
Challenges in Geometric Numerical Integration

Ernst Hairer

Abstract Geometric Numerical Integration is a subfield of the numerical treatment
of differential equations. It deals with the design and analysis of algorithms that pre-
serve the structure of the analytic flow. The present review discusses numerical inte-
grators, which nearly preserve the energy of Hamiltonian systems over long times.
Backward error analysis gives important insight in the situation, where the product
of the step size with the highest frequency is small. Modulated Fourier expansions
permit to treat nonlinearly perturbed fast oscillators. A big challenge that remains is
to get insight into the long-time behavior of numerical integrators for fully nonlinear
oscillatory problems, where the product of the step size with the highest frequency
is not small.

1 Geometric Numerical Integration

Ordinary differential equations arise everywhere in science and their numerical
treatment is of great importance. The development took place in three periods: the
numerical solution of non-stiff differential equations started in the end of the 19th
century, whereas that of stiff problems began in the middle of the 20th century and
was motivated by space discretizations of parabolic differential equations and by
simulations of chemical reactions. With the interest in computations over long time
intervals one discovered that certain methods reproduce the qualitative behavior of
the exact flow much better than others. In the late 1980ties numerical analysts started
to design and study (we quote from the preface of the monograph [9])

. . . numerical methods that preserve geometric properties of the flow of a differential equa-
tion: symplectic integrators for Hamiltonian systems, symmetric integrators for reversible
systems, . . . and methods for problems with highly oscillatory solutions.
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This period is called “Geometric Numerical Integration” and much research has
been devoted to this topic during the last decades. Special attention has been paid to
the long-time integration of Hamiltonian systems and, in particular, to simulations
in astronomy (planetary motion) and in molecular dynamics. The present work fo-
cuses on algorithms that nearly preserve energies (total and oscillatory) over long
time intervals. Our main interest is in getting theoretical insight into their long-time
behavior. We distinguish between three degrees of difficulty:

• non oscillatory Hamiltonian systems: the term ‘non oscillatory’ means that the
product of the highest frequency in the system with the time step size of the nu-
merical integrator is small. In this situation backward error analysis gives much
insight into the long-time behavior of numerical solutions.

• nonlinearly perturbed fast oscillators: if several high frequency harmonic oscil-
lators are nonlinearly coupled, then the technique of modulated Fourier expan-
sions yields much information on the numerical preservation of total and oscilla-
tory energies over long times.

• fully nonlinear, highly oscillatory Hamiltonian problems: this is the situation
where high frequencies stem from a nonlinear part in the problem, and the nu-
merical integrator is applied, such that the product of the time step size with the
highest frequency is not small. A good understanding of the long-time behavior
(e.g., near energy preservation) of numerical solutions is still missing.

In the following sections each of these types of problems is treated individually.

2 Hamiltonian Systems – Backward Error Analysis

We start by considering Hamiltonian systems

ṗ =−∇qH(p,q), q̇ = ∇pH(p,q),

where H(p,q) is a smooth scalar function (called total energy) of position variables
q ∈ Rd and momenta p ∈ Rd . A characteristic property of such systems is that the
exact flow is symplectic, i.e., the derivative of the flow map ϕt with respect to initial
values satisfies (ϕ ′t )

TJϕ ′t = J for the canonical structure matrix J (see [9, Chap-
ter VI] for more details). Moreover, the total energy H(p,q) is preserved along the
exact flow of the system. Here, we are interested to which extent the total energy
can also be preserved by a numerical solution.

Numerical Experiment. As a representative example of numerical integrators we
consider the explicit Euler method

pn+1 = pn−h∇qH(pn,qn)

qn+1 = qn +h∇pH(pn,qn).
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Fig. 1 Illustration of backward error analysis for the Hamiltonian H(p,q) = 1
2 p2 +U(q) with the

double well potential U(q) = 1
2 (q

2−1)2. The numerical solution for an initial value, indicated by
a big bullet, and solutions of the modified differential equation are shown in the (q, p) phase space.

It provides approximations (pn,qn) to the solution of the Hamiltonian system at time
t = nh. This method and most of the classical Runge–Kutta and multistep methods
are not suited for the long-time integration of Hamiltonian systems. Even for very
simple problems a linear drift in the energy H(pn,qn) along their numerical solution
can be observed.

Already very early de Vogelaere [5] noticed that each of the so-called symplectic
Euler methods

pn+1 = pn−h∇qH(pn+1,qn)

qn+1 = qn +h∇pH(pn+1,qn)

pn+1 = pn−h∇qH(pn,qn+1)

qn+1 = qn +h∇pH(pn,qn+1)

has a much better long-time behaviour. This can be seen in the experiment of Fig. 1,
where the explicit and both symplectic Euler methods are applied to a simple Hamil-
tonian system (with step size h= 0.3). Whereas the numerical solution of the explicit
Euler method spirals outwards and gives a qualitatively wrong approximation to the
exact flow, those of the symplectic Euler methods remain apparently on a closed
curve.

Backward Error Analysis for the Example of Figure 1. The idea of backward
error analysis is the following: for a given numerical integrator search a modified
differential equations, such that the exact solution of this modified equation approx-
imates very well the numerical solution. An analysis of the modified differential
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equation then gives much insight into the numerical flow. The construction of the
modified differential equation is straight-forward. One makes an ansatz as a formal
series in powers of the step size h, inserts its solution into the numerical method,
and compares like powers of h. For a problem of the form q̇ = p, ṗ = −U ′(q) the
explicit Euler method yields(

q̇
ṗ

)
=

(
p

−U ′(q)

)
+

h
2

(
U ′(q)

U ′′(q)p

)
+

h2

4

(
−2U ′′(q)p

2U ′(q)U ′′(q)−U ′′′(q)p2

)
+ . . .

and the symplectic Euler method (explicit in q, implicit in p) gives(
q̇
ṗ

)
=

(
p

−U ′(q)

)
+

h
2

(
−U ′(q)
U ′′(q)p

)
+

h2

12

(
2U ′′(q)p

−2U ′(q)U ′′(q)−U ′′′(q)p2

)
+ . . . .

In Fig. 1, solutions of the truncated modified differential equation (with h = 0.3) are
included. The accordance with the numerical solution is striking. For the double well
potential U(q) = 1

2 (q
2−1)2 the stationary points (q, p) = (±1,0) turn into a spiral

source for the modified equation of the explicit Euler method, whereas they remain
stable centers for the symplectic Euler method. The modified equation is a Hamil-
tonian system only for the symplectic Euler method, in which case the Hamiltonian
is given by Hh(p,q) = 1

2 p2 +U(q)− h
2U ′(q)p+ h2

12

(
U ′(q)2 +U ′′(q)p2

)
+ . . . .

Backward Error Analysis - General Situation. Consider an ordinary differential
equation ẏ = f (y) and a numerical integrator yn+1 = Φh(yn). If both, the vector
field f and the discrete flow Φh are sufficiently differentiable, one can find a (trun-
cated) modified equation

ẏ = f (y)+h f2(y)+h2 f3(y)+ . . .+hN−1 fN(y),

such that
‖Φh(y)−ϕN,h(y)‖ ≤C(y)hN+1,

where ϕN,t is the exact flow of the truncated modified equation. This means that the
numerical solution after one step, y1 = Φh(y0), is very close to the exact solution
of the modified equation at time t = h corresponding to the initial value y0. The
constant C(y) depends on the truncation index and on bounds for derivatives of
the vector field, but it is independent of h. If the vector field is real analytic and
the integrator falls into the class of (partitioned) Runge–Kutta methods then, by
choosing N proportional to h−1, one can prove the estimate (see [3] and [7])

‖Φh(y)−ϕN,h(y)‖ ≤ hα e−γ/(ωh)

with constants that are independent of N and h. Here, γ > 0 only depends on the
numerical integrator and ω > 0 is related to the highest frequency present in the
solution of the differential equation.

One of the most important applications of backward error analysis is the long-
time energy preservation of symplectic integrators (see [9, Chapter IX]). In fact,
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if the vector field is Hamiltonian (i.e., f (y) = J−1∇H(y)) and if the discrete flow
Φh is a symplectic transformation, then the modified differential equation is also
Hamiltonian with

Hh(y) = H(y)+hH2(y)+h2H3(y)+ . . .+hN−1HN(y).

This implies that Hh(y) is exactly preserved along the flow ϕN,t of the modified
equation, and consequently ‖Hh(Φh(y))−Hh(y)‖ ≤ che−γ/(ωh). Telescoping sum-
mation gives ‖Hh(yn)−Hh(y0)‖ ≤ cnhe−γ/(ωh) and, since for a method of order r
we have H j(y) = 0 for j = 2, . . . ,r, this implies that

‖H(yn)−H(y0)‖ ≤C hr for nh≤ eγ/(2ωh).

Consequently, for symplectic (Runge–Kutta) methods the Hamiltonian is preserved
up to an error of size O(hr) on exponentially long time intervals.

3 Perturbed Fast Oscillators – Modulated Fourier Expansions

Whenever applicable, backward error analysis is an excellent tool for getting insight
into the long-time behaviour of numerical solutions. The disadvantage is that for
situations, where the product of the step size h with the highest frequency ω is
not small, it does not give any information. In this section we consider nonlinearly
perturbed harmonic oscillators of the form

q̈ j +ω
2
j q j =−∇jU(q), j = 0,1, . . . ,m,

where q = (q0,q1, . . . ,qm) with q j ∈ Rd j , and ∇j denotes the partial derivative with
respect to q j. We assume ω0 = 0 and

ω j ≥ ε
−1, 0 < ε � 1, j = 1, . . . ,m.

This system is Hamiltonian with energy

H(q, q̇) =
1
2

m

∑
j=0

(
q̇Tj q̇ j +ω

2
j qTj q j

)
+U(q).

With the notation Ω for the diagonal matrix with entries ω j, and ∇U for the vector
that collects all ∇jU , the differential equation can be written as q̈=−Ω 2q−∇U(q).

It turns out that the study of the near energy preservation of numerical integrators
requires the consideration of the oscillatory energy

Hω(q, q̇) =
1
2

m

∑
j=1

(
q̇Tj q̇ j +ω

2
j qTj q j

)
,
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Fig. 2 Numerical energy error of the Störmer–Verlet method applied to a nonlinearly perturbed
fast harmonic oscillator as function of time. The step sizes are such that hω = 1.95 (black) and
hω = 1,0.5,0.25 (different grades of gray).

and it is essential to assume that Hω(q(0), q̇(0)) ≤ E is bounded independently
of ε . The oscillatory energy is then nearly preserved along the analytic solution of
the differential equation over long times [6].

Numerical Experiment with the Störmer–Verlet Method. We consider a chain
with alternating soft nonlinear and stiff linear springs as described in [9, Section I.5].
It is of the above form with m = 1, d0 = d1 = 3, and has a quartic potential U . For
our experiment we choose ω1 = ω = 50. As numerical integrator we consider the
Störmer–Verlet method

qn+1−2qn +qn−1 = h2
(
−Ω 2qn−∇U(qn)

)
2h q̇n = qn+1−qn−1,

which is frequently used in molecular dynamics simulations. Considered as a map-
ping (qn, q̇n) 7→ (qn+1, q̇n+1) it is symplectic, symmetric, and of order 2, and it is
perfectly suited for computations requiring low accuracy. Note that stable numerical
solutions (for the harmonic oscillator q̈+ω2q = 0) are obtained only under the step
size restriction hω < 2.

Figure 2 shows the error in the energy of the Störmer–Verlet scheme applied to
the above mentioned problem of alternating soft and stiff springs. Even for a very
large step size h = 1.95/ω the error (although very large) remains bounded without
any drift. For more reasonable step sizes hω ∈ {1,0.5,0.25} the error in the energy
behaves as expected. There is no drift and the bound on the error decreases when the
step size becomes smaller. This excellent long-time behaviour cannot be explained
with the techniques of the previous section.

A Theorem on the Numerical Energy Preservation. To simplify the notation we
present a result for the case of only one high frequency (m = 1), and we denote
ω = ω1. For the numerical solution, obtained by the Störmer–Verlet method, we
assume that the step size satisfies 0 < c0 ≤ hω ≤ c1 < 2 and that the numerical
non-resonance condition∣∣sin( 1

2 khω̃)
∣∣≥ c
√

h, k = 1, . . . ,N
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Fig. 3 The function γ(hω)
appearing in the modified
energies:
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holds for some N ≥ 2 and c > 0, where hω̃ is defined by the relation sin( 1
2 hω̃) =

1
2 hω . The latter condition is in fact a definition of N. We further suppose that the
numerical solution stays in a region on which all derivatives of U are bounded. With
the modified energies

H∗(q, q̇) = H(q, q̇)+ 1
2 γ(hω)‖q̇1‖2

H∗ω(q, q̇) = Hω(q, q̇)+ 1
2 γ(hω)‖q̇1‖2,

where γ(hω) is given in Fig. 3, it then holds that

H∗(qn, q̇n) = H∗(q0, q̇0)+O(h)

H∗ω(qn, q̇n) = H∗ω(q0, q̇0)+O(h)
for 0≤ nh≤ h−N+1.

The constants symbolised by O are independent of n, h, ω under the above condi-
tions. Along the numerical solution the expression ‖q̇1‖2 is highly oscillatory and of
size O(1). Moreover, its time average over intervals of length T is nearly constant:

h
T ∑
| jh|≤T

‖q̇n+ j,1‖2 =
1

1+ γ(hω)
H∗ω(q0, q̇0)+O(h).

This result is taken from [9, Chapter XIII.8]. The long-time behaviour of Fig. 2
can now be explained. Due to the near preservation of the modified energies, the
dominant error term comes from 1

2 γ(hω)‖q̇1‖2. For hω = 1.95 we have 1
2 γ(hω)≈

10, which explains the large (but bounded) energy error for this particular step size.
For the step sizes, for which hω ∈ {1,0.5,0.25}, this expression is much smaller
(see Fig. 3) and precisely corresponds to the observation of Fig. 2.

Idea of the Proof. A detailed proof of the above result can be found in [9, Chap-
ter XIII.8]. An extension to the multi-frequency case is presented in [4]. We shortly
mention here the two main ingredients (for the multi-frequency case):

• Modifying the frequencies. For vanishing potential U the Störmer–Verlet dis-
cretization reduces to a linear three-term recursion with exact solution qn, j =

c j,1 eiω̃ jnh + c j,2 e−iω̃ jnh, where the modified frequencies ω̃ j are given by

1− (hω)2

2
= cos

(
hω̃
)

or, equivalently, sin
(hω̃

2

)
=

hω

2
.
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The Störmer–Verlet scheme thus becomes the trigonometric integrator

qn+1−2cos
(
hΩ̃
)
qn +qn−1 =−h2

∇U(qn).

which is easier to analyse, because the linear part exactly integrates a harmonic
oscillator with modified frequencies.

• Modulated Fourier expansion. For the problem of this section the Störmer–Verlet
method is a nonlinear perturbation of a three-term relation, for which the solu-
tion is a linear combination of exponentials e±iω̃ jnh. It is therefore natural to
approximate the numerical solution qn of the complete discretisation as a linear
combination of products of e±iω̃ jnh (called modulated Fourier expansion)

qn = y(t)+ ∑
k∈K

zk(t)ei(k·ω̃)t with t = nh.

Here, k = (k1, . . . ,kn) is a multi-index, ω̃ = (ω̃1, . . . , ω̃n) is the vector of modi-
fied high frequencies, k · ω̃ = k1ω̃1 + . . .+knω̃n, and K is a suitable finite index
set. The coefficient functions y(t) and zk(t) are vector-valued with the same di-
mension and partitioning as qn, and they are assumed to be smooth. This means
that together with all their derivatives they are bounded independently of ε for
0 < ε ≤ ε0 so that with this ansatz high oscillations are well separated from the
slow motion. The proof is typically in three steps:

- Construction of the modulation functions y(t) and zk(t) as the solution of a
differential-algebraic system (on short intervals of length O(1)).

- Proof of the existence of formal invariants of the differential-algebraic system,
which are close to the total and oscillatory energies (on short intervals).

- Concatenation of estimates on short intervals to get the near energy preserva-
tion of long time intervals.

Modulated Fourier expansions for the long-term analysis of (analytical and nu-
merical) solutions of highly oscillatory differential equations have been intro-
duced in [8] for the case of a single high frequency ω . The case of several high
frequencies satisfying a non-resonance condition is studied in [4]. They are ex-
tensively treated in Chapters XIII and XIV of the monograph [9]. Related results
for the analytic solution have been obtained in [1], [2] with canonical transfor-
mation techniques of Hamiltonian perturbation theory.

4 Fully Nonlinear, Highly Oscillatory Hamiltonian Problems

What happens, when neither backward error analysis can be applied nor the problem
can be cast into the form of a perturbed fast oscillator? Let us consider a molecular
dynamics model, which consists of an N-body problem
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Fig. 4 Numerical energy error of the Störmer–Verlet method applied to the molecular dynamics
model of Section 4. The step sizes are h = 0.06 (black) and h = 0.04,0.02,0.01,0.005 (different
grades of gray).

q̈ =−∇U(q), U(q) =
N

∑
i=2

i−1

∑
j=1

V (‖qi−q j‖)

interacting with the Lennard–Jones potential V (r) = r−12−2r−6. We assume parti-
cles qi ∈ R2 in a plane, and an initial configuration consisting of N = 100 particles
which are at randomly perturbed points of the lattice {(l,m) ; l,m = 1, . . . ,10}. Ini-
tial velocities are taken to be zero.

Figure 4 shows the error in the energy of the Störmer–Verlet method applied to
the N-body problem. For the step size h = 0.06 the error increases and is soon out
of scale. However, for h≤ 0.04 the energy is well preserved, and the error decreases
as expected, when the step size becomes smaller.

To check whether this behaviour can be explained either by the backward error
analysis of Section 2 or by the technique of modulated Fourier expansions of Sec-
tion 3 we have to compute the highest frequencies of the solutions in the system.
Along the numerical solution we have computed the Hessian matrix ∇2U(q) and its
eigenvalues. The dominant eigenvalues are negative and they represent −ω2, where
ω corresponds to the frequencies in the system. In Figure 5 we present the five
largest frequencies obtained in this way. We see that they are slightly smaller than
the value ω = 25.

45.2 45.3 45.4

20

25

Fig. 5 The five largest frequencies corresponding to the solution of the N-body problem of Sec-
tion 4 as a function of time.
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- Backward error analysis does not give any information on the long-time be-
haviour. The reason is that for the step sizes used in the experiment of Figure 4
we have hω = 1.5 (for h = 0.06), and hω = 1 (for h = 0.04), which are not small.

- The technique of modulated Fourier expansions requires that the differential
equation is a perturbation of a set of harmonic oscillators. This means that the
large frequencies of the system have to be nearly constant. Figure 5 shows that
this is by far not the case.

An explanation of the good energy preservation observed in Figure 4 is still missing.
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