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Abstract A class of explicit symmetric multistep methods is proposed for in-
tegrating the equations of motion of charged particles in an electro-magnetic
field. The magnetic forces are built into these methods in a special way that re-
spects the Lagrangian structure of the problem. It is shown that such methods
approximately preserve energy and momentum over very long times, propor-
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studying the modified differential equation of the methods and by analysing
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E-mail: Lubich@na.uni-tuebingen.de



2 E. Hairer, Ch. Lubich

1 Introduction

We are interested in the long-term numerical integration of the equations of
motion of a charged particle, with position x(t) ∈ R3 and velocity v(t) = ẋ(t)
at time t, in a magnetic field B(x) = ∇ × A(x) with the vector potential
A(x) ∈ R3, and under a conservative force F (x) = −∇U(x) with the scalar
potential U(x) ∈ R. Assuming physical units where the mass and charge are
equal to 1, the motion is described by the system of second-order differential
equations

ẍ = ẋ×B(x) + F (x). (1.1)

The energy E(x, v) = 1
2 |v|

2 +U(x) is conserved along solutions of (1.1), which
follows by taking the inner product with v = ẋ on both sides of (1.1) and
integrating over time.

The equations (1.1) are the Euler-Lagrange equations d
dt
∂L
∂v = ∂L

∂x for the
Lagrange function L(x, v) = 1

2 |v|
2 +A(x)>v −U(x), as is seen by noting that

v ×B(x) = (A′(x)> −A′(x))v = A′(x)>v − d
dtA(x):

ẍ = A′(x)>ẋ− d

dt
A(x)−∇U(x). (1.2)

This form of the equations of motion will be the starting point for the con-
struction of the numerical methods of this paper. We note further that with
the conjugate momenta p = ∂L/∂v = v + A(x), one obtains a Hamiltonian
system with the non-separable Hamiltonian H(x, p) = 1

2 |p−A(x)|2 + U(x).
A popular numerical method for (1.1) is the Boris method [1], which in its

two-step formulation with stepsize h reads

xn+1 − 2xn + xn−1 = 1
2h(xn+1 − xn−1)×B(xn)− h2∇U(xn). (1.3)

This is a second-order method for approximating x(nh) by xn. It is essentially
an explicit method, since it just requires the solution of a 3-dimensional linear
system in each time step. Its energy behaviour has recently been studied in
[6], where long-time near-preservation of the total energy is shown for partic-
ular cases (constant magnetic field B or quadratic potential U) but numerical
experiments are given that illustrate random walk behaviour or linear growth
of the energy error in more general situations.

The Boris method is not a variational integrator unless the magnetic field
B is constant [4]. A related variational integrator, which coincides with the
Boris method for constant B (or equivalently, affine A(x)), is constructed like
in the interpretation of the Störmer–Verlet method as a variational integrator,
by approximating the integral of the Lagrangian L(x(t), ẋ(t)) over a time step
by (a) approximating x(t) as the linear interpolant of the endpoint positions,
(b) approximating the integral by the trapezoidal rule, and (c) by extremizing
this approximation to the action integral; see, e.g., [7, Chap. VI, Example 6.2]
and [11]. This variational integrator reads

xn+1 − 2xn + xn−1 = 1
2hA

′(xn)T (xn+1 − xn−1)− 1
2h
(
A(xn+1)−A(xn−1)

)
− h2∇U(xn). (1.4)



Symmetric multistep methods for charged-particle dynamics 3

Since a variational integrator can be reformulated as a symplectic integrator
for the corresponding Hamiltonian system, the known theory of symplectic
integrators shows that this method has very good long-time near-conservation
of energy [7]. However, for general A(x), this is an implicit method.

There have been recent efforts to construct explicit symplectic integrators
for this problem [9,10,12]. While such methods of arbitrary order have been
shown to exist, they require many evaluations of A and A′ or evaluations of
higher derivatives of A. For example, the fourth-order method proposed in [10]
requires 16 evaluations of each A and A′ per time step. This needs to be put in
comparison with the two-stage Gauss–Runge–Kutta method, which is an im-
plicit fourth-order symplectic method. Our objective in this paper is to present
and analyse a class of explicit numerical methods that can achieve similarly
good energy conservation properties with reduced computational cost.

Our second-order method is a modification of (1.4), where the left-hand
side is replaced by a suitable symmetric linear combination of xn+2, . . . , xn−2.
This yields an explicit symmetric linear multistep method. To obtain higher-
order methods, the simple difference approximations to first- and second-order
time derivatives are replaced by symmetric approximations of higher order.

We will show that, under appropriate root conditions for the characteristic
polynomial of the coefficients, we obtain in this way a class of explicit numerical
integrators with excellent energy and momentum conservation properties. Our
results extend those of [5] for symmetric multistep methods for second-order
differential equations ẍ = −∇U(x); see also [2] for constrained Hamiltonian
systems.

We remark that all methods and results of this paper extend without any
additional difficulty to systems with a Lagrangian function L(x, v) = 1

2v
>Mv+

A(x)>v − U(x) for (x, v) ∈ Rd+d with arbitrary dimension d ≥ 1, with a
positive definite mass matrix M . In particular, systems of interacting charged
particles are covered, and also gyroscopic mechanical systems.

The paper is organised as follows: Section 2 extends the variational inte-
grator (1.4) in a multistep manner to higher order. The first derivatives of x
and A(x) in the vector field are approximated by finite differences. An order
barrier, extending the first Dahlquist barrier, is presented for the considered
methods. The main results are collected in Section 3. The multistep methods
nearly preserve energy and momentum over long intervals of length O(h−p−2),
where p denotes the order of the method. The construction of methods is ex-
plained in Section 4, and numerical experiments illustrating the long-time
behaviour of the methods are given in Section 5. The proof of the energy and
momentum preservation is split into two parts. Section 6 considers smooth
numerical solutions for which a modified differential equation (in the sense of
backward error analysis) is derived. A modified energy and a modified mo-
mentum are obtained which are formally preserved by the method. The final
Section 7 is devoted to bounds on the parasitic solution components of the
multistep formula.
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2 Symmetric multistep methods for charged particle-dynamics

The variational integrator (1.4) can be interpreted as the Störmer–Verlet
method with the first derivatives of x and A(x) approximated by a second
order finite difference. This makes the method implicit. To obtain explicit and
higher order integrators we extend this method by using multistep techniques.

2.1 Method formulation

We consider explicit symmetric multistep methods (with coefficients αj = α−j ,
βj = β−j and δj = −δ−j)

k+l+1∑
i=−k−l−1

αixn+i = h2
l∑

i=−l

βi

(
A′(xn+i)

> 1

h

k∑
j=−k

δjxn+i+j (2.1)

− 1

h

k∑
j=−k

δjA(xn+i+j)−∇U(xn+i)
)
.

As an approximation to the first derivative we consider the optimal order
finite difference formulas with coefficients δj (j = −k, . . . , k) so that we have
a derivative approximation of order 2k:

1

h

k∑
j=−k

δjx(tn + jh) = ẋ(tn) +O(h2k). (2.2)

The multistep method (2.1) uses the difference formula also for approximations
of the velocity:

vn =
1

h

k∑
j=−k

δj xn+j . (2.3)

The vn are computed a posteriori and do not enter the propagation of the
numerical solution.

With the multistep formula we associate the generating polynomials

ρ(ζ) = ζk+l+1
k+l+1∑

i=−k−l−1

αiζ
i, σ(ζ) = ζk+l+1

l∑
i=−l

βiζ
i. (2.4)

Remark 2.1 Formula (2.1) is based on the linear multistep method

k+l+1∑
i=−k−l−1

αi xn+i = h2
l∑

i=−l

βi Fn+i (2.5)

for second order differential equations, where Fn is a non standard approxi-
mation of the right-hand side of (1.2). Usually, the degree of the polynomial
σ(ζ) is at most one less than that of ρ(ζ). Here it is typically much smaller.
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The order of method (2.1) is obtained by substituting the exact solution x(tn)
for xn, and by examining the defect. The error in the defect due to the finite
difference approximation is O(h2k+2). Therefore, the classical order of (2.5) is
at most 2k. For the limit h→ 0, the method (2.1) tends to a difference equa-
tion with characteristic polynomial ρ(ζ). Zero-stability for (2.1) is therefore
the same as that for (2.5).

2.2 Order barrier

The particularity of this multistep formula is that there are much fewer coef-
ficients βi available than αi. An extension of the first Dahlquist barrier (see
[3] and [8, Section III.10]) to this situation yields the following result.

Proposition 2.1 The order p of a stable symmetric linear multistep formula
with generating polynomials ρ(ζ) and σ(ζ) of (2.4) is bounded as

p ≤ 2l + 2.

We remark that for order p = 2k, we thus need l ≥ k − 1.

Proof Following the lines of the original proof in [3] we consider the involution
ζ = (z + 1)/(z − 1) and the transformed polynomials

R(z) =
(z − 1

2

)2k+2l+2

ρ(ζ) =

2k+2l+2∑
j=0

ajz
j ,

S(z) =
(z − 1

2

)2k+2l+2

σ(ζ) =

2k+2l+2∑
j=0

bjz
j .

Zero-stability and consistency of the multistep formula imply a2k+2l+2 =
a2k+2l+1 = 0, a2k+2l 6= 0, and that all coefficients aj have the same sign.
In terms of the polynomials R(z) and S(z), order p of the multistep formula
is expressed as

R(z)

log2
(
z+1
z−1
) − S(z) = C

(2

z

)p−2k−2l−2
+O

((2

z

)p−2k−2l−1)
for z →∞.

Since the values ζ = 0 and ζ = ∞ are mapped to z = −1 and z = +1,
respectively, the special form of the polynomial σ(ζ) implies that

S(z) = (z + 1)k+1(z − 1)k+1s(z),

where s(z) is a polynomial of degree 2l. We consider the Laurent series of

R(z)/(z2 − 1)k about z =∞ and we denote a finite part by R̃(z):

R(z)

(z2 − 1)k
=
∑
j≤2l

ãj z
j , R̃(z) =

2l∑
j=−2

ãj z
j .
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Note that ã2l = a2k+2l 6= 0. It follows from the positivity of the coefficients of
the Neumann series for 1/(1 − z−2) that besides the coefficients of R(z) also

those of R̃(z) have all the same sign.
Dividing the order relation by (z2 − 1)k yields

R̃(z)

log2
(
z+1
z−1
) − (z2 − 1)s(z) = O

((2

z

)p−2l−2)
for z →∞.

We also expand

1

log2
(
z+1
z−1
) =

z2

4
− 1

6
− 3

180z2
+ . . . =

z2

4
−
∑
m≥0

µm z
−m.

and we note that, from Cauchy’s formula, we have µm ≥ 0 for all m ≥ 0.
Let us now assume, by contradiction, that p > 2l + 2. The principal part

of the order relation gives (with µ−1 = 0)

R̃(z)
(z2

4
−

2l∑
m=0

µmz
−m
)

+

2l+2∑
j=1

( 2l∑
m=j−2

µmãm−j

)
z−j − (z2 − 1)s(z) = 0.

Putting z = 1 yields

R̃(1)
(1

4
−

2l∑
m=0

µm

)
+

2l+2∑
j=1

( 2l∑
m=j−2

µmãm−j

)
= 0.

This gives a contradiction, because R̃(1) 6= 0 and the double sum have the

same sign, and 1
4 −

∑2l
m=0 µm > 0. ut

3 Almost-conservation of energy and momentum by symmetric
multistep methods

In this section we state our main results, whose proofs will be given in the
final two sections of the paper. The following root condition will be essential
for the favourable long-time behaviour of methods (2.1).

Definition 3.1 [5] A symmetric multistep method (2.1) with generating poly-
nomials (2.4) is s-stable if, apart from the double root at 1, all zeros of ρ(ζ)
are simple and of modulus one (the letter “s” stands for “simple roots”).

The differential equation is equipped with initial values x(0) = x0 and
v(0) = v0. To start the multistep method, starting values x0, x1, . . . , x2(k+l)+1

need to be given. We assume that their errors are O(hp+2), as they are when
they are computed with a (p+ 1)-th order one-step method:

xj − x(jh) = O(hp+2) for j = 0, 1, . . . , 2(k + l) + 1. (3.1)
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Further we assume that the numerical solution values xn stay in a fixed com-
pact subset of the domain on which the vector potential A(x) and the scalar po-
tential U(x) are smooth, and that the velocity approximations vn are bounded
by a constant. In view of Theorem 3.1 below, this is for example satisfied if the
level sets {x : U(x) ≤ µ} are compact and if A and U are smooth on all R3.
In the following, the above assumptions are made without further mention.

Theorem 3.1 (Energy conservation) Along numerical solutions obtained
by the s-stable symmetric multistep method of order p, the total energy E(x, v) =
1
2 |v|

2 + U(x) is conserved up to O(hp) over times O(h−p−2):

E(xn, vn) = E(x0, v0) +O(hp) for nh ≤ h−p−2.

The constant symbolized by O is independent of n, h with nh ≤ h−p−2.

If the scalar and vector potentials have the invariance properties

U(eτSx) = U(x) and e−τSA(eτSx) = A(x) for all real τ (3.2)

with a skew-symmetric matrix S, then the Lagrange function L(x, v) = 1
2 |v|

2+
A(x)>v−U(x) has the invariance L(eτSx, eτSv) = L(x, v), and hence Noether’s
theorem implies that the momentum

M(x, v) =
(
v +A(x)

)>
Sx (3.3)

is conserved along solutions of the differential equation (1.2).

Theorem 3.2 (Momentum conservation) Suppose that the system has the
invariance (3.2). Along numerical solutions obtained by the s-stable symmetric
multistep method of order p, the momentum M(x, v) = (v+A(x))TSx is then
conserved up to O(hp) over times O(h−p−2):

M(xn, vn) = M(x0, v0) +O(hp) for nh ≤ h−p−2.

The constant symbolized by O is independent of n, h with nh ≤ h−p−2.

4 Construction of higher order methods and implementation

The construction of symmetric linear multistep methods, suitable for solving
charged-particle dynamics, can be done along the following lines:

• We fix k ≥ 1 and we choose (δj)
k
j=−k to get an order 2k approximation

(2.2) of the first derivative. The coefficients are:

k = 1 :
1

2
(−1, 0, 1)

k = 2 :
1

12
(1,−8, 0, 8,−1)

(4.1)

and for general k

δj =
(−1)j−1

j

k!2

(k − j)!(k + j)!
, j = 1, . . . , k,

δ0 = 0, and δj = −δ−j for negative j.



8 E. Hairer, Ch. Lubich

• We set l = k− 1, we arbitrarily choose distinct aj ∈ (−1, 1), and we define

ρ(ζ) = (ζ − 1)2
k+l∏
j=1

(ζ2 + 2ajζ + 1).

• We determine the coefficients (βj)
l
j=−l of σ(ζ) to get order 2k = 2l + 2.

This procedure gives a method of order p = 2k. There is still a freedom in
choosing the coefficients aj . They can be chosen to make the error constant
small and to keep the zeros of ρ(ζ) well separated.

For the computation of σ(ζ) we note that σ(ζ) = ζk+1 σ̂(ζ), where σ̂(ζ)
is a polynomial of degree 2l. The order relation for order p = 2k = 2l + 2,
divided by ζk+1, thus yields (see [8, Theorem III.10.3])

ρ(ζ)

ζk+1 log2 ζ
= σ̂(ζ) + Cp+2(ζ − 1)2l+2 +O

(
(ζ − 1)2l+3

)
for ζ → 1.

Expanding the left-hand side into a Taylor series around ζ = 1 gives the poly-
nomial σ̂(ζ), and at the same time the coefficient Cp+2 for the error constant
C = Cp+2/σ(1) = 2Cp+2/ρ

′′(1).

Method of order 4. With k = 2 and l = 1 we obtain a method of order 4. Its
σ-polynomial is given by σ(ζ) = β0ζ

4 + β1(ζ5 + ζ3) with

β0 =
1

3

(
20a1a2a3 − 4(a1a2 + a1a3 + a2a3)− 28(a1 + a2 + a3)− 52

)
β1 =

1

3

(
2a1a2a3 + 14(a1a2 + a1a3 + a2a3) + 26(a1 + a2 + a3) + 38

)
and its error constant is

C =
−a1a2a3 + 9(a1a2 + a1a3 + a2a3) + 79(a1 + a2 + a3) + 209

240(1 + a1)(1 + a2)(1 + a3)
.

By the order barrier of Proposition 2.1 the error constant cannot vanish.
Since C is monotonically decreasing in each variable ai ∈ (−1, 1), the error
constant is minimal in the limit a1 = a2 = a3 = 1. To achieve good stability,
all roots of ρ(ζ) should be well separated. We therefore suggest to take the
values

a1 = −0.7, a2 = 0.1, a3 = 0.9 (4.2)

for a method of order 4.
The implementation of the symmetric multistep methods must be done

carefully. A straightforward implementation of the formula (2.1) gives non-
satisfactory behaviour caused by round-off errors. It is recommended to intro-
duce variables vj and aj according to

xj+1 = xj + hvj , vj+1 = vj + haj ,

and to write the left-hand sum in (2.1) in terms of the variables aj . The sum∑k
j=−k δjxn+j can be written in terms of vj .
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Fig. 5.1 Error in the energy as a function of time for two different time stepsizes.

5 Numerical experiments

A common test problem is the 2D dynamics of a charged particle in a static
electromagnetic field, where the potential U(x) and the field B(x) are given
by

U(x) =
1

100
√
x21 + x22

, B(x) =
(

0, 0,
√
x21 + x22

)>
. (5.1)

We have B(x) = ∇×A(x) with

A(x) =
1

3

(
−x2

√
x21 + x22 , x1

√
x21 + x22 , 0

)>
.

As initial values we take

x(0) =
(
0.0, 1.0, 0.1

)>
, v(0) =

(
0.09, 0.05, 0.20

)>
. (5.2)

To this problem we apply the symmetric multistep method of order 4 con-
structed in Section 4. To illustrate that the error in the energy is bounded by
O(h4) we plot in Figure 5.1 the error, scaled by h4, for two different stepsizes
h = 0.1 and h = 0.05. The computation is done over the long time interval
[0, 106] and no drift in the energy can be observed.

Besides the energy we also consider the momentum

M(x, v) =
(
v1 +A1(x)

)
x2 −

(
v2 +A2(x)

)
x1.

Its error is plotted in Figure 5.2. Again we observe a O(h4) behaviour and an
excellent long-time conservation of the numerical momentum.
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Fig. 5.2 Error in the momentum as a function of time for two different time stepsizes.

6 Backward error analysis for smooth numerical solutions

Throughout this section we consider linear multistep methods (2.1) of order
p = 2k. We extend Section 3 of [5] to the problem of this paper and study the
exceptional case of numerical solutions (xn) for which

xn = y(nh) +O(hN ) for a smooth function y(t), (6.1)

where N � p and smoothness is understood to mean that all derivatives of
y(t) are bounded independently of h. (Strictly speaking, this refers to fami-
lies of functions y(t) parametrized by h.) The situation (6.1) is met only for
very special starting values, whereas general numerical solutions contain os-
cillatory terms which correspond to powers of the roots of ρ(ζ) other than 1.
Nevertheless, the idealized situation of no parasitic terms gives already much
insight into the conservation properties of the method, in a technically simpler
framework than the general case.

6.1 Modified differential equation

The following result is proved in the same way as Theorem 4 of [5].

Proposition 6.1 There exist unique h-independent functions fj(x, v) such
that, for every truncation index N , every solution of

ÿ = ẏ ×B(y)−∇U(y) + hpfp(y, ẏ) + . . .+ hN−1fN−1(y, ẏ) (6.2)
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satisfies

k+l+1∑
i=−k−l−1

αiy(t+ ih) =

l∑
i=−l

βi

(
hA′

(
y(t+ ih)

)T k∑
j=−k

δjy(t+ (i+ j)h)

− h
k∑

j=−k

δjA
(
y(t+ (i+ j)h)

)
− h2∇U

(
y(t+ ih)

))
+O(hN+2).

(6.3)

Moreover, fj(x, v) = 0 for all odd j.

With the standard convergence theory of linear multistep methods [8], this
implies that (6.1) holds on intervals of length O(1) if it is satisfied for the
starting values.

6.2 Modified energy

We now show that the modified differential equation (6.2) has a formal first
integral close to the total energy E(x, v).

Proposition 6.2 There exists a formal modified energy

Eh(x, v) = E(x, v) + hpEp(x, v) + hp+2Ep+2(x, v) + . . . (6.4)

such that its truncation at the O(hN ) term satisfies

d

dt
Eh(y(t), ẏ(t)) = O(hN ) (6.5)

along solutions of the modified differential equation (6.2).

We remark that Propositions 6.1 and 6.2 imply, for smooth numerical so-
lutions (6.1) and their pth order velocity approximations (2.3),

E(xn, vn) = E(x0, v0) +O(hp) +O(thN ).

Proof The proof extends the proof of Proposition 1 in [5]. With D = d/dt

and the shift operator ehD, with δ(ζ) =
∑k
j=−k δjζ

j , and with the expansion

ρ(ex)/(x2σ(ex)) = (1 + γpx
p + γp+2x

p+2 + . . . ), we write equation (6.3) as

(1 + γph
pDp + γp+2h

p+2Dp+2 + . . . ) ÿ =

A′(y)>h−1δ(ehD)y − h−1δ(ehD)A(y)−∇U(y) +O(hN ), (6.6)

where the left-hand side contains only even-order derivatives of y by the sym-
metry of the method. We multiply both sides of (6.6) with ẏ>, so that on the
right-hand side we have

ẏ>h−1
(
A′(y)>δ(ehD)y − δ(ehD)A(y)

)
− d

dt
U(y) +O(hN ). (6.7)
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The left-hand side is the time derivative of an expression in which the appear-
ing second and higher derivatives of y can be substituted as functions of (y, ẏ)
via the modified differential equation (6.2). So far, this is the argument in [5].

It remains to show that the first term of (6.7) can also be written as the
time derivative of a function of (y, ẏ), up to O(hN ). We note that for the
Euclidean inner product 〈·, ·〉 we have

〈ẏ, A′(y)>δ(ehD)y〉 = 〈A′(y)ẏ, δ(ehD)y〉 = 〈DA(y), δ(ehD)y〉, (6.8)

which removes the transpose in (6.7). For a function f that is analytic at 0,
partial integration shows that for time-dependent smooth functions u and v,

〈f(hD)u, v〉 − 〈u, f(−hD)v〉 is a total derivative

up to O(hN ) for arbitrary N

of a function that depends on u, v and their higher time derivatives. With
f(z) = z−1δ(ez), u = DA(y), and v = Dy this yields that

〈δ(ehD)A(y), Dy〉 − 〈DA(y), δ(ehD)y〉

is a total derivative up to an O(hN ) error (using the skew-symmetry of the
coefficients δj , so that f(−z) = f(z)). Together with (6.8) this shows that the
first term of (6.7) is a total derivative (up to O(hN )) of a function of y, ẏ and
of higher derivatives of y that can be substituted as functions of (y, ẏ) via the
modified differential equation (6.2). Moreover, this function is of size O(hp),
because h−1δ(ehD)y = ẏ +O(hp).

Collecting the terms that appear when (6.6) is scalarly multiplied with ẏ,
we thus obtain (6.5) with a function of the form (6.4). ut
Remark 6.1 For the Boris method, one obtains instead

d

dt
Eh(y(t), ẏ(t)) = h2ẏ(t)>

(...
y (t)×B

(
y(t)

))
+ . . . , (6.9)

where the term on the right-hand side is generally not a time derivative of a
function of (y, ẏ).

6.3 Modified momentum

We further obtain that the modified differential equation (6.2) has a formal
first integral close to the momentum M(x, v) of (3.3). Note that in general
this is not a quadratic first integral.

Proposition 6.3 Under the invariance condition (3.2), there exists a formal
modified momentum

Mh(x, v) = M(x, v) + hpMp(x, v) + hp+2Mp+2(x, v) + . . . (6.10)

such that its truncation at the O(hN ) term satisfies

d

dt
Mh(y(t), ẏ(t)) = O(hN ) (6.11)

along solutions of the modified differential equation (6.2).
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Proof The proof is analogous to the previous proof when (6.6) is multiplied
with (Sy)> instead of ẏ>, using that y>S∇U(y) = 0 and A′(y)Sy = SA(y)
by (3.2). ut

7 Long-term analysis of parasitic solution components

We now consider general numerical solutions obtained by the symmetric mul-
tistep method. We adapt the programme of [5] and [2] (following more closely
the simplified version of [2]) to derive the modified equations for the principal
and the parasitic solution components and to use their structure to derive
long-term bounds for the parasitic solution components. In the proofs we con-
centrate on the aspects related to the magnetic field, which is not present
in [5] and [2]. With the bounds for the parasitic components, the almost-
conservation of energy and momentum over long times can then be concluded
from Propositions 6.2 and 6.3.

7.1 Principal and parasitic modified equations

Let ζ0 = 1 be the double root of the characteristic polynomial ρ(ζ) and
ζ±1, . . . , ζ±(k+l) the simple roots on the unit circle, ordered such that ζ−i = ζi.
We denote by I the set of integers i with 0 < |i| ≤ k + l. The following result
is proved in the same way as Theorem 5 in [5] and Proposition 4 in [2].

Proposition 7.1 (Modified equations) Consider an s-stable symmetric
linear multistep method (2.1) of order p. Then, there exist h-independent
matrix-valued functions Fi,j(y, v), such that for every truncation index M and
for every solution of the combined system (6.2) and

żi =
(
hFi,1(y, ẏ) + · · ·+ hM−1Fi,M−1(y, ẏ)

)
zi, i ∈ I, (7.1)

with initial values satisfying z−i(0) = zi(0), the following holds: as long as
‖zi(t)‖ ≤ ϑ for all i ∈ I (with sufficiently small ϑ), the function1

x̂(t) = y(t) +
∑
i∈I

ζ
t/h
i zi(t) (7.2)

satisfies

k+l+1∑
i=−k−l−1

αix̂(t+ ih) = h2
l∑

i=−l

βi

(
A′
(
x̂(t+ ih)

)> 1

h

k∑
j=−k

δj x̂(t+ (i+ j)h)

− 1

h

k∑
j=−k

δjA
(
x̂(t+ (i+ j)h)

)
−∇U

(
x̂(t+ ih)

))
+ O(hN+2 + hM+1ϑ+ hϑ2).

1 The analogous expression in [5] has a sum over an index set that includes also finite
products of ζi. This is not necessary for the investigations of the present work. We here
follow the simplified approach of [2].
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We do not include the proof, which is very similar to that of the corre-
sponding results in [2,5], but we note for later use that the functions y and zi
satisfy the modulation equations

h−2
ρ

σ
(ehD)y =A′(y)>h−1δ(ehD)y − h−1δ(ehD)A(y)−∇U(y) +O(hN )

(7.3)

h−1
ρ

σ
(ζie

hD)zi =
d

dε

∣∣∣
ε=0

A′(y + εzi)
>δ(ehD)y+ (7.4)

+A′(y)>δ(ζie
hD)zi − δ(ζiehD)

(
A′(y)zi

)
− h∇2U(y)zi +O(hMϑ), i ∈ I.

As in Lemma 1 of [5] we obtain the following.

Lemma 7.1 (Initial values) Consider an s-stable symmetric multistep method
(2.1). To every set of starting values x0, . . . , x2(k+l)+1 satisfying xj − x(jh) =
O(hs) (j = 0, . . . , 2(k + l) + 1) with 1 ≤ s ≤ p+ 2 there exist (locally) unique
initial values y(0), hẏ(0), zi(0) (i ∈ I) for the system (6.2) and (7.1) such
that its solution exactly satisfies

xj = y(jh) +
∑
i∈I

ζji zi(jh) for j = 0, . . . , 2(k + l) + 1. (7.5)

These initial values satisfy z−i(0) = zi(0) and

y(0)− x(0) = O(hs), hẏ(0)− hẋ(0) = O(hs), zi(0) = O(hs). (7.6)

With initial values and functions y(t), zi(t) as in Lemma 7.1 the numerical
solution after one step satisfies, for j = 2(k + l) + 2,

xj = y(jh) +
∑
i∈I

ζji zi(jh) +O(hN+2 + hM+1ϑ+ hϑ2). (7.7)

This is an immediate consequence of Proposition 7.1.

7.2 Bounds on parasitic solution components

We set out to prove that the parasitic solution components zi(t) remain
bounded and small on long time intervals.

Proposition 7.2 (Almost-invariants) Under the assumptions of Proposi-
tion 7.1, there exist h-independent matrix-valued functions Ei,l(y, v) such that
for every truncation index M and for every solution of the combined system
(6.2) and (7.1) the functions

Ki(y, v, zi) = ‖zi‖2 + z>i

(
h2Ei,2(y, v) + . . .+ hM−1Ei,M−1(y, v)

)
zi

for i ∈ I are almost-invariants; more precisely, we have

Ki

(
y(t), ẏ(t), zi(t)

)
= Ki

(
y(0), ẏ(0), zi(0)

)
+O(thMϑ2), i ∈ I

as long as (y(t), ẏ(t)) stays in a compact set and ‖zi(t)‖ ≤ ϑ for i ∈ I.
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Proof We multiply (7.4) with z∗i = z̄>i and take the imaginary part. We first
consider the terms on the right-hand side. Since the Hessian ∇2U(y) is real
symmetric, z∗i∇2U(y)zi is real, so that its imaginary part vanishes.

With w = h−1δ(ehD)y and Vw(y) = −A(y)>w, we have

d

dε

∣∣∣
ε=0

A′(y + εzi)
>δ(ehD)y = −h∇2Vw(y)zi

so that also

Im z∗i
d

dε

∣∣∣
ε=0

A′(y + εzi)
>δ(ehD)y = 0.

Next we show that Im z∗iA
′(y)>δ(ζie

hD)zi − Im z∗i δ(ζie
hD)
(
A′(y)zi

)
is a total

derivative (up to O(hL) for arbitrary L). We expand

δ(ζie
−ix) = i

∞∑
j=0

ci,jx
j

with real coefficients ci,j , because by the anti-symmetry of the coefficients δj
and |ζi| = 1 we have δ(ζie

−ix) = −δ(ζieix) = −δ(ζie−ix). We then have

Im z∗i δ(ζie
hD)
(
A′(y)zi

)
= Im z∗i i

∞∑
j=0

ci,j(ihD)j
(
A′(y)zi

)
,

which (by partial integration) differs from

Im i

∞∑
j=0

ci,j
(
(−ihD)jz∗i

)
A′(y)zi = Im z∗iA

′(y)>i

∞∑
j=0

ci,j(ihD)jzi

= Im z∗iA
′(y)>δ(ζie

hD)zi.

only by a total derivative of a linear combination of inner products of zi and
A′(y)zi and their derivatives. Moreover, the term for j = 0 cancels.

Concerning the left-hand side, in the proof of Proposition 7 in [2] it is shown
by a similar argument that Im z∗i h

−1 ρ
σ (ζie

hD)zi can be written as the total
derivative of a sum of a constant nonzero multiple of ‖zi‖2 and of a quadratic
function of zi and its derivatives multiplied with a positive power of h.

Expressing the higher derivatives of y and zi as function of (y, ẏ) and zi via
the modified differential equations (6.2) and (7.1), we thus obtain functions
Ki of the stated form such that d

dtKi(y(t), ẏ(t), zi(t)) = O(hMϑ2). ut

We collect the assumptions that are required for proving the boundedness
of the parasitic solution components.

(A1) The multistep method (2.1) is symmetric and of order p = 2k. All roots
of ρ(ζ), with the exception of the double root ζ0 = 1, are simple and of
modulus one.

(A2) The scalar potential U and the vector potential A are defined and smooth
in an open neighbourhood of a compact set K.



16 E. Hairer, Ch. Lubich

(A3) The starting approximations x0, . . . , x2(k+l)+1 are such that the initial
values for the system (6.2), (7.1) obtained from Lemma 7.1 satisfy

y(0) ∈ K, ‖ẏ(0)‖ ≤M,

‖zi(0)‖ ≤ ϑ/2, i ∈ I.

(A4) The numerical solution {xn}, for 0 ≤ nh ≤ T , stays in a compact set K0

that has a positive distance to the boundary of K.

From Proposition 7.2 we then obtain the following result with the same
proof as for Theorem 3 in [2].

Theorem 7.1 (Long-time bounds for the parasitic components) As-
sume (A1)–(A4). For sufficiently small h and ϑ and for fixed truncation indices
N and M that are large enough such that hN = O(ϑ2) and hM−1 = O(ϑ),
there exist functions y(t) and zi(t) for i ∈ I on an interval of length

T = O(ϑ−1)

such that

• xn = y(nh) +
∑
i∈I

ζni zi(nh) for 0 ≤ nh ≤ T ;

• on every subinterval [nh, (n + 1)h) the functions y(t) and zi(t) for i ∈ I
are a solution of the system (6.2), (7.1);
• the functions y(t), hẏ(t) and zi(t) for i ∈ I have jump discontinuities of

size O(hϑ2) at the grid points nh;
• for 0 ≤ t ≤ T , the parasitic components are bounded by

‖zi(t)‖ ≤ ϑ, i ∈ I.

Proof The proof is a simplified variant of the proof of Theorem 3 in [2]. To
define the functions y(t) and zi(t) on the interval [nh, (n + 1)h) we consider
the consecutive numerical solution values xn, xn+1, . . ., xn+k−1. We compute
initial values for the system (6.2), (7.1) according to Proposition 7.1, and we
let y(t), zi(t) be its solution on [nh, (n+1)h). By (7.7) this construction yields
jump discontinuities in y(t), hẏ(t) and zi(t) of size O(hϑ2) at the grid points.

It follows from Proposition 7.2 that the functions Ki(y(t), ẏ(t), zi(t)) re-
main constant up to an error of size O(hM+1ϑ2) on the interval [nh, (n+1)h).
The jump discontinuity in zi(t) of size O(hϑ2) at the grid points induces a
jump discontinuity of size O(hϑ3) in Ki(y(t), ẏ(t), zi(t)). Adding the error
terms O(hM+1ϑ2) and O(hϑ3) over n subintervals, we find that with t = nh

Ki(y(t), ẏ(t), zi(t)) ≤ Ki(y(0), ẏ(0), zi(0)) + C1th
Mϑ2 + C2tϑ

3

as long as ‖zi(t)‖ ≤ ϑ for i ∈ I. Noting that there is a factor h2 in the terms
of Ki(y, v, zi) that depend on (y, v), this implies together with Proposition 7.2

‖zi(t)‖2 ≤ ‖zi(0)‖2 + C1th
Mϑ2 + C2tϑ

3 + C3h
2ϑ2.
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The assumption ‖zi(t)‖ ≤ ϑ for i ∈ I is certainly satisfied as long as C1th
M +

C2tϑ ≤ 1/4 and C3h
2 ≤ 1/4, so that the right-hand side of the above estimates

is bounded by ϑ2. This proves the estimate for ‖zi(t)‖ for t = O(ϑ−1), and
at the same time it guarantees recursively that the above construction of the
functions y(t) and zi(t) is feasible over such times. ut

7.3 Proof of the main results

Theorems 3.1 and 3.2 follow from Theorem 7.1 and Propositions 6.2 and 6.3
on using the short argument of Section 7.4 of [2], which we include for the
convenience of the reader.

For the piecewise smooth function y(t) of Theorem 7.1 we have

Eh(y(t), ẏ(t)) = Eh(y(0), ẏ(0)) +O(thN ) +O(th−1ϑ2),

where the first error term results from Proposition 6.2 and the second error
term results from the discontinuity at the grid points, which is of size O(ϑ2) for
the derivative ẏ(t) by Theorem 7.1. Since we have n crossings of discontinuities
until t = nh, this error accumulates to O(nϑ2) = O(th−1ϑ2). By the bounds
for the parasitic components zi we have

xn = y(nh) +O(ϑ) and vn = ẏ(nh) +O(h−1ϑ+ hp)

because the differentiation formula is of order p. We therefore obtain

Eh(xn, vn) = Eh(x0, v0) +O(thN ) +O(th−1ϑ2) +O(h−1ϑ+ hp).

If the errors in the starting values are O(hp+2), then assumption (A3) is sat-
isfied with ϑ = O(hp+2) by Lemma 7.1, and hence T = O(h−p−2) in Theo-
rem 7.1. Finally, Theorem 3.1 now follows by using the O(hp) estimate between
the modified energy Eh and the original energy E as given by Proposition 6.2.

Theorem 3.2 is obtained in the same way using Proposition 6.3.
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