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On a Generalization of a Theorem of von Neumann

Studying the error growth function of implicit Runge-Kutta methods, we are lead in a natural way to a problem that
can be viewed as a generalization of a well-known theorem of von Neumann.

1. Introduction

We consider nonlinear systems of differential equations y′ = f(t, y), where the function f : IR× |Cn → |Cn is supposed
to satisfy the one-sided Lipschitz condition

<
〈
f(t, y)− f(t, ŷ), y − ŷ

〉
≤ ν‖y − ŷ‖. (1)

Such systems can be arbitrarily stiff. They are characterized by the fact that any two solutions satisfy for h > 0

‖y(t+ h)− ŷ(t+ h)‖ ≤ ehν‖y(t)− ŷ(t)‖.

We are interested in an analoguous estimate for the difference of any two numerical solutions.

Applying a Runge-Kutta method to y′ = f(t, y) (with two different initial values y0 and ŷ0), we get the relation

∆y1 = ∆y0 + h

s∑
i=1

bi∆fi, ∆gi = ∆y0 + h

s∑
j=1

aij∆fj , (2)

where ∆y0 = y0 − ŷ0, ∆y1 = y1 − ŷ1, ∆gi = gi − ĝi denote the differences of initial values, numerical solution after
one step and internal stage values, respectively, and ∆fi = f(t0 + cih, gi)− f(t0 + cih, ĝi). For the following analysis
it is useful to write this difference (multiplied by h) as

h∆fi = Zi∆gi with Zi = h

∫ 1

0

∂f

∂y
(t0 + cih, ĝi + τ∆gi) dτ. (3)

As a consequence of (1) the matrices Zi satisfy

µ(Zi) ≤ x with x = hν, (4)

where µ(Z) = sup‖v‖=1〈v, Zv〉 denotes the logarithmic norm of Z. Inserting (3) into the second relation of (2), we
can expess ∆gi and then also ∆y1 in terms of Z1, . . . , Zs as follows:

∆y1 = K(Z1, . . . , Zs)∆y0, (5)

where

K(Z1, . . . , Zs) = I + (bT ⊗ I)
(
I ⊗ I − (A⊗ I)Z

)−1
(1l⊗ I), (6)

Z is the block diagonal matrix with Z1, . . . , Zs as entries in the diagonal, bT = (b1, . . . , bs), A = (aij), 1lT = (1, . . . , 1),
and I is the identity matrix. From (5) we immediately get the estimate

‖∆y1‖ ≤ ϕ(hν)‖∆y0‖ with ϕ(x) = sup
µ(Z1)≤x,...,µ(Zs)≤x

‖K(Z1, . . . , Zs)‖. (7)

This estimate is uniform in all problems y′ = f(t, y) satisfying the condition (1). The function ϕ(x) is called error
growth function of the method.

As an example consider the two-stage Radau IIA method, for which we have

K(Z1, Z2) =
(
I − 5

12
Z1 −

1

4
Z2 +

1

6
Z1Z2

)−1(
I +

1

3
Z1

)
.

Observe that, in general, the matrices Z1 and Z2 do not commute and that the nominator and denominator of the
“rational function” depend only linearly on each of Z1 and Z2.



For a computation of ϕ(x) the formula in Eq. (7) is not very practical, because one has to search the supremum
over the s matrices Z1, . . . , Zs, whose dimension is not limited.

2. Formulation of the Problem

In the classical papers [2], [3], Burrage and Butcher have given upper bounds of the error growth function ϕ(x) for
various low-stage Runge-Kutta methods. We observed that, always when their estimate is optimal, it is equal to

ϕK(x) = sup
<z1≤x,...,<zs≤x

|K(z1, . . . , zs)|. (8)

This motivates the study of the following question.

Problem. Let K(Z1, . . . , Zs) be given by (6). In which situations is it true that the functions ϕ(x) and ϕK(x) of
(7) and (8), respectively, are identical for all x?

In the case s = 1 the answer of this question is affirmative. Indeed, it is a consequence of a theorem of von Neumann
(see e.g., [4], Sect. IV.11). The same will be proved below for s = 2, if the nominator and denominator of the rational
function K(z1, . . . , zs) do not have a common factor. For the moment, it is not clear to us whether ϕ(x) and ϕK(x)
are equal for every irreducible Runge-Kutta method.

3. A Related Optimization Problem

The computation of ϕ(x), defined in (7), is of course equivalent to searching the maximum of ‖∆y1‖ under the
restriction (1). It is therefore natural to consider the following inequality constrained optimization problem:

1

2
‖∆y1‖2 → max, <〈∆fi,∆gi〉 ≤ x‖∆gi‖2, i = 1, . . . , s. (9)

Here ∆f1, . . . ,∆fs are regarded as variables in |Cn, ∆y1 and ∆gi are defined by (2), and ∆y0 is considered as a
parameter (without loss of generality we have put h = 1).

A classical approach for solving the optimization problem (9) is to introduce Lagrange multipliers d1, . . . , ds
and to consider the Lagrangian

L(∆f1, . . . ,∆fs) =
1

2
‖∆y1‖2 −

s∑
i=1

di

(
<〈∆fi,∆gi〉 − x‖∆gi‖2

)
= −1

2

(
∆y0,∆f

)T ((α uT

u W

)
⊗ I
)(

∆y0
∆f

)
.

(10)

Here we have used the notation ∆f = (∆f1, . . . ,∆fs)
T , D = diag(d1, . . . , ds), and

α = −1− 2x1lTD1l, u = D1l− b− 2xATD1l, W = DA+ATD − bbT − 2xATDA.

Necessary Condition. Assuming that the Lagrange multipliers exist (see [1], Chap. 3), the derivatives of the
Lagrangian L(∆f1, . . . ,∆fs) with respect to ∆fi have to vanish at the solution point, i.e.,

(u⊗ I)∆y0 + (W ⊗ I)∆f = 0. (11)

Moreover, the Lagrange multipliers have to be non-negative and it holds di(<〈∆fi,∆gi〉 − x‖∆gi‖2) = 0 for all i.

Sufficient Condition. Subtracting k2‖∆y0‖2/2 from both sides of Eq. (10), we get the following result of [3]: if
the matrix (

α+ k2 uT

u W

)
is positive semi-definite for some d1 ≥ 0, . . . , ds ≥ 0, (12)

then the inequalities of (9) imply ‖∆y1‖ ≤ k‖∆y0‖. In this way we are able to get upper bounds of ϕ(x).

4. Algorithmic Verification



The function ϕK(x) of (8) is, for irreducible Runge-Kutta methods, a lower bound of the error growth function (7).
For nonconfluent methods (i.e., all ci are distinct), this is seen by considering problems of the form y′ = λ(t)y, and
for confluent methods it follows by using the techniques of Hundsdorfer & Spijker [5] (see also [4], Sect. IV.12).

In order to verify whether ϕK(x) is also an upper bound of ϕ(x), we can proceed as follows:

1. compute z01 , . . . , z
0
s with <z0j = x such that |K(z01 , . . . , z

0
s)| ≥ |K(z1, . . . , zs)| for all zj with <zj ≤ x (observe

that some of the z0j may be infinite);

2. with Z0 := diag(z01 , . . . , z
0
s) we put F = Z0(I−AZ0)−11l and compute d1, . . . , ds from the relation u+WF = 0

(it turns out that d1, . . . , ds exist uniquely, are real and positive; see Lemma ?? below);

3. with k := ϕK(x) we check the sufficient condition (12). Since, for this choice of K, the matrix in (12) is
singular, it is sufficient to check that W is positive semi-definite.

5. Technical Details

In this part we shall prove some results that are useful for the application of the above algorithm. Let z01 , . . . , z
0
s

with <z0j = x be such that |K(z01 , . . . , z
0
s)| ≥ |K(z1, . . . , zs)| for all zj with <zj ≤ x, and assume for the moment

that all z0j are finite. From the formula

K(z1, . . . , zs) =
det(I − (A− 1lbT )Z)

det(I −AZ)
with Z = diag(z1, . . . , zs) (13)

(see [4], page 197) it then follows that (I −AZ) is invertible in a neighbourhood of Z0 = diag(z01 , . . . , z
0
s), provided

that the fraction in (13) cannot be reduced.

L e m m a 1. The derivative of K(Z) = K(z1, . . . , zs) with respect to the jth argument satisfies (with eTj =
(0, . . . , 0, 1, 0, . . . , 0))

∂jK(Z) = bT (I − ZA)−1eje
T
j (I −AZ)−11l. (14)

Furthermore, ∂jK(Z0) 6= 0 (hence also bT (I − ZA)−1ej 6= 0 and eTj (I −AZ)−11l 6= 0) and

0 < ∂jK(Z0)/K(Z0) <∞.

Proof. Differentiating K(Z) = 1+bTZ(I−AZ)−11l with respect to zj yields (14). Observe that the inveribility
of (I − ZA) follows from that of (I −AZ), because (I − ZA)(I + Z(I −AZ)−1A) = . . . = I.

6. References

1 Avriel, M.: Nonlinear Programming: Analysis and Methods, Prentice-Hall, 1976.
2 Burrage, K., Butcher, J.C.: Stability critera for implicit Runge-Kutta methods, SIAM J. Numer. Anal. 16 (1979),

46–57.
3 Burrage, K., Butcher, J.C.: Non-linear stability of a general class of differential equation methods, BIT 20 (1980),

185–203.
4 Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems,

Springer-Verlag, 1991.
5 Hundsdorfer, W.H., Spijker, M.N.: A note on B-stability of Runge-Kutta methods, Numer. Math. 36 (1981),

319–331.

Addresses: Hairer Ernst, Wanner Gerhard, Université de Genève, Section de Mathématiques, 2-4 rue du
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