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Abstract. For the long-time integration of Hamiltonian systems (e.g., planetary motion, molecular dynamics simulation)
much insight can be gained with “backward error analysis”. For example, it explains why symplectic integrators nearly
conserve the energy, and why they have at most a linear error growth for integrable systems. This theory breaks down in the
presence of high oscillations, when the product of the step size with the highest frequency is not small. In the situation, where
the high oscillations originate from a linear part in the differential equation, the theory of “modulated Fourier expansion”
yields much information on the long-time behavior of analytic and numerical solutions, in particular for large step sizes.

After a short review on backward error analysis, the main ideas and results of modulated Fourier expansions are presented.
They are then applied to get new insight into the distribution of the modal energy spectrum of the Fermi–Pasta–Ulam problem.
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INTEGRATION OF HAMILTONIAN SYSTEMS

Although many of the presented statements remain valid for general Hamiltonian systems, we restrict ourselves to
problems of the form

q̈ = f (q), f (q) = −∇U(q), (1)

whereU(q) is a sufficiently smooth potential. Introducing the momentum p = q̇ as new variable, we get a first order
Hamiltonian system. It is a classical result by Poincaré that its flow is symplectic. Moreover, it can be checked by
differentiation that the Hamiltonian

H(p,q) =
1
2

pT p+U(q) (2)

is preserved along solutions of the system.
The most natural discretization of such a system is

qn+1−2qn+qn−1 = h2 f (qn), pn =
qn+1−qn−1

2h
, (3)

which is referred to as the Störmer–Verlet method (leap-frog in the context of partial differential equations). Written as
a one-step method(pn,qn) 7→ (pn+1,qn+1), it is of order two, symplectic, symmetric, and time-reversible (see [1, 2]).

BACKWARD ERROR ANALYSIS

The idea of backward error analysis is to find smooth functions p̃(t), q̃(t) that

• interpolate the numerical solution(pn,qn) (obtained with fixed step sizeh), and
• are solution of a modified differential equation with a vector field written as a formal series in powers ofh.

The construction of the modified differential equation is straight-forward for general differential equations and for
general one-step methods. The success of backward error analysis lies in the fact that the modified differential equation
inherits geometric properties of the problem and the method. E.g., for the system (1) and the method (3) we have the
following result.



Theorem. There exist functions Hj(p,q) such that the solutioñp(t), q̃(t) of the Hamiltonian system

ṗ = −∇qH̃(p,q)

q̇ = ∇pH̃(p,q)
with H̃(p,q) =

1
2

pT p+U(q)+h2H2(p,q)+ . . .+h2NH2N(p,q) (4)

and initial values pn,qn at tn = nh satisfies

‖pn+1− p̃(tn+h)‖+‖qn+1− q̃(tn+h)‖ ≤CN h2N+2.

The near conservation of energy is a simple consequence of this result: along the solution of the modified differential
equation (4), the modified Hamiltonian is a conserved quantity so that alsõH

(
pn+1,qn+1

)
= H̃

(
pn,qn

)
+O(h2N+2).

Summing up yields̃H
(
pn,qn

)
= H̃

(
p0,q0

)
+O(tnh2N+1) and

H
(
pn,qn

)
= H

(
p0,q0

)
+O(h2)+O(tnh2N+1)

as long as the numerical solution stays in a compact set. Thismeans that the energy is conserved up to an error of size
O(h2) on time intervals of lengthtn ≤CN h−2N+1. For exponentially small error estimates and for further applications
of backward error analysis we refer to the monographs [1, 3].

In the presence ofhigh oscillations, e.g., for the harmonic oscillatorH(p,q) = 1
2 p2 + 1

2 ω2q2, the exact and
numerical solutions depend onω h rather than only onh. Therefore, the above derivation gives in fact

H
(
pn,qn

)
= H

(
p0,q0

)
+O((ω h)2)+O(tnω (ω h)2N+1)

whereω is the highest frequency in the system. Hence, backward error analysis does not give any information on the
long-time behaviour for step sizes such thatω h≈ 1.

MODULATED FOURIER EXPANSION

Here we focus on problems with highly oscillatory solutions. A typical example is the motion of a chain, where stiff
harmonic springs (with frequencyω ≫ 1) alternate with soft nonlinear springs. The differentialequation becomes

ÿ0 = −∇y0U(y0,y1)

ÿ1 + ω2y1 = −∇y1U(y0,y1)
or ÿ+ Ω2y = −∇U(y)

wherey0 ∈ R
m are the displacements from the position of rest of the stiff springs, andy1 ∈ R

m represent their
expansion/compression. An important feature of such systems is that not only the total energyH(y, ẏ) is conserved,
but also the oscillatory energy ( ˙y1, j denotes thejth component ofy1)

I(y1, ẏ1)= I1 + I2+ . . .+ Im = const+O(ω−1), I j =
1
2
(ẏ2

1, j + ω2y2
1, j)

is nearly conserved up to oscillations of sizeO(ω−1) over exponentially long (inω) time intervals (see [4]). This is
illustrated in Figure 1 for the casem= 3 andω = 30: the left picture presents the exact solution, and the right picture
is the Störmer–Verlet solution with large step size satisfying hω = 0.5 over a much longer time interval.

The technique of modulated Fourier expansion permits us to explain the long-time behavior of analytic as well as
numerical solutions for such types of highly oscillatory differential equations. The presence of two time scales (fast
time ωt in oscillations of the stiff harmonic springs and slow timet due to the soft nonlinear coupling) motivates for
the analytic solution the ansatz

y(t) = ∑
k∈Z

zk(t)eikωt = ∑
k∈Z

(
zk
0(t)

zk
1(t)

)
eikωt , (5)

where the coefficient functionszk
j (t) are smooth with derivatives bounded uniformly inω ≥ 1. For the numerical

solution we search for a functioñy(t) as in (5) but with coefficient functions̃zk
j (t), such that in the spirit of backward

error analysis, the numerical solution formally satisfiesyn = ỹ(tn). This is possible for so-called exponential integrators
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FIGURE 1. Exact solution (left) and numerical solution (right)

which discretize the linear part of the differential equation without error, and also for the Störmer–Verlet method, when
it is interpreted as an exponential integrator applied to a system with modified frequencies. Let us sketch the different
steps for a proof of near conservation of the total and oscillatory energies by the numerical integrator:

• prove the existence of smooth functionszk
j (t) (resp.̃zk

j (t)) on intervals of lengthω ,

• find a Hamiltonian system forzk(t) of the exact solution,
• find amodified Hamiltoniansystem for̃zk(t) of the numerical solution,
• study formal invariants for both systems,
• reinterpret the results in terms ofyn.

In this way, it is possible to prove for an exponential integrator (and for the Störmer–Verlet method) that under suitable
numerical non-resonance conditions the total and oscillatory energies are nearly conserved over long time intervals.
Details of the proof are given in [5, 1]. An extension of the results to finitely many high frequencies (with possible
resonances) is elaborated in [6], and for the discretized nonlinearly perturbed wave equation in [7, 8].

Recently, modulated Fourier expansions have been used for analyzing heterogeneous multiscale methods [9], and
for solving differential-algebraic equation arising in circuit theory (talk at SciCADE09 by Arieh Iserles).

APPLICATION TO THE FERMI–PASTA–ULAM PROBLEM

We consider a long chain of particles interacting through identical nonlinear springs:

q̈n− (qn+1−2qn+qn−1) = V ′(qn+1−qn)−V′(qn−qn−1)

with potentialV(u) = u3/3 and periodic boundary conditionsq2N = q0. With the discrete Fourier coefficients

y =
(
y j

)N−1
j=−N, qn =

N−1

∑
j=−N

y j ei jnπ/N,

we obtain the Hamiltonian system

ÿ j + ω2
j y j = − i ω j ∑

j1+ j2= j mod2N

(−1)( j1+ j2− j)/(2N) ω j1 ω j2 y j1 y j2

with frequenciesω j = 2sin( jπ
2N ) for j = −N, . . . ,N− 1. This problem is extensively studied over many years and a

recent Lecture Notes in Physics [10] gives a “status report”on the main developments. One of the interesting questions
is the study of the long-time behavior of the harmonic energies

E j(t) =
1
2

(
|ẏ j(t)|

2 + ω2
j |y j(t)|

2)

when only one (or a few) low frequency modes are excited in theinitial state:E1(0)= ε2 andE j(0)= 0 for j = 2, . . . ,N.
The frequenciesω j are dense in the interval[−2,2], and it is a priori not evident, if the approach by modulated Fourier



expansions, which is based on the separation oftwo time scales, will be useful. Numerical experiments (see Figure 2)
and the fact thatωk + ωℓ−ωk+ℓ = O(N−3) for smallk andℓ, suggest the existence of an expansion of the form

y j(t) =
N−1

∑
k=−N

zk
j(τ)eiωkt with τ = N−3t.

The main difference to the expansion in the previous sectionis that the dominant frequenciesωk are in resonance, so
that products of eiωkt need not be considered in the expansion. A formal analysis shows that forε significantly smaller
thanN−2, the harmonic energies for the analytic solution satisfy

E j(t) = ε2 jN4 j−4|u j(τ)|2 +O(ε2 jN4 j−6)+O(ε2 j+2N4 j) (6)

where (with the abbreviationα(k, ℓ) = ωk + ωℓ−ωk+ℓ)

u1(τ) = 1, u2(τ) =
4

π2

(
eiα(1,1)τ −1

)
, u3(τ) =

12
π4

(
ei(α(1,1)+α(1,2))τ −1

)
−

16
π4

(
eiα(1,2)τ −1

)
.

For the numerical solution obtained by the Störmer–Verlet method (withh < 1) we have (6) with, e.g.,

u2(τ) =
4

π2(1−h2)

(
eiα̃τ −1

)
, α̃ = α(1,1)(1−h2)+O(N−2).

These formulas agree extremely well with numerical experiments (see Figure 2, where the step size is such that
hωmax = 1.6). In fact, plots of the leading term in (6) cannot be distinguished from the exact energies (for analytic as
well as numerical solution). These results are taken from a joint-work with Christian Lubich, which is in preparation.
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FIGURE 2. Harmonic energiesE j (t) for j = 1,2, . . . as function of time,N = 32,ε = N−3.
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