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Summary Piece-wise smooth differential equations (their regular-
ization, numerical integration, and classification of solutions) is the
topic of the present work. The behaviour close to one discontinuity
surface and also the entering into the intersection of two discontinuity
surfaces is well understood. Here, we study the solutions that exit a
codimension-2 sliding mode. Some results are expected, others come
as a surprise. We are able to explain situations, where difficulties in
numerical computations are reported in the recent literature.

The analysis is based on asymptotic expansions for singularly
perturbed problems and on the study of a time-parameterized two-
dimensional dynamical system (hidden dynamics). Various situations
are illustrated by examples.

Mathematics Subject Classification (2010): 34A36, 34A09, 65L04

1 Introduction

In this article we study the situation, where the solution of a dis-
continuous dynamical system leaves a codimension-2 sliding mode.
Following the notation of [15] we consider in the n-dimensional phase
space the hypersurfaces

Σα = {y ∈ Rn ; α(y) = 0} Σβ = {y ∈ Rn ; β(y) = 0}, (1)

where α(y) and β(y) are scalar smooth functions. We assume that
both hypersurfaces intersect transversally, so that in a neighbour-
hood of y ∈ Σ = Σα ∩ Σβ, these hypersurfaces divide the phase
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space into the four regions R++ = {y ; α(y) > 0, β(y) > 0}, R+− =
{y ; α(y) > 0, β(y) < 0}, R−+ = {y ; α(y) < 0, β(y) > 0}, and
R−− = {y ; α(y) < 0, β(y) < 0}. The discontinuous differential equa-
tion is given by

ẏ =


f++(y) y ∈ R++

f+−(y) y ∈ R+−

f−+(y) y ∈ R−+
f−−(y) y ∈ R−−

(2)

where the vector fields are individually assumed to be smoothly ex-
tendable to a neighbourhood of the adjacent discontinuity surfaces.
For y ∈ Σα or y ∈ Σβ we adopt the concept of Filippov [13], and we
consider solutions (sliding modes), for which the derivative ẏ(t) is a
convex combination of the adjacent vector fields (for further solution
concepts we refer to [3,5], stochastically perturbed sliding motion is
considered in [27]). In the intersection Σα ∩Σβ we restrict our study
to a two-parameter family of convex combinations (called ‘blending’
in [4], bilinear interpolation in [8,7], and convex canopy in [18], see
also [11]).

Solutions evolving in one of the discontinuity surfaces (codimen-
sion-1 sliding) are well understood. The situation where the solution
evolves in the intersection of two or more discontinuity surfaces arises
in many practical applications. We mention multibody dynamics sub-
ject to Coulomb friction [25], gene regulatory networks describing
the interactions of genes and proteins (see [12,17,23,2]), and sys-
tems in control engineering [30,26]. Further interesting applications
and numerical approaches can be found in the monographs [1] and
[6]. The study of the behaviour of solutions close to the intersection
of discontinuity surfaces is much more challenging (mainly due to
non-uniqueness). Recently in [15] we have given a classification of so-
lutions entering the intersection Σα ∩ Σβ, which can be interpreted
as the limit of a regularized differential equation. Related results can
be found in [9].

The present work can be seen as a follow-up of [15]. Here, we study
the exit of solutions from a codimension-2 sliding. We know of two
recent publications treating the same topic. The article [9] gives suffi-
cient conditions guaranteeing that the regularized solution converges
to a sliding solution on Σα ∩ Σβ, and it illustrates through several
examples the kind of “exiting” that can happen. The article [20, Sec-
tion IV] presents examples that illustrate various ways of exiting from
codimension-2 sliding. Our present study tends towards a classifica-
tion of all possible ways of exiting a codimension-2 sliding mode. We
give new information on when and how a sliding mode solution can
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leave Σα ∩Σβ. Several situations are rigorously proven with the help
of asymptotic expansions before and after the exit point. New is also
the study of the exit time from codimension-2 sliding.

An important ingredient of our analysis is a regularization (see [28,
29,22,10,24,14]) of the discontinuous differential equation (2), which
takes the form

ẏ=
((

1+π(u)
)(

1+π(v)
)
f++(y) +

(
1+π(u)

)(
1−π(v)

)
f+−(y) (3)

+
(
1−π(u)

)(
1+π(v)

)
f−+(y) +

(
1−π(u)

)(
1−π(v)

)
f−−(y)

)/
4,

where u = α(y)/ε and v = β(y)/ε. Here, π(u) is a continuous, mono-
tone scalar function that takes the value −1 for u ≤ −1, and the value
+1 for u ≥ 1, e.g., π(u) = min

(
1,max(−1, u)

)
. By definition of the

function π(u), the differential equation (3) agrees with (2) whenever
|α(y)| ≥ ε and |β(y)| ≥ ε. In the ε-stripes along Σα and Σβ it is a
linear interpolation of the vector fields, and in Σα ∩ Σβ a bilinear
interpolation. Because of the division by ε in the definition of u and
v, the differential equation (3) is of singular perturbation type. In the
following, we abbreviate the right-hand side of (3) by f

(
y, π(u), π(v)

)
,

so that the regularized differential equation becomes

ẏ = f
(
y, π
(
α(y)/ε

)
, π
(
β(y)/ε

))
. (4)

The study of the regularized differential equation (4) is important
because of at least two reasons. First of all, it replaces a discontinuous
differential equation by a continuous one, so that standard software
for ordinary differential equations can be applied for their numerical
integration. Since the system is of singular perturbation type, the use
of integrators for stiff differential equations is advised. Secondly, the
solution of (4) is unique as long as it exists. In the limit ε → 0 it
selects the most natural solution of the discontinuous system in the
case where (2) has more than one solutions (classical solutions and
sliding modes).

In the analysis of [15], where a classification of solutions entering
the intersection Σα ∩ Σβ is given, a two-dimensional autonomous
dynamical system on the unit square [−1, 1]× [−1, 1] plays a crucial
role (hidden dynamics). Its solution determines the fast transition
between the incoming and continuing solutions. In the present work, a
similar two-dimensional differential equation is central to the analysis,
but here the system depends on the slow time t. By an abuse of
notation, we continue to speak about an equilibrium (depending on
time t), if the right-hand side of this system vanishes. The aim of the
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present work is to get new insight into situations, where a solution
leaves the intersection Σα ∩Σβ from a codimension-2 sliding mode.

In Section 2, solutions evolving in the intersection Σα ∩ Σβ (so-
called codimension-2 sliding modes) are studied. Using singular per-
turbation techniques it is proved (Theorem 1 below) that as long as
the ‘time-dependent equilibrium’ is asymptotically stable, the solu-
tion of the regularized differential equation (4) stays close to Σα∩Σβ.
This happens even in the situation, when a classical solution or
a codimension-1 sliding mode co-exist with the codimension-2 slid-
ing mode. There are essentially two situations, where Theorem 1 is
no longer applicable. Either the ‘equilibrium’ leaves the unit square
(case A) or it becomes unstable or disappears (case B).

Section 3 is devoted to case A. Leaving the unit square provokes
a transient layer in the solution that is scaled by ε2. A study of this
transient layer gives information on whether the solution continues as
a codimension-1 sliding mode or as a classical solution. The transient
between solutions takes place on a time interval of length O(ε).

Section 4 is devoted to case B. Precise statements are more diffi-
cult to obtain, so that we decided to present the typical situations by
examples. Several unexpected behaviours arise in case B. For the sit-
uation, where the ‘equilibrium’ turns into an unstable one, the exit
point depends on the time instant, when the solution entered the
codimension-2 sliding mode. Its numerical approximation is strongly
affected by the accuracy of the time integrator and by round-off er-
rors. The situation, where the ‘equilibrium’ disappears at some time
instant t is the most difficult to analyse. Numerical experiments at
a typical example indicate that here the exit time is proportional to
O(εκ) with κ ≈ 0.67.

2 Codimension-2 sliding modes

Codimension-2 sliding modes are solutions of (2) that evolve in the in-
tersection Σα∩Σβ. There, the vector field is defined by bilinear inter-
polation of the neighbour vector fields. We first recall results from [15]
on solutions entering Σα ∩ Σβ, and then we study the remainder in
the asymptotic expansions of the sliding solutions. To simplify the
presentation we assume throughout this section that π(u) = u for
|u| ≤ 1.
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2.1 Hidden dynamics

We are interested in the situation, where the solution of (2) ap-
proaches Σα ∩ Σβ and stays there as a codimension-2 sliding mode.
Much insight into the regularized problem (4) is obtained by a two-
scale asymptotic expansion with slow time t and fast time τ = t/ε.
Beyond the time instant t∗(ε) = t∗ +O(ε), when the solution of (4)
enters the set {y ; |α(y)| ≤ ε, |β(y)| ≤ ε} at y

(
t∗(ε)

)
= y∗ + O(ε),

y∗ ∈ Σα ∩Σβ, the solution can be written as (see [15])

y
(
t∗(ε) + t

)
= y0(t) + ε

(
y1(t) + η0(τ)

)
+ ε2

(
y2(t) + η1(τ)

)
+ . . . (5)

Here, y0(t) is the codimension-2 sliding mode of the non-regularized
problem (2). The transient term η0(τ) converges exponentially fast
to zero, and is visible only on an interval of length O(ε). It is de-
termined by u(τ) = α′(y∗)

(
y1(0) + η0(τ)

)
and v(τ) = β′(y∗)

(
y1(0) +

η0(τ)
)
, which are the solution of the two-dimensional dynamical sys-

tem (called ‘hidden dynamics’ in [19])

u′ = α′(y∗)f(y∗, u, v)

v′ = β′(y∗)f(y∗, u, v).
(6)

Here, ‘prime’ indicates the derivative with respect to τ . Initial values
are determined by the incoming solution. It is explained in [15] that
the solution of (4) turns at t∗(ε) into a codimension-2 sliding mode,
if the solution of (6) converges for τ → ∞ to a stationary point
(u∗, v∗) in the unit square (−1, 1)× (−1, 1). Throughout this article
we assume that this stationary point is asymptotically stable.

2.2 Smooth asymptotic expansion

Assume that the solution of (2) enters a codimension-2 sliding mode.
After a short time the transient is damped out and the solution of (4)
can be approximated by a smooth asymptotic expansion

y
(
t∗(ε) + t

)
= y0(t) + εy1(t) + . . .+ εNyN (t) +O(εN+1). (7)

Since for a codimension-2 sliding the solution remains O(ε)-close to
Σα ∩Σβ, we have

α
(
y0(t)

)
= 0, β

(
y0(t)

)
= 0. (8)

The coefficient functions of (7) can be computed as follows.
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We first note that, as a consequence of (8), we have ε-expansions

α
(
y(t)

)
ε

= u0(t)+εu1(t)+. . . ,
β
(
y(t)

)
ε

= v0(t)+εv1(t)+. . . , (9)

where u0 = α′(y0)y1, u1 = α′(y0)y2 + 1
2α
′′(y0)y

2
1, etc., and the same

relations for vj , where α is replaced by β. Inserting the expansion (7)
into (4) and then putting ε = 0 yields a differential equation for y0(t)
which, together with (8), gives the differential-algebraic system

ẏ0 = f(y0, u0, v0)

0 = α(y0)

0 = β(y0)

(10)

as long as −1 ≤ u0, v0 ≤ 1. Note that we assume π(u) = u for |u| ≤ 1.
Differentiating the algebraic relations with respect to t yields1

0 = α′(y0)f(y0, u0, v0)

0 = β′(y0)f(y0, u0, v0).
(11)

We assume that this 2-dimensional system permits us to express lo-
cally u0 and v0 in terms of y0 (index 1), so that the first equation
of (10) becomes an ordinary differential equation for y0(t).

We next compare the coefficient of ε, when the expansion (7)
together with (9) is inserted into (4). Augmented by the definition of
u0 and v0 this yields the differential-algebraic system for (y1, u1, v1),

ẏ1 = ∂yf(y0, u0, v0)y1 + ∂uf(y0, u0, v0)u1 + ∂vf(y0, u0, v0)v1

0 = α′(y0)y1 − u0
0 = β′(y0)y1 − v0,

(12)

where ∂uf and ∂vf denote partial derivatives (one-sided derivatives
at the end points of the interval [−1, 1]). As before, we differentiate
the algebraic relations with respect to t. This time we obtain a linear
system, which permits us to express u1 and v1 in terms of y1 and
the known functions y0, u0, v0. This procedure can be continued to
compute further coefficient functions in the expansion (7).

We consider initial values for yj(t) in (10), (12), etc., at the ε-
independent time t∗ = t∗(0) (see Section 2.1). They are given by the
smooth part of the expansion (5).

1 There is an interesting connection to the dynamical system (6) of the hidden
dynamics. Considering t as a fixed parameter, the values u0(t) and v0(t) can be
interpreted as an equilibrium of (6) corresponding to y∗ = y0(t).
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2.3 Estimation of the remainder

Consider the truncated asymptotic expansions

ŷ(t) = y0(t) + εy1(t) + . . .+ εNyN (t),

û(t) = u0(t) + εu1(t) + . . .+ εNuN (t),

v̂(t) = v0(t) + εv1(t) + . . .+ εNvN (t),

(13)

where the coefficient functions yj(t), uj(t), vj(t) are those of Sec-
tion 2.2. Our aim is to prove that the function ŷ(t) is O(εN+1)-close
to the solution of (4).

To be able to apply singular perturbation techniques we differen-
tiate u = α(y)/ε and v = β(y)/ε with respect to time, so that the
equation (4) becomes (for −1 ≤ u, v ≤ 1) the system

ẏ = f(y, u, v)

εu̇ = α′(y)f(y, u, v)

εv̇ = β′(y)f(y, u, v).

(14)

The solutions of (4) and of (14) are the same provided that the initial
values are consistent with u(0) = α

(
y(0)

)
/ε and v(0) = β

(
y(0)

)
/ε.

The stability of this system is governed by the 2-dimensional matrix

G(y, u, v) =

(
α′(y)∂uf(y, u, v) α′(y)∂vf(y, u, v)
β′(y)∂uf(y, u, v) β′(y)∂vf(y, u, v)

)
. (15)

Theorem 1 Consider the problem (14) together with initial values
y(0) = y0 = y00 + εy01 + . . . + εNy0N + O(εN+1), u(0) = α(y0)/ε,
v(0) = β(y0)/ε.

– Assume that the reduced problem (10) with initial value y0(0) =
y00 has a solution y0(t), u0(t), v0(t) on the compact interval [0, T ],
which satisfies −1 ≤ u0(t), v0(t) ≤ 1 on this interval.

– Suppose that both eigenvalues λj = λj(y, u, v), j = 1, 2 of the
matrix G(y, u, v) of (15) satisfy λj ≤ µ < 0 on an ε-independent
neighbourhood U of

{(
y0(t), u0(t), v0(t)

)
; t ∈ [0, T ]

}
.

Then, the considered problem (14) has, for sufficiently small ε, a
unique solution on [0, T ] which admits the asymptotic expansions

y(t) = y0(t) + εy1(t) + . . .+ εNyN (t) +O(εN+1),

u(t) = u0(t) + εu1(t) + . . .+ εNuN (t) +O(εN+1),

v(t) = v0(t) + εv1(t) + . . .+ εNvN (t) +O(εN+1),

where yj(t), uj(t), vj(t) are the functions constructed in Section 2.2.
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Proof The present proof follows closely the ideas of the proof of The-
orem 3.2 in [16, Chapter VI.3]. We consider the truncated series (13).
The construction of the coefficient functions yj(t), uj(t), vj(t) and the
fact that ε−1α

(
ŷ + εN+1yN+1 +O(εN+2)

)
= û(t) +O(εN+1) yields

˙̂y = f(ŷ, û, v̂) +O(εN+1)

ε ˙̂u = α′(ŷ)f(ŷ, û, v̂) +O(εN+1)

ε ˙̂v = β′(ŷ)f(ŷ, û, v̂) +O(εN+1).

(16)

In the following we write z = (u, v)T, so that the second and third
lines of (14) and (16) become εż = g(y, z) and ε ˙̂z = g(ŷ, ẑ)+O(εN+1),
respectively.

a) We first consider the situation, where there exists an inner
product norm such that 〈∆z,G(y, z)∆z〉 ≤ µ‖∆z‖2 for all ∆z and
for all (y, z) ∈ U . Subtracting (14) from (16) and exploiting Lipschitz
conditions for f and g we obtain

D+‖ŷ(t)− y(t)‖ ≤ L1‖ŷ(t)− y(t)‖+ L2‖ẑ(t)− z(t)‖+ C1ε
N+1

εD+‖ẑ(t)− z(t)‖ ≤ L3‖ŷ(t)− y(t)‖+ µ‖ẑ(t)− z(t)‖+ C2ε
N+1,

where D+ denotes the Dini derivative. To solve this inequality we
replace ≤ by = and so obtain

η̇ = L1η + L2ζ + C1ε
N+1, η(0) = ‖ŷ(0)− y(0)‖ = O(εN+1),

ε ζ̇ = L3η + µζ + C2ε
N+1, ζ(0) = ‖ẑ(0)− z(0)‖ = O(εN+1).

Since the system is quasi-monotone, we get the estimates

‖ŷ(t)− y(t)‖ ≤ η(t), ‖ŷ(t)− y(t)‖ ≤ ζ(t).

Solving the linear differential equation for (η, ζ) and using µ < 0,
one verifies that η(t) = O(εN+1) and ζ(t) = O(εN+1) on compact
intervals. This proves the statement of the theorem.

b) In the general case we fix δ > 0 such that µ+δ < 0. For a given
t ∈ [0, T ] we construct an inner product 〈·, ·〉t for which

〈∆z,G(y, z)∆z〉t ≤ (µ+ δ)‖∆z‖2t for (y, z) = (y, u, v) ∈ Ut,

where Ut is a neighbourhood of the point
(
y0(t), u0(t), v0(t)

)
. This

can be done by transforming the matrix G
(
y0(t), u0(t), v0(t)

)
to di-

agonal form (or to Jordan canonical form with a sufficiently small
off-diagonal element), and by using the continuity of G(y, u, v).

The collection {Ut}t∈[0,T ] forms an open covering of the compact

set K =
{(
y0(t), u0(t), v0(t)

)
; t ∈ [0, T ]

}
. By compactness of K,
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finitely many sets among {Ut}t∈[0,T ] cover K. As a consequence there
exists a partition 0 = t0 < t1 < · · · < tm = T , such that the set
Kj =

{(
y0(t), u0(t), v0(t)

)
; t ∈ [tj , tj+1]

}
lies entirely in one of the

Ut, say, in Uτj . On the interval [tj , tj+1] we thus get the estimate of
part (a) in the norm ‖·‖τj . The estimate over the whole interval [0, T ]
is then obtained by patching together the estimates over [tj , tj+1] (for
j = 0, . . . ,m− 1), and by using the equivalence of norms on a finite
dimensional vector space. ut

Remark 1 Theorem 1 gives a sufficient condition for the robustness of
codimension-2 sliding modes. It is perfectly conceivable that at some
time instant t (with t ∈ (0, T )) a classical solution or a codimen-
sion-1 sliding mode starts to exist. As long as the assumptions of the
previous theorem hold, the solution of the regularized problem will
nevertheless remain close to the codimension-2 sliding mode.

Remark 2 It is possible to use different regularization parameters for
the two discontinuity surfaces in (4). This is equivalent to replacing
α(y) and β(y) by καα(y) and κββ(y), where κα > 0 and κβ > 0. In
this case the rows of the matrix G are multiplied by κα and κβ, re-
spectively. This leaves the sign of detG invariant, but it can influence
the sign of the trace of G, and hence also the stability of G.

The main interest of the present article is the study of solutions of
the regularized differential equation when they leave a codimension-2
sliding mode. According to Theorem 1 this can happen in the follow-
ing two situations:

A: the solution u0(t), v0(t) of the reduced problem (10) leaves the unit
square −1 ≤ u, v ≤ 1, and the eigenvalues of G

(
y0(t), u0(t), v0(t)

)
stay in the negative half-plane;

B: the solution u0(t), v0(t) stays in the unit square, but the real part
of at least one of the eigenvalues of the matrixG

(
y0(t), u0(t), v0(t)

)
tends to zero. Generically, either the real part of one eigenvalue
changes sign, or the solution u0(t), v0(t) ceases to exist (meaning
that the equilibrium ceases to exist).

We shall discuss both situations separately in the next two sections. In
the present work we do not consider the situation, where the approx-
imation of a codimension-2 sliding mode is highly oscillatory around
a smooth solution. This corresponds to the existence of a limit cycle
in the hidden dynamics (for the frozen parameter t). Note that such
limit cycles can often be avoided by suitably choosing the ratio be-
tween the parameters κα and κβ of Remark 2 above (see the section
on ‘Stabilization’ in [15]).
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3 Leaving codimension-2 sliding mode - case A

In this section we study the case A of an exit from a codimension-2
sliding mode for the solution of the regularized differential equation.
More precisely, we assume that the solution u0(t), v0(t) of the reduced
problem (10) leaves the unit square −1 ≤ u, v ≤ 1 at t = 0, and that
both eigenvalues of the matrix G(t) = G

(
y0(t), u0(t), v0(t)

)
of (15)

have negative real part on an interval −δ ≤ t ≤ 0. These assumptions
guarantee the existence of an asymptotic expansion by Theorem 1.
Since we are mainly interested in generic situations, we exclude an
exit at one of the corners and we assume (without loss of generality)
that the solution u0(t), v0(t) leaves the square transversally at the
right side, i.e., u0(0) = 1, u̇0(0) > 0, v0(0) = v∗0 ∈ (−1, 1).

The component
(
u(t), v(t)

)
of the ε-dependent solution of the reg-

ularized differential equation (14) leaves the square −1 ≤ u, v ≤ 1 at
a time t∗ = t∗(ε) = εt∗1 + ε2t∗2 + . . .. This follows from the Implicit
Function Theorem applied to u(t, ε) = 1 (indicating explicitly the
ε-dependence), because u(0, 0) = 1 and ∂tu(0, 0) > 0. By Theorem 1
the solution of (14) at t∗(ε) has an expansion

y
(
t∗(ε)

)
= y∗0 + εy∗1 + ε2y∗2 +O(ε3), (17)

for which
β
(
y
(
t∗(ε)

))
ε

= v∗0 + εv∗1 + ε2v∗2 +O(ε3).

These expansions serve as initial value for the leaving solution.

3.1 Asymptotic expansion after leaving the codimension-2 sliding

The assumption u̇0(0) > 0 and the fact that the vector field (4) is
continuous, imply that u(t) > 1 (we let u(t) = α(y(t))/ε also outside
the unit square) on an interval (t∗, t∗+δ∗] with δ∗ > 0. By continuity
we also have −1 ≤ v(t) ≤ 1 on this interval. In the region u ≥ 1 and
v ∈ [−1, 1] the regularized differential equation becomes

ẏ = f(y, 1, v), v = β(y)/ε. (18)

Initial values at t∗ = t∗(ε) are given by continuity of the solution.
For t ≤ t∗ the solution has an asymptotic expansion (Theorem 1).
Do we also have an asymptotic expansion of the solution for t > t∗?
Assuming its existence, we can find the coefficient functions as in
Section 2.2. The functions y0(t), v0(t) have to satisfy (for t > t∗)

ẏ0 = f(y0, 1, v0), 0 = β(y0). (19)
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Consistent initial values at t∗(0) = 0 are given by y∗0, v
∗
0, because

β(y∗0) = 0, β′(y∗0)f(y∗0, 1, v
∗
0) = 0 (which follows from (11) and from

u∗0 = u0(0) = 1). The function v0(t) can be computed for t > 0 from

0 = β′(y0)f(y0, 1, v0). (20)

provided that β′(y∗0)∂vf(y∗0, 1, v
∗
0) 6= 0 (generic assumption). The

functions y1(t) and v1(t) will be determined, for t > 0, by

ẏ1 = ∂yf(y0, 1, v0)y1 + ∂vf(y0, 1, v0)v1, v0 = β′(y0)y1. (21)

The algebraic relation is satisfied by y∗0, v
∗
0, y
∗
1 at t = 0. Hence, the

left- and right-side limits for t→ 0 of the functions y0(t), v0(t), ẏ0(t),
and y1(t) coincide. That this is not the case for v̇0(t) follows from
differentiation of (11) and (20):

0 = β′′(y0)(ẏ0, ẏ0) + β′(y0)
(
∂yf(y0, u0, v0) ẏ0 + ∂uf(y0, u0, v0) u̇0

+ ∂vf(y0, u0, v0) v̇0
)

for t < 0

0 = β′′(y0)(ẏ0, ẏ0) + β′(y0)
(
∂yf(y0, 1, v0) ẏ0 + ∂vf(y0, 1, v0) v̇0

)
for t > 0.

Since u̇0(0) > 0, there is a jump discontinuity of v̇0(t) at t = 0. It is
given by

β′(y∗0)∂vf(y∗0, 1, v
∗
0)
(
v̇0(0

+)− v̇0(0−)
)

= β′(y∗0)∂uf(y∗0, 1, v
∗
0) u̇0(0).

This discontinuity entails jump discontinuities at t = 0 in v1(t), in
y2(t), and in further coefficient functions of an assumed asymptotic
expansion.

This motivates to consider the 2-scale ansatz (with τ = t/ε)

y
(
t
)

= y0(t) + εy1(t) + ε2
(
y2(t) + η1(τ)

)
+O(ε3)

v
(
t
)

= v0(t) + ε
(
v1(t) + ν1(τ)

)
+O(ε2)

(22)

for t ≥ t∗. The functions y0(t) and v0(t) are the solution of the
reduced problem (19). Inserting (22) into (18) and comparing the
coefficients of ε yields (for conciseness we omit the argument t in
y0(t), v0(t), y1(t), v1(t), but explicitly write the argument τ in ν1(τ))

ẏ1 + η′1(τ) = ∂yf(y0, 1, v0) y1 + ∂vf(y0, 1, v0)
(
v1 + ν1(τ)

)
v1 + ν1(τ) = β′(y0)

(
y2 + η1(τ)

)
+ 1

2β
′′(y0)

(
y1, y1

)
.

(23)

We let y1(t), v1(t) be the solution of (21), so that the first equation
reduces to η′1(τ) = ∂yf

(
y0(ετ), 1, v0(ετ)

)
ν1(τ) which, for ε = 0, gives

η′1(τ) = ∂vf(y∗0, 1, v
∗
0) ν1(τ). (24)
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The terms with positive powers of ε will be incorporated in higher
order transient terms. Since ν1(τ) = β′(y∗0) η1(τ), which follows from
(23), a multiplication of (24) with β′(y∗0) yields the scalar equation

ν ′1(τ) = γ ν1(τ), γ = β′(y∗0) ∂vf(y∗0, 1, v
∗
0). (25)

Differentiating v0 = β′(y0) y1 with respect to t relates v1 to v̇0. To-
gether with the above relation between the jump discontinuity of v̇0
at t = 0 and the value u̇0(0) this then gives

ν1(0) = v1(0
−)− v1(0+) = − β′(y∗0)∂uf(y∗0, 1, v

∗
0)(

β′(y∗0)∂vf(y∗0, 1, v
∗
0)
)2 u̇0(0).

We have to distinguish the cases γ < 0 and γ > 0.

3.2 Exit as codimension-1 sliding mode

If the expression γ of (25) is negative, the transient term ν1(τ), and
hence also η1(τ), converge exponentially fast to zero. Therefore, after
a time interval of length O(ε) only the smooth part of the expansion
(22) is visible.

Theorem 2 Suppose that the solution
(
u0(t), v0(t)

)
of (10) crosses

the boundary of the unit square for t = 0 at u∗0 = 1, v∗0 ∈ (−1, 1) and
satisfies u0(0) = 1, u̇0(0) > 0.

If β′(y∗0) ∂vf(y∗0, 1, v
∗
0) < 0, then the solution of (18) with initial

value (17) approximates for t ≥ t∗ a codimension-1 sliding mode
along Σβ in the region α(y) > 0.

Proof We let α0(t) = α
(
y0(t)

)
, which vanishes identically for t ≤ 0.

Since ẏ0(t) is continuous at t = 0, we have α(0) = α̇0(0) = 0. Similar
to the computations of the beginning of this section, we obtain

α̈0(0
+) = α′(y∗0)∂vf(y∗0, 1, v

∗
0)
(
v̇0(0

+)− v̇0(0−)
)

− α′(y∗0)∂uf(y∗0, 1, v
∗
0) u̇0(0).

Expressing the difference v̇0(0
+)− v̇0(0−) in terms of u̇0(0) yields

α̈0(0
+) = −detG(y∗0, 1, v

∗
0)

γ
u̇0(0),

which implies that α̈0(0
+) > 0. Consequently, α0(t) leaves the origin

like a positive parabola.
For small values of t ≥ t∗(ε), further terms in the asymptotic ex-

pansion could either be comparable or dominate α
(
y0(t)

)
, so that the



Solutions leaving a codimension-2 sliding 13

solution of the regularized differential equation re-enters the region
α
(
y(t)

)
< ε. Since the asymptotically stable equilibrium of the hid-

den dynamics is still close to the unit square (but outside of it), the
solution will rapidly return to the region α(y) > ε. The statement
of the theorem now follows from the expansion (22). The remainder
term can be estimated as in the proof of Theorem 1. ut

3.3 Exit as classical solution

If the expression γ of (25) is positive, the transient term ν1(τ) in
the expansion (22) tends to ±∞. Consequently, the solution of (18)
leaves the stripe {y | |β(y)| ≤ ε} after a time interval of length O(ε),
and it turns into a classical solution.

Theorem 3 Assume that we are in the situation of Theorem 2. If
β′(y∗0) ∂vf(y∗0, 1, v

∗
0) > 0, then the solution of (18) with initial value

(17) approximates, after a transient of time O(ε), a classical solution:

– if β′(y∗0)∂uf(y∗0, 1, v
∗
0) > 0 this approximation lies in the region

α(y) > 0, β(y) < 0,
– if β′(y∗0)∂uf(y∗0, 1, v

∗
0) < 0 this approximation lies in the region

α(y) > 0, β(y) > 0.

Proof As for the proof of Theorem 2 this follows from the expansion
(22) and from an estimation of the remainder. ut

3.4 An example with explicit solution

For an illustration of Theorems 2 and 3 we consider the discontinuous
differential equation with vector fields

f−+=

(
−2a+ b− at
−2c+ d− ct

)
f++=

(
b− at
d− ct

)
f−−=

(
−2a− b− at
−2c− d− ct

)
f+−=

(
−b− at
−d− ct

)
and discontinuity surfaces α(y1, y2) = y1 and β(y1, y2) = y2. For
−ε ≤ y1, y2 ≤ ε the regularized differential equation takes the form

ε ẏ1 = a(y1 − ε) + by2 − aεt
ε ẏ2 = c(y1 − ε) + dy2 − cεt.

(26)
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−.001
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.001 ε = 10−3
y1

y2

t

 -0.8  -0.4   0.0   0.2t= t= t= t=

Fig. 1. Upper picture: Solution components y1, y2 of the regularized equa-
tion (26) with a = −0.5, b = −2, c = 3.5, d = −2, and ε = 10−3 as a function of
time t. Initial values are y1(−1) = y2(−1) = 0.
Lower pictures: For some fixed values of t the direction of the vector field of (26)
is plotted on a grid in the square (−ε, ε)× (−ε, ε) (with y1 on the horizontal axis
and y2 on the vertical axis). The big black arrow indicates a vanishing first compo-
nent of the vector field with positive values to the left, the big grey arrow indicates
a vanishing second component.

The vector fields are chosen to make disappear the products y1y2,
so that the regularized differential equation becomes linear which
facilitates the computation. A particular solution of (26) is

y1(t) = ε+
ε2d

ad− bc
+ εt, y2(t) = − ε2c

ad− bc
. (27)

We have u0(t) = 1 + t, v0(t) = 0, and the eigenvalues of the matrix
G
(
y0(t), u0(t), v0(t)

)
have negative real part provided that trace(G) =

a+d < 0 and detG = ad−bc > 0. Under these conditions the matrix
is stable for all t (positive and negative). A solution with initial values
at t0 < 0 in the square (−ε, ε)× (−ε, ε) converges exponentially fast
to (27), see Figure 1. It exits the square at t∗ = −εd/(ad − bc),
for which y1(t∗) = ε. Beyond this point the regularized differential
equation becomes

ε ẏ1 = by2 − aεt
ε ẏ2 = dy2 − cεt.

(28)

With initial values given by (27) at t = t∗, its solution is

y1(t) = ε+ ε(t− t∗)− ad− bc
2d

(t− t∗)2 − ε2bc

d3

(
eτd − 1− τd

)
y2(t) =

εc

d
t− ε2c

d2

(
eτd − 1

)
, τ = (t− t∗)/ε.
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The statements of the previous theorems are confirmed. For d < 0
(Theorem 2) the exponential terms are rapidly damped out and the
solution is seen to satisfy −ε ≤ y2(t) ≤ ε and y1(t) ≥ ε on an interval
(t∗0, δ) with δ ≈ |d/c|. For d > 0 (Theorem 3) the exponential terms
are soon dominant. By the stability of the matrix G, d > 0 implies
a < 0 and bc < 0. Consequently, the sign of c determines whether the
classical solution continues in β(y) > 0 or in β(y) < 0.

4 Leaving codimension-2 sliding mode - case B

In this section we consider the situation where the stationary point(
u0(t), v0(t)

)
of the hidden dynamics (with t considered as a fixed

parameter) either changes from asymptotically stable to unstable or
where it disappears. In both situations Theorem 1 can no longer
be applied. The study of the case B is more difficult and leads to
unexpected results. We present two typical examples which give much
insight into the behaviour of the regularized differential equation. We
expect the same behaviours for the general situation.

4.1 Equilibrium becomes unstable

We consider the discontinuous differential equation with vector fields

f++=

(
1

2t− 1

)
f+−=

(
−1
−1

)
f−+=

(
1

2t+ 1

)
f−−=

(
−1
1

)
and discontinuity surfaces α(y1, y2) = y1 and β(y1, y2) = y2. For
−1/2 < t < 1/2 the solution spirals around the origin. In the square
−ε ≤ y1, y2 ≤ ε the regularized differential equation is

ε ẏ1 = y2

ε ẏ2 = −y1 + t y2 + εt.
(29)

Again, the vector fields are chosen to obtain a linear differential equa-
tion. A particular solution of (29) is given by

y1(t) = a(ε)t, y2(t) = εa(ε), a(ε) =
ε

1− ε
. (30)

Expanding (1−ε)−1 into a series, we obtain the asymptotic expansion
of Theorem 1 in explicit form. In this particular case the series expan-
sion is convergent for |ε| < 1. With u0(t) = t, v0(t) = 0 the eigenval-
ues of the matrix G

(
y0(t), u0(t), v0(t)

)
satisfy λ1,2 = ±i+ t/2+O(t2),

which shows that the matrix is stable for t < 0 and unstable for t > 0.



16 N. Guglielmi, E. Hairer

−.5 .0 .5 1.0

10−20

10−15

10−10

10−5

−.5 .0 .5 1.0

10−20

10−15

10−10

10−5

ε = 3 · 10−3 ε = 10−3

Fig. 2. For two choices of ε, the top two curves are the absolute value of the
solution components of the regularized equation of Section 4.1 as a function of
time t: |y1| is in black and |y2| in grey. The other curves (in descending order)
are the absolute value of the remainder yj(t)−

∑N
k=1 ε

kyjk(t) (j = 1 in black and
j = 2 in grey) of the truncated asymptotic expansion for N = 1, 2, 3,∞. The
dashed curves represent the theoretical bounds on the remainder for N =∞.

The general solution of (29) is a superposition of the particular
solution (30) and the general solution of the homogeneous equation

ε ẏ1 = y2

ε ẏ2 = −y1 + t y2.
(31)

The norm r(t) = ‖y(t)‖ =
√
y1(t)2 + y2(t)2 of the solution of (31)

satisfies

ε r(t) ṙ(t) = t y2(t)2 ≤ t r(t)2 for t ≥ 0.

Solving this differential inequality for r(t) yields

r(t) ≤ r(0) exp
( t2

2ε

)
. (32)

We note that with
(
y1(t), y2(t)

)
also

(
−y1(−t), y2(−t)

)
is a solution

of (31). This implies that the estimate (32) is not only valid for t ≥ 0,
but also for t ≤ 0.

Figure 2 shows both components of the solution of the regular-
ized differential equation corresponding to initial values y1(−1) =
y2(−1) = 0.075. During the codimension-2 sliding the first component
is of size O(ε) and changes sign at t = 0, whereas the second com-
ponent is of size O(ε2). The pictures also show the remainder of the

truncated asymptotic expansion: yj(t)−
∑N

k=1 ε
kyjk(t) for N = 1, 2, 3

and for N =∞.
For relatively large values of ε (left picture of Figure 2) the differ-

ence between the solution of the regularized differential equation and
the (convergent) asymptotic expansion of the smooth solution looks
like a parabola in the picture. This corresponds to a behaviour of
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the type C exp
(
t2/(cε)

)
, and matches very well with estimate (32).

The dashed curve in the figure shows this bound for c = 3.8 (this
constant is fitted to the numerical experiment; it does not rely on
theoretical estimates). We conclude that the entry and exit points
of the codimension-2 sliding are symmetric with respect to the time
instant t = 0, where the hidden dynamics changes stability.

For small values of ε (right picture of Figure 2) round-off errors
perturb the picture, when the remainder term (for N = ∞) is be-
low the accuracy of the machine, which in double precision is about
‖y(t)‖·10−16. We have drawn two parabolas. The outer parabola cor-
responds to the remainder during the phase when the solution enters
the codimension-2 sliding mode. In the absence of round-off errors
(or in high precision arithmetics) the solution would exit at the time
instant symmetric to t = 0. However, due to round-off errors, the
solution exits earlier and follows closely the parabola that matches
the value ‖y(t)‖ · 10−16 at t = 0. This explains why the numeri-
cally obtained solution of the regularized differential equation exits
the codimension-2 sliding at a distance of size O(

√
ε) from t = 0,

independent of the entry point into the codimension-2 sliding.

Remark 3 (Numerical treatment) We note that stiff integrators have
to be applied carefully to the regularized differential equation. The
eigenvalues of the linearized problem cross the imaginary axis away
from the origin. Therefore, one has to be cautious that unstable
modes are not damped by the numerical integrator. This “danger-
ous property” of stiff integrators has first been observed in [21]. As
a remedy, the step size should be decreased, so that its product with
the unstable eigenvalues lies outside the stability region.

A standard application of stiff integrators (e.g., Radau5 of [16])
would miss the correct exit point and leave the codimension-2 sliding
mode only at t ≈ 1, where the first component of the smooth solution
(30) becomes larger than ε.

Numerical experiments with examples that are qualitatively iden-
tical to the problem of this section, have recently been carried out in
[9] and in [20]. In [9, Example 4.3] it is observed that “stiff integrators
behave poorly”, because they miss the correct exit point. Difficulties
with numerical computations are reported in [20, Section IV.C], be-
cause the “exit point along the intersection is very sensitive to nu-
merical imprecision”. The misbehaviours illustrated in these papers
do not appear to be due to an unpredictable behaviour of the reg-
ularization, but to a wrong behaviour of the numerical integrators,
which produce numerical artefacts.
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Insight 1 Suppose that the solution
(
u0(t), v0(t)

)
of (10) exists and

stays in the interior of the unit square for t in an ε-independent
neighbourhood of 0. Furthermore, assume that both eigenvalues of the
matrix G

(
y0(t), u0(t), v0(t)

)
have negative real part for t < 0, and at

least one of the eigenvalues has positive real part for t > 0.
Then, the solution of the regularized equation (4) continues to

approach a codimension-2 sliding beyond t = 0. The exit point from
the codimension-2 sliding is independent of ε, but depends on the
time instant when the solution enters the sliding. This behaviour is
expected to be true in general and not only in the preceding example.

4.2 Equilibrium disappears

As a final example we consider the discontinuous vector field

f−+=

(
b− 1 + 2a
−b+ c− t

)
f++=

(
−b− 1 + 2a
2 + b+ c− t

)
f−−=

(
b+ 1 + 2a
−b+ c− t

)
f+−=

(
−b+ 1 + 2a
−2 + b+ c− t

)
and discontinuity surfaces α(y1, y2) = y1 and β(y1, y2) = y2. The
parameters a and b are free for the moment and c = −2a−a2/b. The
corresponding regularized differential equation is

ẏ1 = −bu− v + 2a

ẏ2 = u v + bu+ v + c− t,
(33)

where u = π(y1/ε) and v = π(y2/ε). We denote the right-hand sides
of this system by gα(t, u, v) and gβ(t, u, v), respectively. For bt < 0,

the equilibrium
(
u0(t), v0(t)

)
=
(
(a−

√
−bt)/b, a+

√
−bt

)
is the so-

lution of the reduced problem (10). There is no equilibrium solu-
tion for bt > 0. In view of an application of Theorem 1 we consider
the matrix G(t) = G

(
y0(t), u0(t), v0(t)

)
. Its determinant is given by

detG(t) = 2
√
−bt and its trace is traceG(t) = −b+ 1 + a/b−

√
−bt.

To have eigenvalues with negative real part for all t < 0 we assume

b > 0, a ≤ b(b− 1).

By Theorem 1 the solution of the regularized problem (33) stays
close to

(
u0(t), v0(t)

)
for negative t until very close to t = 0. The

upper picture of Figure 3 shows both solution components for the
parameters b = 1.2 and a = −0.1. There is indeed a codimension-2
sliding until t ≈ 0, and after a short transient the solution continues
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Fig. 3. Upper picture: Solution components y1, y2 of the regularized equa-
tion (33) with parameters a = −0.1, b = 1.2, c = −2a − a2/b, and ε = 10−3

as a function of time t. Initial values at t = −0.6 are on the equilibrium(
u0(−0.6), v0(−0.6)

)
.

Lower pictures: For some fixed values of t the direction of the vector field of (33)
is plotted on a grid in the square (−ε, ε)× (−ε, ε) (with y1 on the horizontal axis
and y2 on the vertical axis). The big black arrow indicates a vanishing first compo-
nent of the vector field with positive values to the left, the big grey arrow (curved)
indicates a vanishing second component.

as codimension-1 sliding mode along Σα into the region β(y) < 0. The
lower pictures of Figure 3 show the vector field of (33) for some values
of t. The critical point, where the equilibrium disappears, is in the unit
square provided that |a| < min(1, b). The line gα(t, u, v) = 0 crosses
the bottom line of the unit square at (u, v) =

(
(1 + 2a)/b,−1

)
. After

t ≈ 0 the solution continues as codimension-1 sliding if 1 + 2a ≤ b,
and as classical solution in R+− if 1 + 2a > b.

We are interested in the time interval that is needed to change
from the codimension-2 sliding to either a codimension-1 sliding or
to a classical solution. We denote by t∗(ε) the time instant, when the
solution of (33) leaves the square [−ε, ε]× [−ε, ε]. To study this value
we take an initial value close to

(
u0(t), v0(t)

)
for some t0 < 0, and

we compute t∗(ε) for many choices of ε. We expect this exit time to
behave like t∗(ε) ≈ Cεκ. Assuming that C changes only slowly with ε,
we estimate the exponent κ = κ(ε) by

κ(ε) = log
( t∗(ε+∆ε)

t∗(ε)

)/
log
(ε+∆ε

ε

)
,

using two consecutive approximations for t∗(ε). The value of κ as a
function of ε is plotted in Figure 4 for the parameters b = 1.2 and
a = b(b− 1)− 0.05 · k (k = 0, 1, . . . , 8). Generically, the function κ(ε)
converges to κ ≈ 0.67 for ε→ 0. For the non-generic case a = b(b−1),
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Fig. 4. Exponent κ of the exit time t∗(ε) ≈ Cεα as a function ε. The parameters
are b = 1.2 and a = b(b− 1)− 0.05 · k, k = 0, 1, . . . , 8.

for which detG(t) and traceG(t) converge both to 0 for t → 0, it
converges to a value κ ≈ 0.80. For the moment, we are not able to
explain this behaviour of κ(ε).

Insight 2 Suppose that a real solution
(
u0(t), v0(t)

)
of (10) exists

for t < 0 (in the interior of the unit square) and that no real solution
exists for t > 0. Furthermore, assume that both eigenvalues of the
matrix G

(
y0(t), u0(t), v0(t)

)
have negative real part for t < 0.

Then, the solution of the regularized equation (4) leaves the codi-
mension-2 sliding at an exit point that is O(εα) close to 0 (with some
α < 1). This behaviour is expected to be true in general.

5 Discussions

The aim of the present work is to study, when and how the solution of
the regularized differential equation moves away from a codimension-
2 sliding of the corresponding discontinuous system. The essential
tool is the solution

(
u0(t), v0(t)

)
of the 2-dimensional system (11)

and the stability of the matrix G
(
y0(t), u0(t), v0(t)

)
, defined in (15).

The main results are the following:

– As long as a solution
(
u0(t), v0(t)

)
of (11) exists in the unit square

(−1, 1) × (−1, 1) and the matrix G
(
y0(t), u0(t), v0(t)

)
is asymp-

totically stable (i.e., both eigenvalues are in the negative half-
plane), the solution of the regularized problem stays close to a
codimension-2 sliding of the discontinuous system (Theorem 1).

– If
(
u0(t), v0(t)

)
of (11) leaves the unit square at t = 0, then

the solution of the regularized problem no longer approaches a
codimension-2 sliding beyond t = 0, but it continues to approach
either a classical solution (Theorem 3) or a codimension-1 sliding
mode (Theorem 2). The exit time (i.e., the time that is needed
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for the solution to have a distance from the intersection of the
discontinuity surfaces that is larger than ε) is of size O(ε).

– If
(
u0(t), v0(t)

)
of (11) stays in the unit square, but the matrix

G
(
y0(t), u0(t), v0(t)

)
becomes unstable at t = 0, the solution leaves

the codimension-2 sliding after a time that is O(1) and depends
on the entry-time into the codimension-2 sliding (Section 4.1).

– If
(
u0(t), v0(t)

)
of (11) stays inside the unit square for t ≤ 0, but

no real solution of (11) exists for t > 0, the solution leaves the
codimension-2 sliding after a time that is O(εα) with some α < 1
(Section 4.2).

The first two statements are proved rigorously using asymptotic ex-
pansions in powers of ε. The last two statements are confirmed by
examples and numerical experiments.

6 Conclusion

Differential equations with piece-wise smooth vector fields arise in
many important applications. Close to a single discontinuity hyper-
surface the local dynamics (crossing or sliding) is well understood,
analytically as well as numerically. Much more challenging is the
study of solutions close to the intersection of two or more discon-
tinuity hypersurfaces. In the situation of non-uniqueness it is com-
monly adopted to select the solution that can be interpreted as the
limit of a suitable regularization. During the last few years much
progress has been achieved in the understanding of solutions enter-
ing a codimension-2 discontinuity manifold.

The present work yields new insight into the way how solutions can
exit a codimension-2 sliding. The effect of a standard regularization
of the vector field to the solution is investigated. In this way, not
only results for the regularized differential equation are obtained,
but it gives also a hint for a numerical treatment of the original
discontinuous problem. The study of the behaviour of solutions close
to the intersection of more than two discontinuity hypersurfaces is
the subject of further research.
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