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Abstract. This work deals with piecewise-smooth dynamical systems and with regularizations,
where the jump discontinuities in the vector field are smoothed out in an ε-neighbourhood by using a
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for ε → 0 of the regularized solution is independent of the transition function. The results are
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1. Introduction. Piecewise smooth dynamical systems arise in many applica-
tions and they are an active field of recent research. Historically, one of the first
examples is Coulomb friction in mechanical systems, where the force of friction is pro-
portional to the sign of velocity (see [2]). Many interesting applications can be found in
the monograph [3]: relay control systems, where the control variable admits jump dis-
continuities; converter circuits, where switching devices lead to a non-smooth dynam-
ics; models in the social and financial sciences, where continuous change can trigger
discrete actions. Discontinuity points are also created by the activation/deactivation
of inequality constraints in mixed constrained optimization problems. See [17] for a
particular application arising in the modelling of atmospheric particles.

For a mathematical formulation of the problem we consider discontinuity hyper-
surfaces

(1.1) Σj = {y ∈ Rn |αj(y) = 0}, j = 1, . . . , d,

where α : Rn → Rd (with d < n) is assumed to be sufficiently differentiable and such
that these hyper-surfaces intersect transversally. We denote the discontinuity set by
Σ =

⋃d
j=1 Σj . The hyper-surfaces Σj divide the phase space Rd \ Σ into 2d open

regions

(1.2) Rk =
{
y ∈ Rn

∣∣ kjαj(y) > 0 for j = 1, . . . , d
}
,

where k = (k1, . . . , kd) is a multi-index with kj ∈ {−1, 1}. The discontinuous dynam-
ical system is then given by

(1.3) ẏ = fk(y) for y ∈ Rk.

We assume that the functions fk(y) are defined in a neighbourhood of the closure of
Rk and that they are sufficiently differentiable. In the discontinuity set Σ the right-
hand side of (1.3) is considered to be multi-valued with values from the neighbouring
domains. We are thus concerned with a differential inclusion and we adopt the ap-
proach of Filippov [9, 10] for the concept of solutions. Besides classical solutions,
which cross the discontinuity surfaces, there are also sliding modes evolving in the
discontinuity set Σ.
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For a co-dimension d surface
⋂d
j=1 Σj , Filippov’s proposal consists in considering

the differential inclusion

(1.4) ẏ ∈ F (y) =
∑
k

µk(y)fk(y), where µk(y) ≥ 0, and
∑
k

µk(y) = 1,

subject to the constraint that F (y) lies in the tangent space Ty
(⋂d

j=1 Σj
)

at y:

(1.5) α′j(y)F (y) = 0 for all j = 1, . . . , d.

The case of co-dimension d = 1 is well understood. There are two regions,
R1,R−1, with vector fields f1 and f−1, and Σ = {y ∈ Rn : α1(y) = 0} with
α1 : Rn → R. We assume that in R−1 we have α1(y) < 0, and in R1 we have
α1(y) > 0. If α′1(y)f−1(y) > 0 and α′1(y)f1(y) < 0 at some point y ∈ Σ (a condition
called nodal attractivity), (1.4)-(1.5) provide a unique sliding vector on Σ. Indeed, we
can write µ1 = γ, µ−1 = 1−γ, and imposing (1.5) we immediately get the differential
system on Σ:

(1.6) ẏ = (1− γ)f−1(y) + γf1(y), γ =
α′1(y)f−1(y)

α′1(y)f−1(y)− α′1(y)f1(y)
.

However, already for co-dimension d = 2, the construction based on (1.4)-(1.5)

in general does not select a unique sliding vector field on
⋂d
j=1 Σj , since it gives

a system of 3 equations in 4 unknowns. This ambiguity (which naturally appears
in higher codimension) prevents from having a well defined differential equation (of
Filippov type) governing the evolution of the system (we refer to [15] for a more
extended discussion).

Closely connected to a discontinuous dynamical system is a regularization, where
the jump discontinuities are replaced in an ε-neighbourhood by a continuous transi-
tion. In this way the differential inclusion is transferred to an ordinary differential
equation. It is natural to consider regularizations because, as mentioned in [3, page 1],
“. . . there is strictly speaking no such thing as a piecewise-smooth dynamical system
and that in reality all physical systems are smooth”. This is precisely what hap-
pens in the analysis of gene regulatory networks [8, 19], where steep sigmoid-type
nonlinearities are approximated by step functions.

But this is not the only reason for considering regularizations. It is known that
the discontinuous problem (1.3) (with given initial value) can have more than one so-
lution, whereas the solution of the regularized ordinary differential equation is unique.
From a theoretical viewpoint, the limit (for ε→ 0) of the solution of the regularized
differential equation (if it exists) gives us an interesting possibility for selecting a phys-
ically meaningful solution. From a practical viewpoint, the numerical solution of the
regularized problem permits us to apply standard software for differential equations,
which does not require switching decisions.

The present article is mainly concerned with regularizations of the discontinuous
problem (1.3). It addresses the following questions:

• For a fixed transition function, does the solution of the regularized differential
equation converge, for ε → 0, to a Filippov solution of the discontinuous
problem (also in the case of non-uniqueness)?

• Is the limit solution, if it exists, independent of the transition function of the
regularization?

2



Since the definition of Filippov solutions is ambiguous in the intersection of disconti-
nuity surfaces, we specify in Section 2 the meaning of solutions for (1.3) and we present
the class of considered regularizations. The main results are given in Section 3. For
many important situations it is shown that the solution of the regularized differential
equation converges, for ε → 0, to a Filippov solution of the discontinuous problem.
Sufficient conditions on the vector fields are presented (including cases with multiple
Filippov solutions) for which the limit solution is independent of the transition func-
tion. We present counter-examples, one with a solution entering the intersection of
two discontinuity surfaces and one exiting a codimension-2 sliding mode, for which the
limit solution can depend on the transition function. The proofs of the main results
are given in Sections 4 and 5. More insight into the second counter-example is given
in Section 6. A conclusion terminates the present work.

2. Solution concept and regularization. The definition of Filippov solutions
for a discontinuous dynamical system (1.3) is ambiguous, because in the intersection of
discontinuity hyper-surfaces a convex combination of the adjacent vector fields has too
many degrees of freedom. We restrict our study to special convex combinations having
m parameters in the intersection of m hyper-surfaces Σj . Such convex combinations
(for m = 2) are called “blending” in [1] and “bilinear interpolation” in [5, 4], see
also [7, 18]. For arbitrary m they are called “convex canopy” in [15]. We consider
regularizations that are closely connected to such convex combinations, and we call
them “multi-linear interpolation”.

2.1. Solution concept – classical solutions and sliding modes. For a fixed
multi-index k = (k1, . . . , kd) with kj ∈ {−1, 1} the equation (1.3) is a regular ordinary
differential equations on the open domain Rk, and the standard theory on existence,
uniqueness, and continuous dependence on parameters and initial values applies. In
this case the solution of (1.3) is called classical.

We next extend the concept of solution to the discontinuity set Σ. For an index
vector k = (k1, . . . , kd) with kj ∈ {−1, 0, 1} (note that now kj can also be zero) we
consider the set

(2.1) Rk =
{
y ∈ Rn

∣∣αj(y) = 0 if kj = 0, kjαj(y) > 0 if kj 6= 0
}
,

and if at least one component kj = 0, then Rk ⊂
⋂
{j|kj=0} Σj ⊂ Σ. We assume

that α(y) is such that Rk is a submanifold of Rd of codimension m, where m counts
the number of elements kj being equal to zero. For k = (k1, . . . , kd) we define Ik =
{j | kj = 0}, and we let

N k =
{
` ∈ {−1, 1}d

∣∣∣ `j ∈ {−1, 1} if kj = 0, `j = kj if kj 6= 0
}

which collects the index vectors ` such that R` touches Rk. With this notation we
consider the differential-algebraic equation (DAE)

(2.2)
ẏ =

∑
`∈Nk

( ∏
j∈Ik

(1 + `jλj)

2

)
f`(y)

0 = αj(y), j ∈ Ik

with algebraic variables λj , j ∈ Ik. In the following we denote the right-hand side
of the differential equation in (2.2) by fk(y, λk), where λk is the vector that collects

3



λj , j ∈ Ik. Differentiating the algebraic constraint of (2.2) with respect to time yields

(2.3) 0 = α′j(y)fk(y, λk), j ∈ Ik.

We assume that the Implicit Function Theorem can be applied to guarantee that
locally λk can be expressed as function of y. This implies that the DAE has index 2.
The special case Ik = ∅ includes classical solutions of (1.3), because in this case
N k = {k} consists of only one element and the empty product in (2.2) is interpreted
as 1.

For λj ∈ [−1, 1] the vector field in (2.2) is a convex combination of the vector
fields f`(y) (with ` ∈ N k) which are defined on the open domains touching Rk. The
solution of (2.2) is therefore a Filippov solution.

Definition 2.1. Consider an index vector k with Ik 6= ∅ and let m = |Ik| be
the cardinality of Ik. Then, a solution (y, λk) of the differential-algebraic equation
(2.2) is called a codimension-m sliding mode in the set Rk as long as λj ∈ [−1, 1] for
j ∈ Ik.

The emphasis of the present work is the study of the limit for ε→ 0 of a solution
of the regularized differential equation (2.4). Our assumptions will be such that this
limit, if it exists, is a solution in the sense of Definition 2.1 including classical solutions.

Definition 2.2. A piecewise-smooth, continuous function y : [0, T ] → Rn is
called a solution of the discontinuous dynamical system (1.3), if there exists a fi-
nite partition 0 = t0 < t1 < t2 < . . . < tN = T , such that the following is true: for
every subinterval [ti, ti+1] there exists ki ∈ {−1, 0, 1}d with mi = |Iki | such that the
restriction of y(t) to this interval is a codimension-mi sliding mode in the set Rki (a
classical solution if Iki = ∅).

Although the situation, where time instants ti with a change in the type of so-
lution have a finite accumulation point, is an interesting and important phenomenon
(chattering), we do not consider it in the present work.

2.2. Regularization. The main topic of this work is the study of regulariza-
tions, where jump discontinuities in the vector field of (1.3) are smoothed out. For this
we consider a transition function π(u), which is assumed to be continuous, piecewise-
smooth, and satisfies π(u) = −1 for u ≤ 1 and π(u) = 1 for u ≥ 1. We also assume
that π′(u) > 0 for u ∈ (−1, 1), and that π(u) is centrally symmetric (see Figure 1).

−1 1

−1

1

−1 1

−1

1

π(u) = u

(A)

π(u) =
u

2
(3− u2)

(B)

Fig. 1. Two examples for transition functions.

For a discontinuous dynamical system (1.3) we consider the regularization

(2.4) ẏ =
∑

`∈{−1,1}d

( d∏
j=1

(1 + `jπ(uj))

2

)
f`(y)

where uj = αj(y)/ε. We denote the right-hand side of this regularized differential
equation by f

(
y, π(u1), . . . , π(ud)

)
. The complete phase space (including the discon-
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tinuity set Σ) is the union of 3d sets

(2.5) Rk
ε =

{
y ∈ Rn

∣∣ |αj(y)| ≤ ε if kj = 0, kjαj(y) > ε if kj 6= 0
}
,

where k = (k1, . . . , kd) with kj ∈ {−1, 0, 1}. For the case that all kj 6= 0, we have that
Rk
ε ⊂ Rk, and ` = k is the only vector for which the product in (2.4) is non-zero.

Therefore, on the set Rk
ε the regularization coincides with the differential equation

ẏ = fk(y) of the un-regularized problem.
For k with Ik 6= ∅ the set Rk

ε approximates Rk. On the set Rk
ε only the vectors

` ∈ N k give rise to a non-vanishing product in (2.4). Since `jπ(uj) = kjπ(uj) = 1 for
` ∈ N k and j 6∈ Ik, the regularized differential equation (2.4) becomes

(2.6) ẏ =
∑
`∈Nk

( ∏
j∈Ik

(1 + `jπ(uj))

2

)
f`(y) for y ∈ Rk

ε ,

which is in complete analogy to (2.2). If m denotes the cardinality of Ik, then for
m = 1 the sum in (2.6) consists of two terms (linear interpolation), for m = 2 it
consists of four terms (bilinear interpolation), and in general it consists of 2m terms.

3. Main results. An essential requirement for a meaningful regularization is
that its solution converges, for ε → 0, to a Filippov solution of the discontinuous
problem. With this term we mean that the unique solution yε of (2.6) approaches a
Filippov solution y of (1.3) as ε→ 0, that is lim

ε→0
‖yε − y‖ = 0 for some norm ‖ · ‖.

This question is already addressed in § 8 of the classical monograph [10, Theorem 2
on page 90] which is on the “Dependence of solution on initial data and on the right-
hand side of the equation”, and in [20]. It is shown (using the Arzelà–Ascoli theorem)
that for every ε > 0 the solution of the regularized differential equation is close to
some solution of the discontinuous problem, and convergence is established if the
Filippov solution of the discontinuous problem is unique. These results are obtained
in the setting of differential inclusions, and nothing is stated, whether the Filippov
solution is of the form considered in Definition 2.1.

In the present work we use the approach of [11] and [12] which is based on asymp-
totic expansions in powers of ε. For regularizations of the form (2.4) this approach
shows that they appoximate a Filippov solution of the form (2.2). This is not sur-
prising due to the similarity of the formulas. The study of asymptotic expansions is
independent of whether there is a unique Filippov solution or not. It typically requires
certain expressions to be non-zero, which is generically satisfied.

3.1. Desired results. Before we present rigorous statements we formulate the
kind of theorem that we would like to prove.

Desired Theorem 3.1. Consider a discontinuous system (1.3) with initial value
y0 ∈ Rn, and assume that for every solution (in the sense of Definition 2.2) the matrix

(3.1)
(
α′j(y)

∂fki

∂λp

(
y, λki

))
j,p∈Iki

is invertible for all
(
y(t), λki(t)

)
, t ∈ [ti, ti+1].

Then, the solution of the regularized differential equation (with fixed transition
function π(u)) converges for ε → 0 uniformly to some solution of the discontinuous
initial value problem.
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The invertibility of the matrix (3.1) is a natural, generic assumption, which per-
mits us to apply the Implicit Function Theorem to the system (2.3), so that the
solutions in the sense of Definition 2.2 are well-defined.

Desired Theorem 3.2. In the situation of Desired Theorem 3.1 the limit solu-
tion, for ε→ 0, is independent of the transition function π(u).

Such a result is important for answering the question, which solution of the dis-
continuous dynamical system (in the case of non-uniqueness of solutions) is the most
meaningful. It will turn out that the Desired Theorem 3.2 holds true for many situa-
tions, but there are counter-examples to its general validity.

3.2. Rigorous result for the codimension-1 case. Let us start with the
situation, where every solution of the discontinuous problem has only classical and
codimension-1 solutions. This corresponds to the case d = 1 in the system (1.3), so
that there are only two vector fields f−1(y) and f1(y). The equation (2.3) becomes

α′(y)
( (1 + λ)

2
f1(y) +

(1− λ)

2
f−1(y)

)
= 0,

and condition (3.1) is

(3.2) α′(y)
(
f1(y)− f−1(y)

)
6= 0.

Along a codimension-1 sliding mode the projections α′(y)f1(y) and α′(y)f−1(y) can-
not have the same sign. Therefore, generically, condition (3.2) is satisfied. In this
case the statements of the Desired Theorems 3.1 and 3.2 are true.

Theorem 3.3. Assume that a solution of (1.3) enters a codimension-1sliding
mode through a classical solution, and that (3.2) is satisfied along this sliding. Then
the solution of the regularized differential equation (2.6) converges uniformly to the
(unique) Filippov solution of (1.3). It is independent of the transition function π(u).

This result is well-known and can be rigorously proved with the technique of
asymptotic expansions.

The following example shows that, if at some point of a codimension-1 sliding
mode it holds α′(y)f1(y) = α′(y)f−1(y) = 0, the limit solution of the regularized
differential equation can depend on the point, where the solution enters the codimen-
sion-1 sliding mode.

3.3. An illustrative example in dimension 1. We consider the time-depen-
dent problem, where

f−1(t, y) = −a(t− 1), f1(t, y) = b(t− c),

and the discontinuity surface is given by α(t, y) = y. The constants a, b, c are positive.
We consider initial values y(0) = y0 < 0.

In the domains {(t, y) | y < 0} and {(t, y) | y > 0} the solutions are

y−(t) = −at
2

2
+ at+ C− and y+(t) = b

t2

2
− bct+ C+,

respectively. For y0 < 0 the solution of the discontinuous problem follows y−(t) until
it hits the discontinuity surface at time t = t−. We then distinguish the following
situations (see Figure 2):
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1 1 1

c = 0.7 c = 1 c = 1.5

Fig. 2. Solutions of the discontinuous problem of Section 3.3 with a = 1.4, b = 1, and three
different values of c. For one particular solution (red) the beginning and the end of the sliding mode
is indicated by bubbles. For c = 1, further solutions with the same initial value are plotted in blue.

c < 1: If c ≤ t− < 1 the solution crosses the surface at t− and continues along y+(t).
If t− < c, we have sliding until t = c, where it leaves tangentially the surface
along y+(t) into {(t, y) | y > 0}.

c > 1: If t− < 1 we have sliding until t = 1, where it leaves tangentially the surface
along y−(t) into {(t, y) | y < 0}.

c = 1: If t− < 1 we have sliding until t = 1. There we have non-uniqueness: the
solution can leave the surface tangentially along y−(t) into {(t, y) | y < 0} or
along y+(t) into {(t, y) | y > 0} or it can continue as sliding until some time
t = t+ > 1, where it leaves the surface transversally along y−(t) or along
y+(t).

The regularized differential equation is given by

(3.3) ẏ =
1

2
π
(y
ε

)(
(a+ b)t− bc− a

)
+

1

2

(
(b− a)t− bc+ a

)
,

which, for the case c = 1, becomes

(3.4) ẏ =
1

2
π
(y
ε

)
(a+ b)(t− 1) +

1

2
(b− a)(t− 1).

The function y∗(t) = εu∗, where u∗ solves π(u∗)(a+ b) = (a− b), is a particular
solution of (3.4), and the difference z(t) = y(t)− εu∗ satisfies

ż =
1

2

(
π
(z
ε

+ u∗
)
− π(u∗)

)
(a+ b)(t− 1).

Separation of the variables yields

(3.5)

∫ z2

z1

2 dz

π
(
z
ε + u∗

)
− π(u∗)

=

∫ t2

t1

(a+ b)(t− 1) dt.

If the solution enters the ε-band around the discontinuity surface from below at
t−(ε) = t−+O(ε) and exits it at t+(ε), then we have z

(
t−(ε)

)
= z
(
t+(ε)

)
= −ε−εu∗,

and the relation (3.5) shows that∫ t+(ε)

t−(ε)

(a+ b)(t− 1) dt = 0.

This implies that, independent of the transition function π(u), the exit point is given
by t+(ε) = 2 − t−(ε) (red solution in the central picture of Figure 2). The limit
ε → 0 for the regularization selects this special solution out of all solutions of the
discontinuous problem.

Our conclusion is that, even for the case c = 1, where the discontinuous problem
has a continuum of solutions, the limit (for ε → 0) of the solution of the regularized
differential equation exists and is independent of the transition function π(u).
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3.4. Entering the codimension-2 manifold. We are next interested in the
case, where codimension-d sliding modes exist with d ≤ 2. We thus assume d = 2.
Classical solutions and codimension-1 sliding modes are covered by the theorem of
Section 3.2. For codimension-2 sliding modes we have to consider the equation (2.3),
i.e., αj(y)f0,0(y, λ1, λ2) = 0, which (when multiplied by 4) becomes

α′j(y)
(

(1 + λ1)(1 + λ2) f1,1(y) + (1 + λ1)(1− λ2) f1,−1(y)(3.6)

+ (1− λ1)(1 + λ2) f−1,1(y) + (1− λ1)(1− λ2) f−1,−1(y)
)

= 0

for j ∈ {1, 2}. For the existence of a locally unique solution (λ1, λ2) of this system,
we assume that the Implicit Function Theorem can be applied, which means that the
2× 2 matrix (3.1), i.e.,

(3.7) G(y, λ1, λ2) =
(
α′j(y)

∂

∂λp
f0,0(y, λ1, λ2)

)2
j,p=1

is invertible.

Theorem 3.4. Assume that a solution of (1.3) enters the intersection at y∗ ∈
Σ1 ∩ Σ2. Generically, we then have in a neighbourhood of y∗ uniform convergence of
the solution of the regularized differential equation either to a classical solution, or to
a codimension-1 sliding mode, or to a codimension-2 sliding mode.

Note that this theorem and the other theorems of this subsection cover the sit-
uation, where there exist several solutions (in the sense of Definition 2.2) starting at
y∗ ∈ Σ1 ∩ Σ2. The proof of the theorems will be given in Section 4. It is based on
the classification of limit solutions of the regularized system (2.4) given in [11]. The
meaning of “generically” in the statement will be explained in Section 4.4.

In the following theorem we use the notation fkj = α′j(y)fk(y) for j ∈ {1, 2} and
k = (k1, k2) with k1 6= 0 and k2 6= 0.

Theorem 3.5. Assume that a solution of (1.3) enters the intersection at y∗ ∈
Σ1 ∩ Σ2 through a codimension-1 sliding along Σ1 ∩ {α2(y) < 0}. If at least one of
the following conditions is satisfied at y∗:

• f−1,11 f1,−11 − f−1,−11 f1,11 > 0,

• f−1,11 f1,−11 − f−1,−11 f1,11 < 0 and f1,−12 > 0,

• the system (3.6) does not have a solution in (−1, 1)× (−1, 1),
then, in a neighbourhood of y, the limit solution of the regularization is independent
of the transition function π(u).

If the solution enters the intersection generically through spiraling, then, in a
neighbourhood of the entry-point, the limit of the regularization is independent of the
transition function π(u).

In the nodally attractive case [7], where f1,−12 > 0, we have generically conver-
gence of the regularization and independence of the transition function.

3.5. Example with limit solution depending on the transition function.
The aim of this example is to give evidence that the limit solution, for ε → 0, can
depend on the transition function π(u). We consider the case d = 2 with discontinuity
surfaces given by α1(y) = y1 and α2(y) = y2. The (constant) vector fields on the four
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.0 .5 1.0

−.6

−.3

.0

.3

.6

.0 .5 1.0

−.6

−.3

.0

.3

.6

π(u) = u
Σ1

Σ2

π(u) =
u

2

(
3− u2) Σ1

Σ2

Fig. 3. Regularized solutions of the discontinuous problem of Section 3.5 corresponding to two
different transition functions (regularization parameter ε = 10−5).

Fig. 4. Vector field and solution of the discontinuous problem of Section 3.5 on the square
[−ε, ε]× [−ε, ε] for the transition function π(u) = u (left picture) and the transition function π(u) =
u
2

(3− u2) (right picture).

regions are

f−1,1 =

(
1

0.18

)
f1,1 =

(
2.25
1.45

)
f−1,−1 =

(
1

1.82

)
f1,−1 =

(
−4.25
−3.45

)
.

These vector fields are such that starting with initial values y1(0) = −0.4 and y2(0) =
−1.2 the solution enters Σ1 at time t = 0.4, and after a codimension-1 sliding it enters
the intersection Σ1 ∩ Σ2 at t = 1.0, see Figure 3. Beyond t = 1.0 the discontinuous
problem admits two solutions: a classical solution in R1,1 and a codimension-2 sliding
mode.

For the transition function π(u) = u (for u ∈ [−1, 1]) the limit solution of the
regularized differential equation is the codimension-2 sliding mode, whereas for the
transition function π(u) = u

2 (3− u2) the limit solution is the classical solution. This
is verified numerically and illustrated in Figure 3, where both solution components
are plotted as a function of time for the regularization parameter ε = 10−5.

This behaviour can be explained by the study of asymptotic expansions where,
close to the entry point into the intersection Σ1 ∩ Σ1, the solution is split into a
smooth part and into a fast transient (see [11, Section 4]). The fast transient (hidden
dynamics) determines whether a classical solution or a codimension-2 sliding mode is
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approximated by the regularization. Figure 4 shows the vector field and the solution
of the regularized differential equation in the phase space (y1, y2) close to the origin
(codimension-2 discontinuity manifold). Since the four vector fields are constant and
of dimension 2, the pictures are - up to a scaling - independent of ε, and show the
transient part.

3.6. During a codimension-2 sliding. Assume that, after entering a codi-
mension-2 manifold at y ∈ Rn, the solution of the regularized differential equations
approximates a codimension-2 sliding mode. It follows from singular perturbation
theory that the solution stays close to it as long as the eigenvalues of

(3.8) Gπ(y, u1, u2) =
(
α′j(y)

∂

∂up
f0,0

(
y, π(u1), π(u2)

))2
j,p=1

,

with u1, u2 given by λi = π(ui), have negative real part (see Section 4.2 for its
connection to the stability of the stationary point of the hidden dynamics). Note that
for π(u) = u, the matrix Gπ coincides with the matrix G of (3.7). The eigenvalues of
Gπ have negative real part iff detGπ > 0 and traceGπ < 0. Since π′(ui) > 0, the sign
of detGπ does not depend on the transition function. However, the sign of traceGπ
may depend on it. The condition

(3.9) detGπ > 0 and diagonal elements of Gπ are negative

is independent of the transition function and provides a sufficient condition for the
stability of Gπ. Consequently, we have that under the assumption (3.9) the solution
of the regularized differential equation converges to a codimension-2 sliding mode and
the limit is independent of the transition function.

3.7. Exiting the codimension-2 manifold. We turn our attention to the sit-
uation of sliding motions exiting a codimension-2 manifold.

Theorem 3.6. Assume that condition (3.9) holds along a codimension-2 sliding
mode until (and including) the point y = y(t∗), and that either λ1(t) or λ2(t) leaves
the interval (−1, 1) at t = t∗.

Generically, we then have uniform convergence of the solution of the regular-
ized differential equation to a solution of (1.3) (in the sense of Definition 2.2) until
time t∗ and on a non-empty interval beyond it. This convergence is independent of
the transition function π(u).

The behaviour of solutions exiting a codimension-2 manifold is discussed in [12].
The assumptions of Theorem 3.6 correspond to the case (A) of that publication. For
the case (B), which covers the cases, where the eigenvalues of (3.7) cross the imaginary
axis away from the origin at some time t∗ or the quadratic system (3.6) does no longer
have a solution in [−1, 1]×[−1, 1] for t > t∗, we do not know of a rigorous proof for the
behaviour of the solution beyond t∗. Numerical experiments indicate that the solution
of the regularized differential equation still converges (for ε→ 0) to a solution od (1.3)
(Definition 2.2), although convergence may depend on the transition function.

The example of the next section illustrates the behaviour of the solution of the
regularized system in the case, where the eigenvalues of (3.7) cross the imaginary axis
away from the origin.

3.8. Example with outward spiraling limit solution depending on the
transition function. The example of this section shows that in the case of exiting
a codimension-2 sliding mode, the limit solution, for ε → 0, can depend on the
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transition function π(u). As we have seen in Theoren 3.6, in case of inward spiraling
the limit solution does not depend on π(u). We remark that in general the outward
spiraling behavior does not necessarily follow an inward spiraling into the discontinuity
manifold.

We consider d = 2, discontinuity surfaces α1(y) = y1 and α2(y) = y2, and the
vector fields

f−1,1 =

(
3(1− t− t2)

1 + 5t

)
f1,1 =

(
3(1 + t− t2)
−5(1− t)

)
f−1,−1 =

(
−3(1 + t+ t2)

5 + t

)
f1,−1 =

(
−3(1− t+ t2)
−1 + t

)
Similar examples with spiraling dynamics are considered in [6, Example 4.3] and
[16, Section IV.C]. Our example has the peculiarity that the quadratic terms in the
regularized differential equation (2.4) are not present, which simplifies an analytic
treatment. It is given by

(3.10)
ẏ1 = 3tπ(u1) + 3π(u2)− 3t2 u1 = y1/ε

ẏ2 = −3π(u1) + 2(t− 1)π(u2) + 3t u2 = y2/ε.

We substitute εuj for yj and then put ε = 0. The resulting system

(3.11)
0 = 3tπ

(
u1,0(t)

)
+ 3π

(
u2,0(t)

)
− 3t2

0 = −3π
(
u1,0(t)

)
+ 2(t− 1)π

(
u2,0(t)

)
+ 3t

yields functions satisfying π
(
u1,0(t)

)
= t and π

(
u2,0(t)

)
= 0. We consider the follow-

ing two cases (see Section 2.2):
(A) π(u) = u: in this case we have u1,0(t) = t and u2,0(t) = 0;

(B) π(u) = u
2

(
3 − u2

)
: in this case we have u2,0(t) = 0, but u1,0(t) is solution of

u1,0(t)
(
3− u1,0(t)2

)
= 2t.

Figure 5 shows both components y1 and y2 of the solution of (3.10) for different
values of ε (red for the transition function (A), and blue for (B)). Initial values are
y1(0) = y2(0) = 0.075. An accurate solution is computed numerically with an 8th
order explicit Runge–Kutta method (code DOP853 of [13, Appendix]). In the begin-
ning, until approximately t ≈ 0.1, the solution spirals around the origin before entering
a codimension-2 sliding. The second component y2(t) is O(ε2)-close to the horizontal
axis, whereas y1(t) increases (linearly) with time. The remarkable fact is that, for
relatively large ε, the solution leaves the codimension-2 sliding at about t ≈ 0.7 for
the transition function (A), and at about t ≈ 0.8 for (B). Then it again turns into a
spiraling motion around the origin. But what can be said for the limit ε → 0? Can
we trust the numerical solution (obtained with double precision arithmetics) with the
smaller value ε = 0.003?

We repeated the same experiment in higher precision arithmetics (quadruple in-
stead of double precision, and a more stringent accuracy requirement of the time
integrator). For the parameters ε = 0.01 and ε = 0.0065 we get identical results.
However, for ε = 0.003 (see Figure 6) we get a solution that leaves the codimension-2
sliding at about t ≈ 0.8 (for the transition function (B)), as it was the case for larger
values of ε with computations in double precision. This shows that the third picture
of Figure 5 is affected by round-off errors. In order to get more insight into the limit
behaviour for ε→ 0, we refer to Section 6.
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Fig. 5. Solution of (3.10) with initial values y1(0) = y2(0) = 0.075: in red with transition
function (A) and in blue with (B). Horizontal blue lines are at y = −ε and at y = ε, and indicate
the region of codimension-2 sliding.

.0 .4 .8ε = 0.003

tt

Fig. 6. Same experiment as in the third picture of Figure 5, with the difference that the
computation is done in quadruple precision.

4. Proof of Theorems 3.4 and 3.5. The proof of Theorems 3.4 and 3.5 relies
on the classification of the hidden dynamics [11], when a solution of the regularized
differential equation approaches the intersection Σ1 ∩ Σ2. For the solution of (1.3)
there are three possibilities of entering Σ1 ∩ Σ2: it can enter as classical solution,
or through a codimension-1 sliding, or by spiralling around it. We discard the first
possibility, because it is not generic.

4.1. Entering the intersection through a codimension-1 sliding. By chang-
ing the sign of αj(y) and/or by exchanging α1(y) and α2(y) we can assume without
loss of generality that the solution of (1.3) enters Σ1 ∩ Σ2 through a codimension-1
sliding along R0,−1. We therefore assume (all vector fields are evaluated at the entry
point)

(4.1)
f−1,−11 > 0, f1,−11 < 0, f−1,−12 > 0,

f−1,−11 f1,−12 − f1,−11 f−1,−12 > 0.

We again use the notation fkj = α′j(y)fk(y) for j ∈ {1, 2} and k = (k1, k2) with k1 6= 0

and k2 6= 0, and we denote f1,02 (λ2) = α′2(y)f1,0(y, λ2). The first two inequalities
of (4.1) imply that both vector fields, f−1,−1 and f1,−1, point towards R0,−1. The
remaining two inequalities imply that there is a sliding motion alongR0,−1 in direction
of the intersection Σ1 ∩ Σ2. The flowchart of Figure 7 collects the statements of [11,
Theorem 6.1] under the assumption (4.1). The flowchart of Figure 8 collects those of

12



entering Σ1 ∩ Σ2 through
codimension-1 sliding along R0,−1

condition (4.1)

HH
HHj

��
���

f−1,1
1 f1,−1

1 − f1,1
1 f−1,−1

1 > 0 f−1,1
1 f1,−1

1 − f1,1
1 f−1,−1

1 < 0

�
����

H
HHHj

−1 < λ1, λ2 < 1
exist s.t. (3.6)

−1 ≤ λ1, λ2 ≤ 1
do not exist

@
@R

see Fig. 8

�
�	

@
@R

f1,0
2 (λ2) < 0 f1,0

2 (λ2) > 0

�
�	

@
@R

f−1,1
1 > 0 f−1,1

1 < 0

@
@R

�
�	

f−1,1
2 < 0 f−1,1

2 > 0

?

codim-2
sliding

?

codim-2
sliding

�
�	

codim-1
sliding

along R0,1

?

codim-1
sliding

along R−1,0

?

classical
solution
in R−1,1

Filippov solution is unique
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Fig. 7. Flowchart of Theorem 6.1 of [11]. In the case of multiple solutions of (3.6), λ2 is the
value that is closest to −1. Here, and in Figures 8 and 9, the term “Filippov solution” has to be
interpreted as a solution according to Definition 2.2.

Filippov solution is unique

non-uniqueness of Filippov solution
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Fig. 8. Flowchart of Theorem 6.2 of [11]. Condition (4.2) is assumed in addition to the
assumption (4.1) of the flowchart of Figure 7.
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[11, Theorem 6.2], where in addition the condition

(4.2) f1,−12 < 0

is assumed.1 The condition (4.2) can be considered without loss of generality, because
the case f1,−12 > 0 can be reduced to that of Figure 7 by interchanging λ1 ↔ −λ1
and α1(y)↔ −α1(y).

Following a sequence of arrows in the flowcharts tells us to which kind of solution
of (1.3) the solution of the regularized differential equation converges on a non-empty
interval after the entry point. We have put the limit solution in a blue box, whenever
the solution (in the sense of Definition 2.2) of the discontinuous problem (1.3) is
unique. A red box indicates instead a situation of non-uniqueness. For example, the
red boxes in Figure 7 correspond to a situation, where an additional classical solution
may exist. Nevertheless, it is proved in [11] that the solution of the regularized
differential equation does not converge to it for any transition function.

Note that the expressions appearing in the flowcharts of Figures 7 and 8 depend
only on the discontinuous problem (1.3), and are independent of the transition func-
tion of the regularization. This terminates the proof of Theorem 3.4 for the situation,
where the solution enters Σ1 ∩ Σ2 through a codimension-1 sliding.

For the proof of Theorem 3.5 we note that the dependence on the transition
function can happen only in the situations identified by the two red boxes at the left
of Figure 8. The counter-example of Section 3.5 illustrates that the limit solution of
the regularized problem can indeed depend on the transition function.

We still have to precise the meaning of the term “generically”. This will be done
in Section 4.4 below.

4.2. More details of the proof. Let us explain in some more detail how the
results of [11], which are stated there for π(u) = u, can to be applied to get the
statements illustrated in Figures 7 and 8. The classification of [11] is based on the
study of the hidden dynamics, which describes the fast transition when the solution
enters at y0 the intersection ∩dj=1Σj of the discontinuity surfaces. It is given by the
solution u(τ) (with τ = t/ε) of the autonomous system

u′i =
∑

`∈{−1,1}d

( d∏
j=1

(1 + `jπ(uj))

2

)
α′i(y0)f`(y0).

For d = 2, we write α(y) = α1(y), β(y) = α2(y), u = u1, v = u2, and for the hidden
dynamics (as in [11])

(4.3)
u′ = gα

(
π(u), π(v)

)
v′ = gβ

(
π(u), π(v)

)
.

A typical result of [11], in fact, part (a1) of Theorem 6.1 is the following:
Assume that gα(−1,−1) > 0, gβ(−1,−1) > 0, gα(1,−1) < 0, and that
there exists u0 ∈ (−1, 1) such that gα(u0,−1) = 0 and gβ(u0,−1) >
0. Assume further that ∂vgα(u0,−1) < 0, and that the branch of
the hyperbola gα(u, v) = 0 starting at (u0,−1) intersects transver-
sally the hyperbola gβ(u, v) = 0 inside the unit square at (u∗, v∗). If

1The cases (a1) and (a2) of [11, Theorem 6.2] are incorporated into the statements (a3) and (a4),
so that the four statements of Figure 8 correspond to (a3), (a4), (b), and (c) of [11, Theorem 6.2].
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gβ(1, v∗) < 0, then (u∗, v∗) is an asymptotically stable equilibrium
of (4.3), and the solution of the regularized differential equation con-
verges to a codimension-2 sliding mode.

How can we get this statement for an arbitrary transition function? We note that
gα(−1,−1), gβ(−1,−1), and gα(1,−1) are equal to f−1,−11 , f−1,−12 , and f1,−11 , respec-
tively. Together with the next assumption, this is equivalent to (4.1), because with u0
given by gα(u0,−1) = 0 we have that gβ(u0,−1) > 0 iff f−1,−11 f1,−12 − f1,−11 f−1,−12 >
0. This remains valid, if u0 is replaced by π(u0). Further, the sign of ∂vgα(u0,−1) is
the opposite of that of f−1,11 f1,−11 − f1,11 f−1,−11 by [11, Lemma 6.3]. The existence of
the intersection point (u∗, v∗) is equivalent to the existence of (λ1, λ2) satisfying (3.6).
Moreover, the sign of gβ(1, v∗) is the same as that of f1,02 (λ2). All these assumption
show that we are in the situation, where we follow the arrows to the left in the decision
tree of Figure 7.

The study of the hidden dynamics is based on geometric arguments in [11]. The
essential idea for transferring the proofs of [11] to the situation, where π(u) is different
from π(u) = u, is to argument in the

(
π(u), π(v)

)
plane rather than in the (u, v)

plane. The curves, where the components of the right-hand sides of (4.3) vanish,
are again hyperbolas. The flow is vertical on one hyperbola and horizontal on the
other. Because of π′(u) > 0 for u ∈ (−1, 1), the sign of gα

(
π(u), π(v)

)
to the left, to

the right, below, or above a point on the hyperbola gα(ũ, ṽ) = 0 is independent of
π(u). Also the sign of the Jacobian determinant of (4.3) does not depend on π(u).
Therefore, all the proofs of [11] leading to the statements of Figures 7, 8, and 9 carry
over to general transition functions π(u), and the convergence of the solution of the
regularized differential equation is established. This proves Theorem 3.4.

There are two situations (those to the left of Figure 8) where the limit solution
can either be a codimension-2 sliding mode or a codimension-1 sliding (respectively,
classical solution). The example of Section 3.5 illustrates that in such a situation the
limit solution can very well depend on the transition function. For this reason we
have included in Theorem 3.5 assumptions that rule out these two situations.

4.3. Entering the intersection through spiraling. We next consider the
situation, where a solution of (1.3) enters the intersection at y ∈ Σ1 ∩Σ2 by spiraling
inwards. This can be clockwise or counterclockwise. Assuming the second, this is the
case, if the vector fields, evaluated at y, satisfy

(4.4)
f−1,−11 > 0, f1,−11 > 0, f1,11 < 0, f−1,11 < 0

f−1,−12 < 0, f1,−12 > 0, f1,12 > 0, f−1,12 < 0,

and if the contractivity condition

(4.5) 0 < γ < 1 with γ =
f−1,−12

f−1,−11

· f
1,−1
1

f1,−12

· f
1,1
2

f1,11

· f
−1,1
1

f−1,12

holds. Under these two assumptions it follows from [11, Theorem 7.1] that the solution
of the regularized differential equation converges uniformly on a non-empty interval
after the entry point to a codimension-2 sliding mode of (1.3) for any transition
function. Since this codimension-2 sliding mode is unique, the proof for Theorems 3.4
and 3.5 are complete.

4.4. The meaning of “generic” in Theorems 3.4 and 3.5. Let us explain
the use of the word “generic” in the formulation of Theorems 3.4 and 3.5.
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• We assume that the solution enters the intersection in a “generic way”. This
is a restriction on the initial values. It excludes the situation, where the
solution enters as a classical solution from one region Rk, where kj 6= 0 for
all j.

• The word “generically” means that equalities are excluded in the inequality
assumptions of (4.1), (4.2), (4.4), (4.5), and in those of the flowcharts in
Figures 7 and 8.

The remaining (non-generic) cases, which constitute a set of measure zero, have not
been investigated. Note that also the invertibility assumption in Theorem 3.4 is
generically fulfilled.

5. Proof of Theorem 3.6. The proof of Theorem 3.6 relies on the results of [12],
when a solution of the discontinuous problem leaves a codimension-2 sliding. Along
such a sliding the standard theory of asymptotic expansions for singularly perturbed
problems [14, Section VI.3] can be applied. Under the assumption of the eigenvalues
of the matrix (3.7) we have that the solution of the regularized differential equation
converges uniformly and independently of π(u), for ε → 0, to the codimension-2
sliding mode for t ≤ t∗. By assumption of Theorem 3.6 the solution

(
λ1(t), λ2(t)

)
of

the system (3.6) leaves the unit square at one side (excluding the corners). Without
loss of generality we therefore assume that the following conditions

(5.1) λ1(t∗) = 1, λ̇1(t∗) > 0, −1 < λ2(t∗) < 1

hold. The results of [12, Theorems 2 and 3] are illustrated2 in Figure 9. All vector
fields are evaluated at the exit point. According to the decision tree the solution
of the regularized differential equation either converges, beyond the exit point, to a
codimension-1 sliding mode or to a classical solution. Since the conditions in Figure 9
only depend of the vector fields and not on the transition function, the limit solution
is independent of it. This completes the proof of Theorem 3.6.

Note that in all situations of Figure 9 the discontinuous problem can have fur-
ther solutions (classical or codimension-1). We nevertheless have convergence to the
specified solution.

6. More insight into the example of Section 3.8. Much insight into the
solution of a singularly perturbed problem, like the equation (3.10), can be obtained
by studying an asymptotic expansion in powers of ε. We write uj(t), for j = 1, 2, as

(6.1) uj(t) = uj,0(t) + εuj,1(t) + . . .+ εNuj,N (t) +Rj,N (t).

The dominant functions uj,0(t) are those of (3.11). Further coefficient functions are
obtained by inserting the expansion into the differential equation and comparing equal
powers of ε. The remainder Rj,N (t) can be estimated by studying the stability of the
variational equation.

Figure 10 illustrates the asymptotic expansion of (3.10) for two different values of
ε and for both transition functions, linear (A) and cubic (B). Plotted are as a function
of time t (in logarithmic scale) the modulus of the solution components as well as the

modulus of yj(t)−
∑N
i=0 ε

i+1uj,i(t) (N = 0, 1, . . .), which decreases with increasing N .
The first component (j = 1) is coloured in blue and the second (j = 2) in red. Recall

2For an application of these theorems we note that ∂u2f2(y, 1, u∗2) = f1,12 − f1,−1
2 , where u∗2 is

determined by f2(y, 1, u∗2) = 0. We further note that the sign of ∂u1f2(y, 1, u∗2) is equal to that of

f−1,1
2 f1,−1

2 − f1,12 f−1,−1
2 .
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Fig. 9. Flowchart for case (A) of [12].

that u2,0(t) = 0, so that one red function seems to be missing. Figure 11 repeats the
experiment with higher precision arithmetics.

To explain the figures, we note that the stability of the system (3.10) is governed
by the matrix

G(t) =

(
3tπ′

(
u1,0(t)

)
3π′
(
u2,0(t)

)
−3π′

(
u1,0(t)

)
2(t− 1)π′

(
u2,0(t)

)) .
Its determinant

detG(t) = 3π′
(
u1,0(t)

)
π′
(
u2,0(t)

)
(2t2 − 2t+ 3)

is positive for all t, and its trace is given by

trace G(t) = 3tπ′
(
u1,0(t)

)
+ 2(t− 1)π′

(
u2,0(t)

)
.

For the transition function (A) of Section 3.8 the trace is equal to 5t − 2 and
changes sign (from negative to positive) at t = 0.4. We are in the same situation as in
the example of Section 4.1 of [12] and we expect that the remainder of the asymptotic
expansion is bounded by C exp

(
c (t−0.4)2/ε

)
(which is a parabola, centered at t = 0.4,

in logarithmic scale). For this reason we have included in the upper pictures of
Figures 10 and 11 a parabola representing a bound of the remainder. For ε = 0.01
(and transition function (A)) we observe a perfect agreement. For ε = 0.003 the
computation is affected by round-off, and this agreement can be observed only in
Figure 11 (quadruple precision). We conclude that for (A) the exit point from the
codimension-2 sliding has approximately the same distance to t = 0.4 as the entry
point.

In the pictures for the transition function (B) we have included the parabolas
of the case (A). This permits us to compare the results and to study the effect of
the transition functions. In all pictures, with the exception of the lower right picture
of Figure 10 (which is affected by round-off) we notice that the exit point from the
codimension-2 sliding is significantly farther to the right. A sound explanation is still
missing, but we note that for the case (B) the trace of G(t) changes sign later at t,
defined implicitly by t = 0.4 + 0.6 t u1,0(t)2.
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Fig. 10. Illustration of the asymptotic expansion for the solution of (3.10) for two different ε
and for the linear (A) and cubic (B) transition functions.
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Fig. 11. Same experiment as in Figure 10, with computation in quadruple precision.

7. Conclusion. This work is devoted to the study - existence and independence
of the transition function - of the limit solution of regularized piece-wise smooth
dynamical systems. Solutions evolving in a codimension-1 discontinuity surface are
well understood. We therefore focus our study on solutions that enter and/or exit a
codimension-2 discontinuity manifold. In Section 3.1 we have formulated two desired
results concerning the limit behaviour of regularized solutions.

Concerning the Desired Theorem 3.1 we have shown that during and after enter-
ing a codimension-1 or codimension-2 manifold we generically have convergence to a
solution of the discontinuous dynamical system (1.3) in the sense of Definition 2.2.
The proof, based on asymptotic expansions in powers of ε, uses the classification pre-
sented in the publication [11]. The main result is illustrated in Figures 7 and 8, where
a checkable decision tree is given that allows to determine whether the solution of the
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regularized differential equation converges to a classical solution, to a codimension-1
sliding mode, or to a codimension-2 sliding mode.

For solutions exiting a codimension-2 sliding mode, there does not exist a complete
classification on the limit of the solution of the regularized differential equation. For
the situations that are covered by the study in [12] it is proved (Section 3.7 and
Figure 9) that we have convergence of the solution of the regularized problem to
a solution of the discontinuous equation (1.3). At present we do not know of an
example, for which (under the regularity assumptions of Section 1) the solution of
the regularized differential equation does not converge to a solution in the sense of
Definition 2.2 for ε→ 0.

Concerning Desired Theorem 3.2 we have characterized situations, where the
convergence is independent of the transition function. These are the situations, where
in the decision trees of Figures 7, 8, and 9 there is only one possibility of a limit
solution. Two exceptions arise when the left arrow is considered in Figure 8. For one
of these two situations we have constructed a concrete example (Section 3.5), where
different transition functions lead to different limits of the solution of the regularized
differential equation.

For solutions exiting a codimension-2 sliding mode the example of Section 3.8 (see
also Section 6) shows that the limit solution of the regularized differential equation
can depend on the transition function. This insight is obtained by careful numerical
experiments.

Since a complete characterization of the behaviour of regularized solutions is
still missing at exit points from a codimension-2 sliding mode, the convergence and
independence of transition functions is for the moment an open problem. Another
challenging open problem is to understand the behaviour of regularized solutions close
to a discontinuity manifold of codimension larger than 2.
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