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Abstract. This talk considers the numerical treatment of the differential equation that describes the motion of electric particles
in a strong magnetic field. A standard integrator is the Boris algorithm which, for small stepsizes, can be analysed by classical
techniques. For a strong magnetic field the solution is highly oscillatory and the numerical integration is more challenging.
New modifications of the Boris algorithm are discussed, and their accuracy and long-time behaviour are studied with means
of modulated Fourier expansions. Emphasis is put on the situation where the stepsize is proportional to (or larger than) the
wavelength of the oscillations.
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INTRODUCTION

We consider a charged particle with position x(t) in a magnetic field. Newton’s second law together with Lorentz’s
force equation yield the second order differential equation

ẍ = ẋ×B(x)+E(x), (1)

where B(x) is a magnetic field and E(x) =−∇U(x) is an electric field with scalar potential U(x). The flow in the phase
space (x, ẋ) is volume preserving, and the energy H(x, ẋ) = 1

2 ẋ>ẋ+U(x) is exactly preserved.
The most popular discretisation of (1) is the Boris algorithm [1]

xn+1−2xn + xn−1

h2 =
xn+1− xn−1

2h
×B(xn)+E(xn). (2)

Here, h is the stepsize, and xn is an approximation to the solution x(t) of (1) at t = nh. The velocity approximation
vn ≈ ẋ(nh) at the grid points is given by

vn =
xn+1− xn−1

2h
. (3)

Using the velocity approximation at the off-step point tn−1/2 = (n− 1
2 )h,

vn−1/2 =
1
h

(
xn− xn−1

)
= vn−

h
2

vn×B(xn)−
h
2

E(xn), (4)

the Boris algorithm (2) is usually written and implemented as a one-step method (xn,vn−1/2) 7→ (xn+1,vn+1/2),

v+n−1/2 = vn−1/2 +
h
2 E(xn)

v−n+1/2− v+n−1/2 = h
2

(
v−n+1/2 + v+n−1/2

)
×B(xn)

vn+1/2 = v−n+1/2 +
h
2 E(xn)

xn+1 = xn +hvn+1/2.

(5)

The starting value v−1/2 is obtained from (4) with n = 0. This is a symmetric method of classical order 2. The mapping
(xn,vn−1/2 7→ (xn+1,vn+1/2) is volume preserving, so that (xn,vn 7→ (xn+1,vn+1) is conjugate to a volume preserving
mapping. What can be said about near energy preservation ?



SMALL STEPSIZES

Assume that the product of the stepsize h with the Lipschitz constant of the vector field in (1) is small. Using backward
error analysis [6] the following result can be obtained.

Theorem 1 ([2]) Assume that at least one of the following conditions is satisfied

• the magnetic field B(x) = B is constant,
• the scalar potential U(x) = 1

2 x>Qx+q>x is quadratic,

and that the numerical solution (xn,vn) of the Boris method stays in a compact set. For every truncation index N, the
error in the energy H(x,v) = 1

2 v>v+U(x) is bounded as

|H(xn,vn)−H(x0,v0)| ≤C2Nh2 for nh≤ h−2N

with C2N independent of n and h as long as nh≤ h−2N , but depending on the truncation index N.

Theorem 1 gives sufficient conditions for near energy preservation. In general, energy is not preserved. Counterex-
amples with (i) a linear energy drift and (ii) a random walk behaviour of the energy error are given in [2].

LARGE STEPSIZES

We are now interested in stepsizes that are not small compared to the Lipschitz constant of (1). We assume that the
stiffness comes from a constant term in B(x), i.e.,

B(x) =
1
ε

B0 +B1(x), ε � 1, (6)

where ‖B0‖= 1 (such a scaling is called maximal ordering in the plasma physics literature [3]), and we consider large
stepsizes h≈ ε , so that the product of the stepsize with the Lipschitz constant of (1) is of size O(1).

Example 2 Applying the standard Boris algorithm with stepsize h = 1.5 · ε to the charged particle equation (1) with

B(x) =
1
ε

0
0
1

+

−x1
0
x3

 , U(x) =
1√

x2
1 + x2

2

and initial values x(0) = ( 1
3 ,

1
4 ,

1
2 )
>, v(0) = ( 2

5 ,
2
3 ,1)

>, yields an error in position and velocity shown in Figure 1 (red
curves). The error in the velocity is O(1) (top red curve), that in the position O(h) (second red curve). The velocity
approximation has no accuracy at all, the position is only approximated with order 1.

FIGURE 1. Error in position and velocity as a function of the stepsize for the standard Boris method (red), for the filtered Boris
method (blue), and for the filtered Boris method with correction (black)
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We modify the Boris algorithm with the aim of improving its accuracy. Applying ideas of exponential (trigonomet-
ric) integrators [4],[5],[6, Section XIII.2] we introduce filter functions, and we replace the midpoint rule (second line of
(5)) by the exponential function. This considerably improves the accuracy in both, velocity and position, see Figure 1
(blue curves). For h→ 0, the position and velocity approximations are now of order 1. With a detailed study of the nu-
merical approximations using modulated Fourier expansions (see [8]) a further improvement is achieved, by perturbing
the argument in the magnetic field evaluation. The resulting algorithm, as a mapping (xn,vn−1/2) 7→ (xn+1,vn+1/2), is
as follows: let Bn = B(xn), B̄n = B(x̄n) with x̄n defined by

x̄n = xn +
(
1−θ(h|Bn|)

)vn×Bn

|Bn|2
, θ(ξ ) =

1
sinc2(ξ/2)

,

and En = E(xn):
v+n−1/2 = v−n−1/2 +

h
2 Ψ(hB̂n)En

v−n+1/2 = exp
(
−ĥ̄Bn

)
v+n−1/2.

vn+1/2 = v−n+1/2 +
h
2 Ψ(hB̂n)En

xn+1 = xn +hvn+1/2,

(7)

where Ψ(ζ ) = tanch(ζ/2) with tanch(ζ ) = tanh(ζ )/ζ . The velocity approximation vn is given by

vn = Φ1(ĥ̄Bn)
xn+1− xn−1

2h
−hϒ(hB̂n)En, (8)

where Φ1(ζ ) =
1

sinch(ζ )
with sinch(ζ ) =

sinh(ζ )
ζ

, and ϒ(ζ ) =
Φ1(ζ )−1

ζ
. The starting approximation v1/2 is

computed from

vn±1/2 = ϕ1
(
∓ĥ̄Bn

)(
vn +hϒ(hB̂n)En

)
± h

2
Ψ(hB̂n)En, (9)

(with n = 0) where ϕ1(ζ ) = (eζ −1)/ζ .
Note that the algorithm is implicit, because x̄n depends on vn which itself depends on x̄n as argument of the magnetic

field. It turns out that, starting a fixed-point iteration with x̄n = xn convergences very fast, so that typically only one
iteration is required. Therefore, the algorithm is essentially explicit.

Theorem 3 ([8]) Consider the filtered Boris algorithm with at least one correction for x̄n. If the step size satisfies
h≤Cε and the non-resonance condition∣∣sinc

( 1
2 kh|B(x(t))|

)∣∣≥ c > 0 for k = 1,2,3,

then we have
xn− x(tn) = O(ε2)

v‖n− v‖(tn) = O(ε2), v⊥n − v⊥(tn) = O(ε).

The constants in the O-notation are independent of ε , h, and n with 0≤ tn = nh≤ T , but depend on T .

Applying this algorithm to the problem of Example 2 shows convergence of order 2 in the position, but only
convergence of order 1 in the velocity (see Figure 1, black curves). This confirms the statement of Theorem 3.

For sake of completeness we mention that for a fully implicit variational integrator near-conservation over long
times of a modified energy and of a modified magnetic moment are proved in [7].

VERY LARGE STEPSIZES

The previous section considered a strong magnetic field (6) and numerical integrators applied with large stepsizes
h≈ ε . Here, we study the same strong magnetic field, but we use even larger stepsizes satisfying

0 < ε ≤ h2� 1. (10)



The motivation for considering very large stepsizes is the following: for a magnetic field (6) with very small ε , the
solution is composed of a fast rotation (with amplitude O(ε)) around a guiding centre, which moves smoothly.
Typically, one is not interested in the high oscillations, but mainly in the guiding centre motion, which can be
approximated accurately with large stepsizes.

In addition to the Boris algorithm (2) we consider a related variational integrator. For this we assume that B(x) =
∇x×A(x) with a vector potential A(x) =− 1

2 x×B0/ε +A1(x).

xn+1−2xn + xn−1

h2 =
xn+1− xn−1

2h
×B(xn)+E(xn)+A′(xn)

xn+1− xn−1

2h
− A(xn+1)−A(xn−1)

2h
. (11)

We note that the correction term (compared to the Boris algorithm (2)) vanishes for linear A(x). Consequently, A(x)
can be replaced by A1(x) without changing the method. This shows that the correction term is independent of ε .

The following result is taken from [9]. To reduce the oscillations it is proposed to replace the initial velocity v0 by

v0 = v‖0 + v⊥0 , v‖0 = P0ẋ(0), v⊥0 = ε
(
v‖0×B1(x0)+E(x0)

)
×B0, (12)

where P0 = B0B>0 is the orthogonal projection in direction of B0.

Theorem 4 ([9]) Consider the variational integrator (11) applied with a stepsize satisfying (10), and assume that the
component of the starting velocity orthogonal to B0 is small, v⊥0 =O(ε). If the numerical solution xn of the variational
integrator, applied with starting velocity (12), stays in a compact set K for 0≤ t ≤ cε−1 (with K and c independent of
ε and h), the total energy remains O(h2)-close to the initial energy:

|H(xn,vn)−H(x0,v0)| ≤Ch2, 0≤ nh≤ cmin(ε−1,h−6). (13)

The constant C is independent of ε , h, and n with 0≤ nh≤ c/ε .

This result shows that the variational integrator works remarkably well for very large stepsizes on a time scale ε−1.
We do not know if such a result holds for the standard Boris algorithm. By introducing suitable filter functions in (11)
it is possible to prove near energy preservation over much longer time scales ε−N with arbitrary N (see [9]).
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