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Abstract. For the long-time integration of Hamiltonian systems (epanetary motion, molecular dynamics simulation)
much insight can be gained with “backward error analysigit €&xample, it explains why symplectic integrators nearly
conserve the energy, and why they have at most a linear exwattly for integrable systems. This theory breaks down in the
presence of high oscillations, when the product of the stpwith the highest frequency is not small. In the situatishere
the high oscillations originate from a linear part in thefefiéntial equation, the theory of “modulated Fourier exgian’
yields much information on the long-time behavior of anialgind numerical solutions, in particular for large stegsiz

After a short review on backward error analysis, the maiasdend results of modulated Fourier expansions are presente
They are then applied to get new insight into the distributibthe modal energy spectrum of the Fermi—Pasta—Ulam @nabl
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INTEGRATION OF HAMILTONIAN SYSTEMS

Although many of the presented statements remain valid éoegal Hamiltonian systems, we restrict ourselves to
problems of the form

4=f(q@),  f(@)=-0U(q), 1)
whereU (q) is a sufficiently smooth potential. Introducing the momemfu= ¢ as new variable, we get a first order

Hamiltonian system. It is a classical result by Poincaré itisaflow is symplectic. Moreover, it can be checked by
differentiation that the Hamiltonian

H(p.q) =3 p'p+U () @)

is preserved along solutions of the system.
The most natural discretization of such a system is

_ Qn+12—hanl 7 3)

which is referred to as the Stormer—\Verlet method (leag-finahe context of partial differential equations). Writtas
a one-step metho@n,dn) — (Pn+1,0n+1), it is of order two, symplectic, symmetric, and time-revieles (see [1, 2]).

On+1— 200+ 0n-1= hzf(Qn)7 Pn

BACKWARD ERROR ANALYSIS

The idea of backward error analysis is to find smooth funstjaih), q(t) that

- interpolate the numerical solutidipn, gn) (obtained with fixed step siZ8, and
- are solution of a modified differential equation with a vedteld written as a formal series in powerstof

The construction of the modified differential equation isgtht-forward for general differential equations and for
general one-step methods. The success of backward ertgsiani@s in the fact that the modified differential equatio
inherits geometric properties of the problem and the metkagl, for the system (1) and the method (3) we have the
following result.



Theorem. There exist functions Hip, ) such that the solutiop(t), ¢(t) of the Hamiltonian system

p:_ Fi paq) . at
= with  H(p,q) = 5" p+U(a) + hPHa(p,q) + ...+ h™NHan(p,q) )
q="LhH(p9)

and initial values R, g, at t, = nh satisfies

[Pt — Pltn+ )| + [[Ons1 — G(tn+ h) || < Cuh?NT2,

The near conservation of energy is a simple consequencisoésult: along the solution of the modified differential
equation (4), the modified Hamiltonian is a conserved qtast that alst (pny1,0ni1) = H(pn,tn) + 0(h2N+2).

Summing up yield$i (pn,an) = H(po,do) + &(t.h?N*1) and

H (Pn,dn) = H(po,do) + O(h?) + O(t, ™)

as long as the numerical solution stays in a compact set.médns that the energy is conserved up to an error of size
0 (h?) on time intervals of length, < Cy h=2N*+1, For exponentially small error estimates and for furthesligations
of backward error analysis we refer to the monographs [1, 3].

In the presence ofiigh oscillations e.g., for the harmonic oscillatdd (p,q) = %p2+ %wzqz, the exact and
numerical solutions depend @oh rather than only oh. Therefore, the above derivation gives in fact

H (Pn,tn) = H(po,do) + O((wh)?) + O(taw(wh)™ )

wherew is the highest frequency in the system. Hence, backward analysis does not give any information on the
long-time behaviour for step sizes such thdt~ 1.

MODULATED FOURIER EXPANSION

Here we focus on problems with highly oscillatory solutioAgypical example is the motion of a chain, where stiff
harmonic springs (with frequeney > 1) alternate with soft nonlinear springs. The differentigliation becomes

Yo = —0pU (Yo, y1)

. or  Y+Q%=-0U(y)
Vi+wYyr = —Ly,U(Yo,y1
+ o 3, (Yo, Y1)

whereyp € R™ are the displacements from the position of rest of the sfifings, andy; € R™ represent their
expansion/compression. An important feature of such sysis that not only the total enerdy(y,y) is conserved,
but also the oscillatory energy;(j denotes thgth component of1)

(yp,V1)=l1+l24... +Im=const+ O(w™ ), |} = %(yij + W’y )

is nearly conserved up to oscillations of sizéw 1) over exponentially long (i) time intervals (see [4]). This is
illustrated in Figure 1 for the case= 3 andw = 30: the left picture presents the exact solution, and th# pacture
is the Stérmer—\Verlet solution with large step size saitigfjnco = 0.5 over a much longer time interval.

The technique of modulated Fourier expansion permits ugptam the long-time behavior of analytic as well as
numerical solutions for such types of highly oscillatorjfetiential equations. The presence of two time scales (fast
time wt in oscillations of the stiff harmonic springs and slow tiingue to the soft nonlinear coupling) motivates for

the analytic solution the ansatz x
' () ket
Vo= 5 Apder = 5 (B0 ) de ©
2 240
where the coefficient functionz%((t) are smooth with derivatives bounded uniformlydan> 1. For the numerical

solution we search for a functigiit) as in (5) but with coefficient function?{(t), such that in the spirit of backward
error analysis, the numerical solution formally satisfies- y(t,). This is possible for so-called exponential integrators
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FIGURE 1. Exact solution (left) and numerical solution (right)

which discretize the linear part of the differential eqaatiithout error, and also for the Stérmer—Verlet methodemh
it is interpreted as an exponential integrator applied tgséesn with modified frequencies. Let us sketch the different
steps for a proof of near conservation of the total and @goity energies by the numerical integrator:

- prove the existence of smooth functim‘jist) (respi}((t)) on intervals of lengthw,

. find a Hamiltonian system fa(t) of the exact solution,

- find amodified Hamiltoniarsystem foZX(t) of the numerical solution,

« study formal invariants for both systems,

- reinterpret the results in terms yf.
In this way, it is possible to prove for an exponential integr (and for the Stérmer—Verlet method) that under siétabl
numerical non-resonance conditions the total and osuilfe¢nergies are nearly conserved over long time intervals.
Details of the proof are given in [5, 1]. An extension of theuks to finitely many high frequencies (with possible
resonances) is elaborated in [6], and for the discretizedimearly perturbed wave equation in [7, 8].

Recently, modulated Fourier expansions have been usethdtyzing heterogeneous multiscale methods [9], and
for solving differential-algebraic equation arising imatiit theory (talk at SCiCADEQ9 by Arieh Iserles).

APPLICATION TO THE FERMI-PASTA-ULAM PROBLEM
We consider a long chain of particles interacting througimtetal nonlinear springs:

6n — (Ont1— 200+ Gn-1) = V'(Gn+1—Gn) — V(G — Gn-1)
with potentialV (u) = u®/3 and periodic boundary conditionsy = go. With the discrete Fourier coefficients
N-1
y=0)j—n: = Z yj N,
j=—N
we obtain the Hamiltonian system

yi+ @y = —iw (—1)Urtl=D/ 2N oy 6oy, iy,
j1tj2=JmodN

with frequenciesv; = Zsir‘(g—’,j) for j = —N,...,N— 1. This problem is extensively studied over many years and a
recent Lecture Notes in Physics [10] gives a “status reporthe main developments. One of the interesting questions
is the study of the long-time behavior of the harmonic eresgi

Ej(t) = 2 (Ii (O + w?ly; 1))

when only one (or a few) low frequency modes are excited ifrtitial state:E; (0) = £2 andEj(0) =0forj=2,...,N.
The frequencies; are dense in the intervil- 2,2}, and it is a priori not evident, if the approach by modulatedrier



expansions, which is based on the separatidawotime scales, will be useful. Numerical experiments (seefé@)
and the fact thato + wy — w. ¢ = ﬁ(N*3) for smallk and/, suggest the existence of an expansion of the form

N-1 _
yit)= Y Z(nex  with =N
k==N

The main difference to the expansion in the previous sedsitimat the dominant frequencieg are in resonance, so
that products of 'é! need not be considered in the expansion. A formal analysissthat fore significantly smaller
thanN—2, the harmonic energies for the analytic solution satisfy

Ej(t) = e2INY4uj(1)|? + 0(2INY~8) 1 0 (e21+2N%) (6)
where (with the abbreviatiomr (k, £) = w+ awy — tx1¢)

_ _ A (et _ 12/ i@y ra@2)r 4\ 16/ jaw2r
u (1) =1, (1) = = (e' 1), us(t) = - (e 1) - (e' 1).

For the numerical solution obtained by the Stérmer—Verlethrad (withh < 1) we have (6) with, e.g.,

_ 4 iat ~ _ K2 -2

() = (é 1), @ =a(1,1)(1—h?)+ O(N2).

These formulas agree extremely well with numerical expenits (see Figure 2, where the step size is such that
hwmax = 1.6). In fact, plots of the leading term in (6) cannot be distiistped from the exact energies (for analytic as
well as numerical solution). These results are taken froaird-jvork with Christian Lubich, which is in preparation.

10 = analytic solution 0<t<10N3 10 = Stormer—\Verlet 0<t< 10N3
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FIGURE 2. Harmonic energieE;(t) for j =1,2,... as function of timeN = 32, ¢ = N—3.
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