ and £ are derivatives with respect to the slow time 7 = et
and the three dots indicate the contribution due to the non-linearity.
We separate the dominant term, i.e.,

for ( with k-w = +w; the second term in (1.40);

for ( with |w; — |k -w|| > €'/2 the first term in (1.40);

for (k,j) with |w; — [k-w|| <&'/? it is undecidable.
We put z;‘ = 0 in the third case, and estimate the defect with the help
of a non-resonance condition, which imposes a restriction on the choice
of p, but holds for almost all p. We refer the reader to [CHLO7b] for

more details.

k. j)
k. j)
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The theory then follows the following steps:

e Proving existence of smooth functions z;‘ with derivatives bounded
independently of € (on intervals of length =1).

e Establishing a Hamiltonian structure and the existence of formal in-

variants in the differential and algebraic equations for the z;‘

e Proving closeness (on intervals of length e 1) of the formal invariants
to actions

wj 2 1 2
() = FuiOF + 51y 0)
and to the total energy

H(t) = %/W <% ((8tu)2 + (0zu)? + pu2) + U(u)) dz,

—T
and the momentum

1 K
K(t)=— Orpu Opud.

T or r

(Unlike the actions I, energy and momentum are exactly conserved

along solutions of the wave equation (1.37).)

e Stretching from short to long intervals of length e~V +1

together previous results along an invariant.

by patching

Carrying out this programme yields, in particular, an estimate on the
long-time near-conservation of the harmonic actions:

> It — I
Szt O IOl oo gcpcev (1an)
=0

g2 -

The proof of this result is given in full detail in [CHLO7b]. Related results
on the long-time near-conservation of actions were previously obtained
in [Bou96, Bam03] by different techniques.

We note that N can be chosen arbitrarily (but with s and C' depend-
ing on N via the non-resonance condition). The near-conservation of
harmonic actions is thus valid on time intervals that are much longer
than the natural time scale of the problem. Moreover, the result implies
spatial regularity over long times

[uC Dl + GO, <20 +Ce) - for 0<e< e
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1.4.2 Pseudo-spectral semi-discretisation

We approximate the solution of (1.37) by a trigonometric polynomial

WMz t) = 3 g(t)e,

lil<M

where the prime on the sum indicates a factor % in the first and last

terms. The 2M-periodic sequence g = (g;) is solution of the system

Thy o= file)  with  f(g) = —Fong(Folba).  (1.42)

where Fops stands for the discrete Fourier transform. This is in fact a
finite-dimensional Hamiltonian system with Hamiltonian

1 /

Hy(a.p) =5 D (Inl? +?lasl?) +V (@),
[gI<m

M-—1

V) 2M Z Fant)k

The above programme can again be carried out in the semi-discrete
case. It yields the near-conservation over long times, uniformly in the
discretization parameter M, of the harmonic actions as in (1.41) and
of the continuous total energy H (which stays close to Hys) and the
momentum K along semi-discrete solutions [HLOS].

1.4.3 Full discretisation

The system (1.42), which we also write as dté’ +0%q = f(q), is an ordi-
nary differential equation, and we can apply the exponential integrators
of Section 1.3.2 and the Stormer—Verlet method.

Combining the techniques addressed in Sections 1.3.3 and 1.4, we
obtain under a numerical non-resonance condition that along the nu-
merical solution of a symplectic exponential integrator (1.23), for 0 <
ty < e N+

|H (tn) — H(0)]
o2
|K(tn) — K(0)]
22

> Ii(t,) — I,
Zw25+1 [Le(tn) — 1(0)] < Ce.
4 52

Ce

IN

IA

Cle+ M=% +t,e M~sTh)
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Here, the functions u(z,t,) and Jwu(x,t,) in H(t), K(t), and I, (t)
have to be replaced by the trigonometric interpolation polynomial with
Fourier coefficients ¢" and p", respectively.

For the Stérmer—Verlet discretisation (1.5) this holds with an addi-
tional O(h?) term on the right-hand side of these estimates, if in addition
the step size is restricted by the CFL condition hwy; < ¢ < 2.

These results, which are proved in [CHL07a], are apparently the first
rigorous results on the long-time near-conservation of energy (and mo-
mentum and actions) for symplectic discretisations of a non-linear par-
tial differential equation.

1.5 Linear multistep methods

There is an interesting connection between the numerical solution of
special linear multistep methods for non-stiff Hamiltonian equations
4 = —VU(q) and the analytic solution of the highly oscillatory problem
(1.11). An analogue of the technique of modulated Fourier expansion
(Sect. 1.3) will provide new insight into the long-time behaviour of such
methods. In particular, the long-time conservation of harmonic actions
corresponds to the bounded-ness of parasitic solutions in the multistep
discretisation.

1.5.1 Multistep methods for second order problems

For the second order differential equation

G=f(q)  with  f(q)=-VU(q) (1.43)

we consider linear multistep methods of the form
k k
Z i qn+J = h2 Z ﬁ] f(qn+‘7) (144)
j=0 j=0

together with an approximation to the derivative p(t) = ¢(t) which is ob-
tained by a finite difference formula and does not affect the propagation
of errors:

k
1 .
n __ . +
pt = 7 E k%qn 7, (1.45)
j=—
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A special case is the Stormer—Verlet discretisation (1.4). The general
method (1.44) is characterised by its generating polynomials

k k
p(C) =Zaj ¢, o) =Zﬂj ¢ (1.46)

The classical theory of Dahlquist tells us that zero-stability (all roots
of p(¢) = 0 satisfy |¢] < 1 and those on the unit circle have at most
multiplicity two) and consistency (p(1) = p'(1) =0, p’(1) = 20(1) # 0)
imply convergence to the analytic solution on intervals of length O(1).

For the case of a Hamiltonian system (1.43) we are often interested
in the long-time behaviour of numerical solutions and, in particular, in
the near conservation of the total energy

1.7.
H(t)=q"q+Ul(q) (1.47)
along numerical solutions. For methods that are

e symmetric, i.e., ar_; = a; and fBr_; = §; for all j,

e s-stable, i.e., all roots of p({) = 0 are on the unit circle and they are
simple roots with the exception of ( = 1 which is a double root,

e orderr, i.e., p(e") — h2o(eh) = O(hP*2) asymptotically for h — 0,

we shall prove that with sufficiently accurate starting approximations
the total energy is nearly conserved over long times

H(qn,pn) = H(go,po) + O(h™)  for  nh<O(h™"72). (1.48)

For methods, where no zero of p({) other than 1 can be written as the
product of two other zeros, the estimate holds even on intervals of length
O(h—QT—B).

A similar statement holds for quadratic first integrals of the form
pT Cq such as the angular momentum in N-body problems, and for all
action variables in nearly integrable Hamiltonian systems.

1.5.2 Parasitic solutions

We consider a linear multistep method (1.44) where (o = 1 is a double
root of p(¢) =0, and (;,(_; = Zj are pairs of complex conjugate roots
for j =1,...,¢. In the limit h — 0, (1.44) becomes a linear difference
relation with characteristic polynomial p(¢). Its solution is a linear com-
bination of 1, n, and Gy ¢ for j = 1,...,£. Similar to the analytic
solution of (1.11), we are also here confronted with two time scales:
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e fast time t/h in oscillations of the form G = C;/h;

e slow time ¢ due to the zero root and the dynamics of (1.43).
In the general situation, ¢; will be slightly perturbed leading to a modu-
lation of the coefficients, and the non-linearity in the differential equation
provokes the presence of products of (i in the numerical solution. This

motivates the following ansatz with smooth functions 27 (t)

¢" = qmh), ) =Y F0g" (1.49)
jeT
which is in complete analogy to (1.12). Here, the sum is not only over
|7] < £, but the index-set Z includes also finite products of roots of
p(¢) = 0 which are denoted by (r41,Cet2,... and (_; = Zj. The set Z can
be finite (e.g., if the roots of p({) = 0 are all roots of unity) or infinite. In
the latter case the sum will be truncated suitably for a rigorous analysis.
In the representation (1.49) only the function 2Y(t) contributes to an
approximation of the solution of (1.43), the other coefficient functions
are called parasitic solutions.
For determining the smooth functions 27 (t), we insert ¢ from (1.49)
into the multistep formula (1.44), we expand the non-linearity around
29, and we compare the coefficients of C}-’. This yields

o219 = 120(Ge) oL 3 s
m>0 p(a

where D represents differentiation with respect to time, so that the
Taylor series expansion of a function z(t + h) is given by e"Pz(t), and

the second sum is over multi-indices « = (o, ..., a;,) such that the
product (o, - ...+ (a,, equals ¢j. This is symbolised by p(a) = j. We
divide this relation formally by o(¢; e"”) and we introduce the notation
p(¢ie™) 2 3
W = Uj70+Vj71.T+Vj,2£L' +l/j7333 +.... (150)
Due to the symmetry of the method (i.e., p(¢) = ¢¥p(¢~!) and o(¢) =
¢Fo(¢1)) the coefficients vjg,v;1,... are all real. The functions 27 (t)

of (1.49) are thus determined by
Vj,O Zj —+ I/jyl(*ih) ZJ —+ l/j 2(7ih)2 Z] + .

_ h2 Z Z f(m e (151)

m=0 " pla)=j

For j = 0, we have from p(1) = p’(1) = 0 and p”(1) = 20(1) # 0 that
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Vo0 = vo,1 = 0 and 192 = —1 so that we get a second order differential
equation for 2%(t) which is a perturbation of (1.43). For 0 < |j| < ¢,
where (; is a simple root of p(¢) = 0, we get a first order differential
equation for z7(¢). Finally, for |j| > ¢, where p(¢;) # 0 we get an
algebraic relation for 27(t) (to avoid technical difficulties, we assume
o((j) # 0 also in this case).

1.5.3 Long-term stability

From now on we assume that the differential equation (1.43) is Hamil-
tonian, i.e., f(q) = —VU(q). We introduce the extended potential

U@ =)+ Y - 3 U0 (1.52)

m>1 ’ p(a)=0
in complete analogy to (1.15), so that the relation (1.51) becomes
Vj,O Zj —|— ijl(—ih> Z‘j + l/jyz(—ih)Q ZJ —I— e &= — h2V_k Z/{(z) (153)

Here, the situation is very similar to formula (1.29). In the left-hand side
the derivatives of 2/ are multiplied with the corresponding power of h,
and the coefficients are real for even derivatives and purely imaginary for
odd derivatives. To get a conserved quantity close to the Hamiltonian of
the system, we take the scalar product of (1.53) with 277 and sum over
all j € Z. The same miracle which helped us in Sect.1.3.3 to obtain a
conserved quantity, applies also here. We thus get a formally conserved
quantity H(z,z) that is close to the Hamiltonian of the system.

Concerning further conserved quantities of the system (1.53) we en-
counter a serious difficulty. The extended potential (1.52) is invariant
with respect to the transformation 2/ — C}-’zj only for integral values
of n, so that Noether’s theorem cannot be applied. Nevertheless, we take
the scalar product of (1.53) with ijz~7, but this time we sum up only the
relation for j and that for —j (for 1 < j < ¥). Since vj g =v_; o =0 and
vj1 = —v_j1 7 0, we obtain as in Sect. 1.3 that the left-hand side is the
total derivative of an expression which is close to chl|27]|? with a constant
¢ # 0. The dominant term of the right-hand side which, up to the factor
—h?/2, equals U"(2°)(ijz77, 27) + U"(2Y)(—ij27, 277), vanishes due to
the symmetry of the Hessian U”(2") of the potential. Consequently, all
terms of the right-hand side contain at least three times a factor z7 with
J #0. As long as ||29]| <6 for j # 0, we thus get an expression Z;(z, z)
close to ||z;? whose time derivative is bounded by O(hd?).
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If the starting approximations ¢°, ¢',...,¢* ! for the multistep for-
mula (1.44) are such that ||27(0)|| < 6, then the parasitic solutions 27 (t)
for j # 0 remain bounded by 2§ on a time interval of length O(h=16~1).
In a typical situation, when the multistep method is of order r and the
starting approximations are obtained by a one-step method of order r,
we have § = O(h"t!). The parasitic solutions are then bounded by
O(h™1) on intervals of length O(h="=2). This implies that also the
Hamiltonian is nearly conserved on a time interval of this length.

A rigorous elaboration of these ideas can be found in the publication
[HLO4] and in [HLWO06, Chap.XV].
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