HAIRER, E. AND WANNER, G.

On a Generalization of a Theorem of von Neumann

Studying the error growth function of implicit Runge-Kutta methods, we are lead in a natural way to a problem that
can be viewed as a generalization of a well-known theorem of von Neumann.

1. Introduction

We consider nonlinear systems of differential equations y’ = f(t,y), where the function f : IR xC™ — C" is supposed
to satisfy the one-sided Lipschitz condition

Such systems can be arbitrarily stiff. They are characterized by the fact that any two solutions satisfy for h > 0
ly(t +h) =Gt +n)|| < ™ ly(t) =Gt

We are interested in an analoguous estimate for the difference of any two numerical solutions.

Applying a Runge-Kutta method to ¢y’ = f(¢,y) (with two different initial values yo and gp), we get the relation

Ay :Ay0+hzbiAfi, Ag; ZAZJO'FhZGijAfp (2)
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where Ayo = yo — Yo, Ay1 = y1 — Y1, Ag; = g; — g; denote the differences of initial values, numerical solution after
one step and internal stage values, respectively, and Af; = f(to+ ¢;h, ;) — f(to + ¢;h, g;). For the following analysis
it is useful to write this difference (multiplied by h) as
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hAf; = Z;Ag; with Z; = h/ 87f(t0 + cih,@ + TAgi> dr. (3)
o dY

As a consequence of (1) the matrices Z; satisfy

w(Z;) <z with x = hy, (4)
where u(Z) = sup,|=1 (v, Zv) denotes the logarithmic norm of Z. Inserting (3) into the second relation of (2), we
can expess Ag; and then also Ay in terms of Z1, ..., Z, as follows:

Ay, = K(Zy,...,Z5)Ayo, (5)
where

K(Zi,...,Z) =1+ (T o D(Io] - (Ao NZ)  (1e1), (6)

7 is the block diagonal matrix with Z1, ..., Z, as entries in the diagonal, b7 = (by,...,bs), A = (a;;), 17
and I is the identity matrix. From (5) we immediately get the estimate
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[Ayill < p(h)|Agoll  with  o(z) = sup 1K(Zy, ..., Zs)|. (7)
M(Zl)gzv"'vu(zs)gw

This estimate is uniform in all problems y’' = f(¢,y) satisfying the condition (1). The function ¢(x) is called error
growth function of the method.

As an example consider the two-stage Radau ITA method, for which we have
5 1 1 -1 1
K(Z1,2s) = (I—EZl— ZZerngZQ) (I+ng).

Observe that, in general, the matrices Z; and Z5 do not commute and that the nominator and denominator of the
“rational function” depend only linearly on each of Z; and Zs.



For a computation of ¢(z) the formula in Eq. (7) is not very practical, because one has to search the supremum
over the s matrices Z1,..., Z,, whose dimension is not limited.
2. Formulation of the Problem

In the classical papers [2], [3], Burrage and Butcher have given upper bounds of the error growth function ¢(z) for
various low-stage Runge-Kutta methods. We observed that, always when their estimate is optimal, it is equal to

vr(z) = sup |K(z1,...,2s)| (8)

Rz1<z,..., Rz <z

This motivates the study of the following question.

Problem. Let K(Z1,...,Z,) be given by (6). In which situations is it true that the functions ¢(z) and ¢k (z) of
(7) and (8), respectively, are identical for all z?

In the case s = 1 the answer of this question is affirmative. Indeed, it is a consequence of a theorem of von Neumann
(see e.g., [4], Sect.IV.11). The same will be proved below for s = 2, if the nominator and denominator of the rational
function K(z1,...,2s) do not have a common factor. For the moment, it is not clear to us whether ¢(x) and pg ()
are equal for every irreducible Runge-Kutta method.

3. A Related Optimization Problem

The computation of ¢(x), defined in (7), is of course equivalent to searching the maximum of ||Ay;|| under the
restriction (1). It is therefore natural to consider the following inequality constrained optimization problem:

1 .
§||Ay1|\2—>max7 RN, Ags) < zl|Agi)®, i=1,...,s. (9)

Here Afy,...,Afs are regarded as variables in C", Ay; and Ag; are defined by (2), and Ayy is considered as a
parameter (without loss of generality we have put h = 1).

A classical approach for solving the optimization problem (9) is to introduce Lagrange multipliers dy, .. ., ds
and to consider the Lagrangian
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Here we have used the notation Af = (Afy,...,Afs)T, D = diag(ds,...,d), and
a=—1-2z1"D1, w=DI1—b—2:AT D1, W =DA+ ATD — " —2:ATDA.

Necessary Condition. Assuming that the Lagrange multipliers exist (see [1], Chap.3), the derivatives of the
Lagrangian L(Af1,...,Afs) with respect to Af; have to vanish at the solution point, i.e.,

(u@ Ay + (W RI)Af =0. (11)

Moreover, the Lagrange multipliers have to be non-negative and it holds d;(R(Afi, Ag;) — z||Ag:||*) = 0 for all i.

Sufficient Condition. Subtracting k2||Ay||?/2 from both sides of Eq. (10), we get the following result of [3]: if
the matrix

a+k2 T
u w

) is positive semi-definite for some d; > 0,...,ds >0, (12)

then the inequalities of (9) imply ||Ay1]| < E||Aypl|. In this way we are able to get upper bounds of ¢(x).

4. Algorithmic Verification



The function g (x) of (8) is, for irreducible Runge-Kutta methods, a lower bound of the error growth function (7).
For nonconfluent methods (i.e., all ¢; are distinct), this is seen by considering problems of the form y’ = A(t)y, and
for confluent methods it follows by using the techniques of Hundsdorfer & Spijker [5] (see also [4], Sect.IV.12).

In order to verify whether gk () is also an upper bound of ¢(z), we can proceed as follows:

L. compute 27, ..., 20 with %27 = z such that [K(27,...,2])| > |K(z1,...,2)| for all z; with Rz; <z (observe
that some of the z§ may be infinite);

2. with Zg := diag(z?,...,2%) we put F = Zs(I — AZy) =1 and compute dy, ..., ds from the relation u+WF =0

r7s
(it turns out that dy,...,ds exist uniquely, are real and positive; see Lemma 7?7 below);

3. with k := pg(x) we check the sufficient condition (12). Since, for this choice of K, the matrix in (12) is
singular, it is sufficient to check that W is positive semi-definite.

5. Technical Details

In this part we shall prove some results that are useful for the application of the above algorithm. Let z?,..., 20
with Rz) = 2 be such that [K(20,...,20)] > |K(z1,...,2)| for all z; with Rz; < x, and assume for the moment
that all 22 are finite. From the formula
det(I — (A - MW" Z
K(o,... ) = St =( ) ith 7 = diag(z, ..., %) (13)

det(I — AZ)

(see [4], page 197) it then follows that (I — AZ) is invertible in a neighbourhood of Z = diag(2?,...,2%), provided
that the fraction in (13) cannot be reduced.

Lemma 1. The derivative of K(Z) = K(z1,...,2s) with respect to the jth argument satisfies (with eJT =
0,...,0,1,0,...,0))

O;K(Z)=b"(1—ZA) "ejel (I — AZ)™ 1. (14)
Furthermore, 0;K (Zo) # 0 (hence also bT (I — ZA) te; # 0 and ejT(I —AZ)"'1#0) and

0< 8]K(Z0)/K(Zo) < 00.

Proof. Differentiating K (Z) = 1+b7 Z(I— AZ)~11 with respect to z; yields (14). Observe that the inveribility
of (I — ZA) follows from that of (I — AZ), because (I — ZA)(I + Z(I — AZ)"*A)=...=1.
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