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PDE-CONVERGENCE IN EUCLIDEAN NORM OF AMF-W METHODS FOR

MULTIDIMENSIONAL LINEAR PARABOLIC PROBLEMS ∗, ∗∗

Severiano González-Pinto1, Ernst Hairer2 and Domingo Hernández-Abreu1

Abstract. This work considers space-discretised parabolic problems on a rectangular domain subject
to Dirichlet boundary conditions. For the time integration s-stage AMF-W-methods, which are ADI
(alternating direction implicit) type integrators, are considered. They are particularly efficient when
the space dimension m of the problem is large. Optimal results on PDE-convergence have recently
been obtained in [J. Comput. Appl. Math., 417:114642, 2023] for the case m = 2. The aim of the
present work is to extend these results to arbitrary space dimension m ≥ 3. It is explained which order
statements carry over from the case m = 2 to m ≥ 3, and which do not.

Résumé. Ce travail considère des problèmes paraboliques discrétisés en espace sur un domaine rect-
angulaire soumis à conditions aux limites de Dirichlet. Pour l’intégration temporelle, on considère les
méthodes AMF-W à s étages qui sont des intégrateurs de type ADI (implicites dans des directions al-
ternantes). Ces méthodes sont particulièrement efficaces lorsque la dimension spatiale m du problème
est grande. Des résultats optimaux sur la convergence indépendamment de la résolution spatiale ont
récemment été obtenus dans [J. Calcul. Appl. Math., 417:114642, 2023] pour le cas m = 2. L’objectif
du présent travail est d’étendre ces résultats à la dimension arbitraire m ≥ 3. Nous expliquons quels
résultats sur l’ordre de convergence persistent ou non en dimension m ≥ 3 en comparaison avec la
dimension m = 2.
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1. Introduction

This article is concerned with the time integration of linear diffusion problems

∂tu(t, ~x) =

m∑
j=1

dj ∂
2
xjxj

u(t, ~x) + c(t, ~x), t ≥ 0, (1)
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for ~x = (x1, . . . , xm)> ∈ [0, 1]m, with constants dj > 0, 1 ≤ j ≤ m, and Dirichlet boundary conditions. An
arbitrarily large space dimension m is admitted, and time-dependent boundary conditions are considered. The
inhomogeneity c(t, ~x) is assumed to be sufficiently smooth. A standard second order central finite difference
discretisation on a uniform grid

x
(i)
j = i ·∆xj , 0 ≤ i ≤ Nj + 1, 1 ≤ j ≤ m, (2)

with ∆xj = 1/(Nj + 1), yields the ordinary differential equation

U̇ = DU + g(t), D = D1 + · · ·+Dm, (3)

where Dj = dj (INm
⊗ · · · ⊗ Dxjxj

⊗ · · · ⊗ IN1
). Here, the differentiation matrices Dxjxj

are the tridiagonal

Toeplitz matrices tridiag(1,−2, 1)/∆x2j of dimension Nj , respectively, and ⊗ stands for the Kronecker product
of matrices. Note that the dimension of the system (3) is N := N1 · · ·Nm. Here, U(t) = (Ui1,...,im(t))i1,...,im ,

where Ui1,...,im(t) ≈ u(t, x
(i1)
1 , . . . , x

(im)
m ) approximates the solution of (1) on the grid (2). The vector g(t) =

(gi1,...,im(t))i1,...,im contains contributions from the inhomogeneity and from non homogeneous boundary con-
ditions.

The numerical integration of the differential equation (3) typically requires the approximate solution of a
large linear system with matrix (I − τθD). An interesting approach is to replace this matrix by the product
(I − τθD1) · · · (I − τθDm), so that only the solution of linear systems with tridiagonal matrices is needed.
This idea goes back to the pioneering work by Douglas [2] and Douglas & Rachford [3]; see also the excellent
review by van der Houwen & Sommeijer [13]. For such integrators PDE-convergence in the weighted euclidean
norm up to order two has been addressed for 2D problems in [9] for the Peaceman–Rachford method, in [1]
for a modified Douglas splitting and in [11] for problems with mixed derivatives. PDE-convergence for 1-stage
AMF-W methods is considered in [4] for arbitrary space dimension m. Recently, PDE-convergence of s-stage
AMF-W methods (with arbitrary s ≥ 1) is treated in [5] for PDE problems (1) with m = 2.

Outline of the paper. The aim of the present work is to investigate which convergence results of [5] are valid
in arbitrary space dimension m ≥ 3, and which are valid only for m = 2. Section 2 introduces the class of
AMF-W methods (AMF-W stands for “approximate matrix factorization with inexact Jacobian”) and presents
assumptions on the stability function that are essential for the study of PDE-convergence. The main convergence
results – up to order 3.25 for time-independent boundary conditions and up to order 2 for time-dependent
boundary conditions – are given in Section 3. Section 4 presents criteria on the method coefficients that imply
the stability assumptions of the convergence theorems, and Section 5 gives a numerical confirmation of the
results.

The proofs for convergence are based on three techniques: Lady Windermere’s Fan, use of partial summation,
and use of Fourier analysis. They are explained in Section 6 with technical details postponed to Section 9. The
proofs for the main results are in Section 7 for the case of time-independent boundary conditions, and in
Section 8 for time-dependent boundary conditions. Parts that extend straight-forwardly from the proofs of [5]
are kept to a minimum, and parts that do not carry over from m = 2 to higher space dimension are emphasised.

2. AMF-W methods and their stability function

ADI-type time integrators are based on a splitting (3) of the discretised differential operator. For an appli-
cation of the method also the inhomogeneity in (3) has to be split,

g(t) = g1(t) + · · ·+ gm(t). (4)

It is natural to do this in such a way that, in the case of inhomogeneous Dirichlet boundary conditions, gj(t)
contains the contribution of the discretisation of dj∂

2
xjxj

u, 1 ≤ j ≤ m. The contribution of the inhomogeneity

c(t, ~x) is included in g1(t).
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For the numerical solution of (3) we consider so-called AMF-W methods [5]. They are one-step methods,
which permit to compute, for a given numerical approximation Un ≈ U(tn) at time tn, the approximation
Un+1 ≈ U(tn+1) at time tn+1 = tn + τ as follows

K
(0)
i = τD

(
Un +

i−1∑
j=1

aijKj

)
+ τ g(tn + ciτ) +

i−1∑
j=1

`ijKj ,

(I − θτDk)K
(k)
i = K

(k−1)
i + θρiτ

2ġk(tn + ητ), k = 1, 2, . . . ,m,

Ki = K
(m)
i , i = 1, 2, . . . , s,

Un+1 = Un +

s∑
i=1

biKi.

(5)

The method is characterised by the coefficients (A,L, b, θ, η), where A = (ai,j)j<i and L = (`i,j)j<i are lower
triangular matrices, b = (bi)i is a vector of dimension s, and θ > 0, η ≥ 0 are two constants. The coefficients ρi
and ci are defined by ρi = 1 +

∑i−1
j=1 `ijρj and ci =

∑i−1
j=1 aijρj . In vector form they are

ρ = (I − L)−11 and c = Aρ, (6)

where 1 denotes the vector of dimension s with all entries equal to 1. We also use the notation cr = (cri )i.

Stability function. The propagation matrix of the one-step method is obtained by removing the inhomogeneities
gj(t), j = 1, . . . ,m, from the formulas (5). This yields

Un+1 = R(τD1, . . . , τDm)Un

where, using the Kronecker product notation,

R(τD1, . . . , τDm) = I + (b> ⊗ I)P (τD1, . . . , τDm)−1(1⊗ τD),

P (τD1, . . . , τDm) = I ⊗ π(τD1, . . . , τDm)−A⊗ τD − L⊗ I,

π(τD1, . . . , τDm) = (I − θτD1) · · · (I − θτDm).

(7)

Note that the matrices Dj commute pairwise. Substituting τDj by a scalar (real or complex) variable zj , we
obtain the so-called stability function

R(z1, . . . , zm) = 1 + b>P (z1, . . . , zm)−11 · (z1 + · · ·+ zm), where

P (z1, . . . , zm) = π(z1, . . . , zm)I − (z1 + · · ·+ zm)A− L, π(z1, . . . , zm) = (1− θz1) · · · (1− θzm).
(8)

Here, P (z1, . . . , zm) is a triangular matrix of dimension s. Since we consider only purely diffusion problems in
the present work, we assume zj to be real variables.

A necessary condition for unconditional convergence is that the stability function R(z1, . . . , zm) satisfies

−1 ≤ R(z1, . . . , zm) ≤ 1, for z1, . . . , zm ≤ 0. (9)

This property is usually called A0-stability of the method. To get optimal convergence orders we also consider
slightly stronger properties

−1 ≤ R(z1, . . . , zm) ≤ 1− C1
|z1 + . . .+ zm|
π(z1, . . . , zm)

, for z1, . . . , zm ≤ 0, (10)
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or

−1 ≤ R(z1, . . . , zm) ≤ 1− C1
|z1 + . . .+ zm|
π(z1, . . . , zm)2

, for z1, . . . , zm ≤ 0, (11)

where C1 > 0 is a positive constant1. Criteria for these stability requirements in terms of the coefficients of the
AMF-W method are given in Section 4.

Special case s = 1. The most simple integrator among the methods (5) is obtained for s = 1 and η = 0. It is
given by

K(0) = τDUn + τ g(tn),

(I − θτDk)K(k) = K(k−1) + θτ2ġk(tn), k = 1, 2, . . . ,m,

Un+1 = Un +K(m),

(12)

and it is related to the θ-method. This method is of order p = 1 for all values of the parameter θ ≥ 0. It is of
order p = 2 for θ = 1/2. The stability function of this method is

R(z1, . . . , zm) = 1 +
z1 + · · ·+ zm

(1− θz1) · · · (1− θzm)
.

For θ ≥ 1/2, it not only satisfies the A0-condition (9), but it also satisfies the condition (10), and consequently
also (11).

3. Main PDE-convergence results

For vectors U = (Ui1,...,im) and V = (Vi1,...,im) in RN (where ij = 1, . . . , Nj) we consider the weighted inner
product and the induced `2 norm

‖U‖ =
√
〈U,U〉, 〈U, V 〉 = ∆x1 · · ·∆xm

N1∑
i1=1

· · ·
Nm∑
im=1

Ui1,...,imVi1,...,im . (13)

We call a one-step method PDE-convergent of order p, if the global error satisfies

‖Un − U(tn)‖ ≤ Cτp for 0 ≤ tn = nτ ≤ T, (14)

where the constant C is independent of the space discretisation. In the following we also call a method PDE-
convergent of order p∗, if it is PDE-convergent of order p − ε for all fixed ε > 0. The constant C in (14) now
depends on ε and tends to infinity for ε→ 0.

We are interested in to which extent the classical order conditions are relevant for PDE-convergence. Using
the notation

Ã = A(I − L)−1, b̃> = b>(I − L)−1, Γ̃ = θ(I − L)−1 (15)

together with ρ and c from (6), we obtain the following classical order conditions (see [5] or [8, p. 114-117])

order p = 1 ⇐⇒ b̃>1 = 1.

order p = 2 ⇐⇒ b̃>1 = 1 and b̃>(Ã+ Γ̃)1 = 1/2.

order p = 3 ⇐⇒ b̃>1 = 1, b̃>Ã1 = 1/2, b̃>Γ̃ 1 = 0 and b̃>c2 = 1/3, b̃>(Ã+ Γ̃)21 = 1/6.

In the following convergence statements we assume that the time step size satisfies τ ≥ c0 max(∆x21, . . . ,∆x
2
m)

for some c0 > 0, which is a natural assumption when applying linearly implicit integration methods. This is
motivated by the fact that, if the product of the time step size τ with the Lipschitz constant of the vector field

1Throughout the paper, C,C0, C1, . . . will stand for positive constants independent of τ and ∆xj , 1 ≤ j ≤ m, which may take

different values at each appearance.



TITLE WILL BE SET BY THE PUBLISHER 5

(3) (which is proportional to the inverse of min(∆x21, . . . ,∆x
2
m)) is small or of moderate size, an explicit time

integrator would be more efficient.

Theorem 3.1 (time-independent boundary conditions). Consider the s-stage AMF-W method (5) applied to (3)
in space dimension m ≥ 2 with time-independent Dirichlet boundary conditions. Assume that

• the classical conditions for order p (p ≤ 3) hold,
• the stability condition (9) holds if p = 1 or p = 2, condition (11) holds if p = 3,

then the AMF-W method is PDE-convergent of order p.

The statement of this theorem does not hold for order p = 4, even in the case that the classical conditions
for order four are satisfied. However, we can improve the order by 0.25, if the following subset of 4th order
conditions are imposed:

b̃>(Ã+ Γ̃) Γ̃1 = 0,

b̃>(Ã+ Γ̃)31 = 1/24,

b̃>Γ̃ (Ã+ Γ̃)1 = 0,

b̃>(Ã+ Γ̃) c2 = 1/12,

b̃>c3 = 1/4.

(16)

Theorem 3.2 (time-independent boundary conditions). Consider the s-stage AMF-W method (5) applied to (3)
in space dimension m ≥ 2 with time-independent Dirichlet boundary conditions. Assume that

• the classical conditions for order p = 3 and the five order conditions (16) hold,
• the stability condition (11) holds,

then the AMF-W method is PDE-convergent of order p∗ = 3.25. Here, PDE-convergence of order p∗ means
PDE-convergence of order p− ε, for all fixed ε > 0.

For the general case of time-dependent Dirichlet boundary conditions, the derivatives ġj(t) typically contain
terms with negative powers of ∆xj , 1 ≤ j ≤ m, which lead to an order reduction. In Theorem 3.3 below, we
replace the assumption (11) by the slightly stronger assumption (10).

Theorem 3.3 (time-dependent boundary conditions). Consider the s-stage AMF-W method (5) applied to (3)
in space dimension m ≥ 2 with time-dependent Dirichlet boundary conditions. Assume that

• the classical conditions for order p (p ≤ 2) hold,
• the stability condition (9) holds if p = 1, condition (10) holds if p = 2,

then the AMF-W method is PDE-convergent of order p for p = 1, and of order p∗ for p = 2. Again, PDE-
convergence of order p∗ means PDE-convergence of order p− ε, for all fixed ε > 0.

The previous three theorems are an extension of Theorems 1, 3, and 6 of [5] from the case m = 2 to arbitrary
space dimension m ≥ 2. Note that the improvement from order p∗ = 2 to order p = 2 in the situation of
Theorem 3.3 extends to m ≥ 2 if the step size satisfies τ ≤ c1 min(∆x1, . . . ,∆xm) with some c1 > 0 (Remark 1
of [5]). If the condition (10) is relaxed to (11) in Theorem 3.3 the convergence order drops from p∗ = 2 to
p∗ = 1.5 (Remark 2 of [5]).

However, the statement of Theorem 5 of [5] (convergence of order p∗ = 2.25 for time-dependent boundary
conditions) does not carry over to space dimension m ≥ 3 (see Section 5 for a numerical confirmation).

4. Stability criteria for AMF-W methods

AMF-W methods are in general constructed in such a way that not only (9) holds, but that the stability
function satisfies |R(z1, . . . , zm)| ≤ 1 for zj in a complex neighbourhood of the negative real line. For methods
of order p ≥ 1 the maximum principle for analytic functions then implies

−1 ≤ R(z1, . . . , zm) < 1, for z1, . . . , zm ≤ 0, z1 + . . .+ zm < 0. (17)
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Additional assumptions are necessary for satisfying (10) or (11). To obtain criteria in terms of the coefficients
of an s-stage AMF-W method we write the stability function as

R(z1, . . . , zm) = 1 +
z1 + . . .+ zm
π(z1, . . . , zm)

b>(I −X)−11, X =
z1 + . . .+ zm
π(z1, . . . , zm)

A+
1

π(z1, . . . , zm)
L (18)

and we consider the real-valued function

q(X) =

s−1∑
k=0

b>Xk 1, (19)

defined for real s× s matrices X. Note that q(ζA) is a scalar polynomial of degree s− 1 of the real variable ζ.

Lemma 4.1. Consider an AMF-W method (5) with coefficients (A,L, b, θ, η) of classical order p ≥ 1, and
assume that the stability function R(z1, . . . , zm) satisfies (17). We then have:

(A1) if q(ζA) > 0 for ζ ∈ [−θ−1, 0], then the stability function satisfies (10);
(A2) if q(ζA) > 0 for ζ ∈ (−θ−1, 0], and q′(−θ−1A)(θ−1A + L) > 0 if q(−θ−1A) = 0, then the stability

function satisfies (11).

Proof. (A1) The left inequality of (10) is satisfied by (17). For the right inequality we have to prove that

G1(z1, . . . , zm) :=
(
R(z1, . . . , zm)− 1

)π(z1, . . . , zm)

z1 + . . .+ zm
= b>

(
I +X + . . .+Xs−1)1 = q(X)

satisfies G1(z1, . . . , zm) ≥ C1 > 0 for all z1, . . . , zm ≤ 0. At the origin we have X = L which implies

G1(0, . . . , 0) = b>(I − L)−11 = b̃>1 = 1, because p ≥ 1. In the limit zm → −∞ we obtain

G1(z1, . . . , zm−1,−∞) = b>
(
I + ζA+ . . .+ ζs−1As−1

)
1 = q(ζA), ζ =

1

(−θ)(1− θz1) · . . . · (1− θzm−1)
.

Since ζ ∈ [−θ−1, 0] for non positive zj , the assumption on the polynomial q(ζA) implies the existence of a
constant c > 0, such that G1(z1, . . . , zm−1,−∞) ≥ c. By symmetry, G1(z1, . . . , zm) ≥ c holds if at least
one element among z1, . . . , zm is equal to −∞. Therefore, there exists K > 0 (typically very large), such that
G1(z1, . . . , zm) > c/2 if at least one element among z1, . . . , zm satisfies zj ≤ −K. The positivity ofG1(z1, . . . , zm)
on the compact set [−K, 0]m proves the existence of a constant C1 > 0 such that G1(z1, . . . , zm) ≥ C1 for all
zj ≤ 0. This proves the inequality (10).

(A2) If q(ζA) vanishes for ζ = −θ−1 we see that G1(z1, . . . , zm) vanishes only if one argument is −∞ and all
other arguments are zero. We therefore consider the function

G2(z1, . . . , zm) :=
(
R(z1, . . . , zm)− 1

)π(z1, . . . , zm)2

z1 + . . .+ zm
= π(z1, . . . , zm) q(X),

which satisfies G2(z1, . . . , zm) ≥ G1(z1, . . . , zm) for all zj ≤ 0. We have to prove that G2(z1, . . . , zm) > 0
whenever G1(z1, . . . , zm) = 0. Without loss of generality we assume z1 = . . . = zm−1 = 0 and zm → −∞. Since
X = ζA+ z−1m ζ (θ−1A+ L) +O(z−2m ), and q(−θ−1A) = 0, we have by Taylor series expansion that

G2(0, . . . , 0, zm) = q′(−θ−1A)(θ−1A+ L) +O(z−1m ) for zm → −∞,

which, in the limit, is strictly positive by our assumption. Consequently, we conclude the existence of C1 > 0,
such that G2(z1, . . . , zm) ≥ C1 for all zj ≤ 0. This proves the estimate (11). �

The stability criteria of Lemma 4.1 are independent of the space dimension m and identical to those of [5].
In [5] it has been verified that the 2-stage W-methods collected in [10, p. 400-405] for θ > 1/4, the 3-stage
AMF-W methods in [7, Theorem 1] for θ > 1/3, the 4-stage AMF-W methods in [6, Corollary 1 and Theorem
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3] for θ > θ1 = 0.36367 . . ., the 3- and 4-stage AMF-W methods in [12] all satisfy (A1). The 2-stage W-method
with θ = 1/4, the methods of [7, Theorem 1] with s = p = 3 and θ = 1/3, and the methods in [6, Corollary 1
and Theorem 3] with s = 4, p = 3, and θ = θ1 satisfy (A2).

5. Numerical experiments

For a numerical confirmation of the convergence statements in Section 3 we consider the linear diffusion
partial differential equation (1) with dj = 1 for all j, where c(t, ~x) is selected in such way that

u(t, ~x) = ue(t, ~x) := et
(

4m
m∏
j=1

xj(1− xj) + κ

m∑
j=1

(
xj +

1

j + 2

)2)
(20)

is the exact solution of (1). We impose the initial condition u(0, ~x) = ue(0, ~x) and Dirichlet boundary conditions.
If κ = 0 we have homogeneous boundary conditions, but when κ = 1 we get non-homogeneous time-dependent
Dirichlet conditions.

For a linear parabolic problem (1) the space discretization (3) introduces an error of size O(∆x21+ . . .+∆x2m).
The error of the full discretization is a combination of the spatial error and that of the time integrator. When
using a time step size τ that is proportional to min(∆x1, . . . ,∆xm), results on PDE-convergence of order up
to 2 are important, but also higher order convergence is of interest for the case when the error of the space
discretization is small.

The present work is devoted to an analysis of the time integration error. Therefore we have chosen the
exact solution (20) for our test equation as a polynomial of degree 2 in each spatial variable so that the global
errors come only from the time discretisation. We apply the MOL approach on a uniform grid with meshwidth
∆xj = 1/(N + 1), 1 ≤ j ≤ m. This yields the ordinary differential equation (3) in dimension Nm. AMF-W-
methods (5) with η = 1/2 will be applied to (3) with fixed step size τ = ∆xj = 2−j , 2 ≤ j ≤ 8.

N + 1 PDE-GE2 PDE-ORD2
4 0.4298E-01 —
8 0.4334E-02 3.310
16 0.5555E-03 2.964
32 0.7369E-04 2.914
64 0.7807E-05 3.239
128 0.7399E-06 3.399
256 0.6919E-07 3.419

N + 1 PDE-GE2 PDE-ORD2
4 0.5217E-01 —
8 0.7818E-02 2.738
16 0.1277E-02 2.614
32 0.2341E-03 2.448
64 0.4838E-04 2.274
128 0.1076E-04 2.169
256 0.2470E-05 2.123

Table 1. Statistics for m = 3 and the AMF-W-method (s = 4, p = 4, θ = 1/2) based on
Kutta’s 3/8-rule [6, p. 154], with κ = 0 (left table) and with κ = 1 (right table).

All our numerical experiments are for space dimension m = 3. In Table 1 we apply the 4-stage AMF-W-
method (s = 4, p = 4, θ = 1/2) based on Kutta’s 3/8-rule [6, p. 154]. We consider homogeneous Dirichlet
boundary conditions (κ = 0, table to the left) and time-dependent boundary conditions (κ = 1, table to the
right). The global error is shown in the column “PDE-GE2” and the numerically estimated order of convergence
in “PDE-ORD2”. This experiment suggests that order 3.25 can be attained for time-independent boundary
conditions, and that the order drops to 2 for time-dependent boundary conditions.

In Table 2 we consider time-dependent inhomogeneous Dirichlet boundary conditions (κ = 1) and apply the
3-stage AMF-W method (s = 3, p = 3) based on the W3a method in [7, p. 573] with θ = 1/2 and θ = 1/3.
Note that the method satisfies (10) for θ = 1/2, but it satisfies only (11) for θ = 1/3. The results for θ = 1/2
(left table) show that order 2.25 is in general not attained by 3rd order methods for time-dependent boundary
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N + 1 PDE-GE2 PDE-ORD2
4 0.1908E-01 —
8 0.4071E-02 2.229
16 0.1894E-02 1.104
32 0.5703E-03 1.732
64 0.1618E-03 1.817
128 0.4242E-04 1.932
256 0.1036E-04 2.034

N + 1 PDE-GE2 PDE-ORD2
4 0.1815E-01 —
8 0.7884E-02 1.203
16 0.2650E-02 1.573
32 0.9645E-03 1.458
64 0.3480E-03 1.471
128 0.1235E-03 1.494
256 0.4365E-04 1.501

Table 2. Statistics for m = 3 and κ = 1 with the AMF-W method (s = 3, p = 3) based on
the W3a method in [7, p. 573] with θ = 0.5 (left table) and with θ = 1/3 (right table).

N + 1 PDE-GE2 PDE-ORD2
4 0.4806E-01 —
8 0.1223E-01 1.974
16 0.3451E-02 1.825
32 0.9982E-03 1.790
64 0.2858E-03 1.804
128 0.7964E-04 1.843
256 0.2121E-04 1.909

N + 1 PDE-GE2 PDE-ORD2
4 0.4802E-01 —
8 0.1253E-01 1.939
16 0.3613E-02 1.793
32 0.1088E-02 1.732
64 0.3389E-03 1.682
128 0.1101E-03 1.623
256 0.3702E-04 1.572

Table 3. Statistics for m = 3 and κ = 1 with the AMF-W-method based on the 2-stage
W-methods (p = 2) in [10, p. 400–405] with θ = 0.26 (left table) and θ = 1/4 (right table).

conditions, even for η = 1/2. This experiment demonstrates that Theorem 5 of [5] does not extend to an order
higher than 2. The results for θ = 1/3 (right table) show that only order 1.5 is attained for time-dependent
boundary conditions if (10) is not fulfilled.

In Table 3 we consider again time-dependent Dirichlet boundary conditions (κ = 1), but we apply the AMF-
W-method based on the 2-stage W-methods (p = 2) in [10, p. 400–405] with θ = 0.26 (left table) and θ = 1/4
(right table). For the parameter θ = 1/4 only the condition (11) (and not (10)) is fullfilled. As expected (see
the comment after Theorem 3.3), we only have convergence of order 1.5. A small perturbation of this parameter
to θ = 0.26 reestablishes condition (10) and, as expected, PDE-convergence of order 2 is approached.

6. Local error and convergence theorems

The global error En = Un − U(tn) of a AMF-W method (5), applied to the linear differential equation (3),
satisfies the recursion

En+1 = R(τD1, . . . , τDm)En − νn, (21)

where R(z1, . . . , zm) is the stability function of the method, and νn is the local error at time tn. To anal-
yse the error in the Euclidean norm we use a Fourier-type analysis and diagonalise the matrices Dxixi

=

tridiag(1,−2, 1)/∆x2i that are present in Di (see the paragraph after formula (3)). We let {φ(xi)
j } for j =

1, . . . , Ni (i = 1, . . . ,m) be an orthogonal basis such that Dxixiφ
(xi)
j = λ

(xi)
j φ

(xi)
j with eigenvalues λ

(xi)
j =

−4∆x−2i sin2(j∆xiπ/2). The set {φ(xm)
jm
⊗· · ·⊗φ(x1)

j1
} then forms an orthonormal basis with respect to the inner

product (13), and we have Di(φ
(xm)
jm

⊗ · · · ⊗ φ(x1)
j1

) = diλ
(xi)
ji

(φ
(xm)
jm

⊗ · · · ⊗ φ(x1)
j1

). When expanding a vector
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V ∈ Rnx in this basis

V =

nx1∑
j1=1

· · ·
nxm∑
jm=1

V̂j1,...,jm φ
(xm)
jm

⊗ · · · ⊗ φ(x1)
j1

, (22)

we denote the Fourier coefficients by V̂j1,...,jm . Recall that by Parseval’s identity we have ‖V ‖ = ‖V̂ ‖2, where

V̂ = (V̂j1,...,jm)j1,...,jm . In Fourier coefficients the recursion for the global error reads

Ên+1,j1,...,jm = R(z1, . . . , zm) Ên,j1,...,jm − ν̂n,j1,...,jm , (23)

where zi = τdiλ
(xi)
ji

, 1 ≤ i ≤ m.

6.1. Local error

The local error of (5) is obtained by considering Un on the exact solution U(tn), so that En = 0 in (21).
We omit the details of the straight-forward computation, because they are essentially the same as for the case
m = 2 in [5]. In the following we use the notation

z[k] = z1 + . . .+ zk−1, z = z[m+1] = z1 + . . .+ zm,

π[k] = (1− θz1) · · · (1− θzk−1), π = π[m+1] = (1− θz1) · · · (1− θzm)
(24)

and we consider the triangular matrix, see (8),

S(z1, . . . , zm) := P (z1, . . . , zm)−1 =
(
πI − zA− L

)−1
. (25)

The Fourier coefficients of the local error νn for general Dirichlet boundary conditions are then

ν̂n,j1,...,jm =
∑
`≥1

τ `
(

1

`!
− b>S(z1, . . . , zm)

(
α(`) + β(`)z + γ(`)(π + θz − 1)

))
Û

(`)
j1,...,jm

(tn)

+
∑
`≥1

τ `+1b>S(z1, . . . , zm)γ(`)θ

m∑
k=2

(1− π[k])ϕ̂
(`)
k,j1,...,jm

(tn).

(26)

Here, Û
(`)
j1,...,jm

(tn) are the Fourier coefficients of the `th derivative of the exact solution, and ϕ̂
(`)
k,j1,...,jm

(tn) are
those of the `th derivative of

ϕk(t) = DkU(t) + gk(t). (27)

Note that, in contrast to gk(t), the functions ϕk(t) are smooth in the sense that their derivatives have bounds

in the Euclidean norm that are independent of the space discretisation. The coefficients α(`) = (α
(`)
i )si=1, β

(`) =

(β
(`)
i )si=1, γ

(`) = (γ
(`)
i )si=1 are given by α

(1)
i = 1, and

α
(`)
i = 1

(`−1)!c
`−1
i + θρi

1
(`−2)!η

`−2, ` ≥ 2,

β
(`)
i = − 1

`!c
`
i − θρi 1

(`−1)!η
`−1, ` ≥ 1,

γ
(`)
i = ρi

1
(`−1)!η

`−1, ` ≥ 1.

(28)

In the situation of time-independent Dirichlet boundary conditions the functions gk(t), 2 ≤ k ≤ m, are

constant, so that ϕ
(`)
k (t) = DkU

(`)(t) for ` ≥ 1 and 2 ≤ k ≤ m. Using the algebraic identity

θ

m∑
k=2

(1− π[k])zk = π + θz − 1
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this implies, as it has been seen for m = 2 in [5], that the terms with factor γ(`) cancel. The Fourier coefficients
of the local error, for time-independent boundary conditions, are thus given by

ν̂n,j1,...,jm =
∑
`≥1

τ `
( 1

`!
− b>S(z1, . . . , zm)

(
α(`) + β(`)z

))
Û

(`)
j1,...,jm

(tn). (29)

6.2. Techniques for PDE-convergence

Since for the considered integrators the global error depends linearly on the local error, it is possible to treat
summands in the local error separately. In the following νn and its Fourier coefficients are typically only parts
of the complete local error. Lemma 6.1 and Lemma 6.2 (see [10, Section II.2.3]) are standard techniques for
proving convergence. Lemma 6.3 is new and extends [5, Theorem 9] to arbitrary space dimension.

Lemma 6.1 (Lady Windermere’s fan). Assume that the local error satisfies

|ν̂n,j1,...,jm | ≤ Cτ r+1|χ̂j1,...,jm(tn)|,

where χ̂j1,...,jm(t) are the Fourier coefficients of some derivative of some smooth function χ(t). Under the
stability assumption (9) the global error satisfies

‖En‖ ≤ C1τ
r for nτ ≤ T.

The proof is based on En = RnE0 −
∑n−1
j=0 R

n−j−1νj .

Lemma 6.2 (use of partial summation). Assume that the local error satisfies

|ν̂n,j1,...,jm | ≤ Cτ r
∣∣1−R(z1, . . . , zm)

∣∣ · |χ̂j1,...,jm(tn)|, (30)

where zi = τdiλ
(xi)
ji

and χ̂j1,...,jm(tn) as in Lemma 6.1. Furthermore, assume that ν̂n+1,j1,...,jm − ν̂n,j1,...,jm
satisfies the same estimate with one additional factor τ . Under the stability assumption (9) the global error then
satisfies

‖En‖ ≤ C1τ
r for nτ ≤ T.

The proof is based on En = RnE0 −
∑n−2
j=−1(I − Rn−1−j)(I − R)−1(νj+1 − νj) (with ν−1 = 0) which

follows from the above error relation by partial summation. Both Lemmata only require power-boundedness of
R = R(τD1, . . . , τDm) and are not restricted to the Euclidean norm. For the verification of (30) the stability
assumptions (10) and (11) are helpful.

A further technique (developed in [4] and applied for 2D problems in [5]) is required to get sharp estimates
for the global error. The weak step size restriction τ ≥ c0 max(∆x21, . . . ,∆x

2
m) will be assumed to hold.

Lemma 6.3 (use of Fourier analysis). Assume that the local error satisfies

|ν̂n,j1,...,jm | ≤ C τ r
|z1| · · · |zk|

π(z1, . . . , zm)γ1
|χ̂j1,...,jm(tn)|, (31)

where zi (1 ≤ i ≤ m) and χ̂j1,...,jm(tn) are as in Lemma 6.2, and γ1 is a non-negative constant. Moreover,
assume that the difference ν̂n+1,j1,...,jm − ν̂n,j1,...,jm satisfies the same estimate with one additional factor τ .

• Under the Assumption (10), we have, for nτ ≤ T ,

‖En‖ ≤ C1τ
p∗k with pk = r +

(k − 2)2

4(k − 1)
, if γ1 = 1 and 2 ≤ k ≤ m. (32)

If k = 2 and τ ≤ c1 min(∆x1, . . . ,∆xm), with some c1 > 0, then ‖En‖ ≤ C1τ
p2 .
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• Under the weaker Assumption (11) we still have, for nτ ≤ T ,

‖En‖ ≤ C1τ
p∗k with pk = r +


(k−2)2−2
2(2k−1) if γ1 = 1 and 1 ≤ k ≤ m,
(k−1)2+1
2(2k−1) if γ1 = 2 and 2 ≤ k ≤ m.

(33)

If γ1 = 1 and k = 1, and τ ≤ c1 min(∆x1, . . . ,∆xm), with some c1 > 0, then ‖En‖ ≤ C1τ
p1 .

The proof is technical and postponed to an appendix (Section 9). It uses the special form of zi = τdiλ
(xi)
ji

,
and the decay of Fourier coefficients.

7. Proof of Theorems 3.1 and 3.2 (time-independent boundary conditions)

For the case of time-independent boundary conditions the local error (29) remains essentially the same as for
two spatial dimensions. The only difference is that z = z1 + . . . + zm contains more than two summands, and
the matrix S(z1, . . . , zm) depends on all m variables. It is not surprising that the statements of [5] carry over
straight-forwardly to arbitrary space dimensions.

Recall that in the Euclidean norm (13) we have, for ` ≥ 1 and 1 ≤ i1 < . . . < ik ≤ m,

Di1 · · ·DikU
(`)(t) =

(
di1∂

2
xi1

xi1
+O(∆x2i1)

)
· · ·
(
dik∂

2
xik

xik
+O(∆x2ik)

)∂`u(t, ~x)

∂t`
= O(1),

so that in Fourier coefficients

zi1 · · · zik Û
(`)
j1,...,jm

(t) = τk χ̂j1,...,jm(t), (34)

where χ(t) = Di1 · · ·DikU
(`)(t). In the following we only mention which of the three convergence lemmata have

to be applied, and leave the details to the reader.

7.1. Proof of Theorem 3.1.

For proving order p = 1 and order p = 2 only Lemma 6.1 is needed. For the proof of order p = 3 all three
lemmata have to be used. Note that in the formulas of [5, Section 7] the product θ2z1z2 has to be replaced by(
π(z1, . . . , zm) + θ(z1 + . . .+ zm)− 1

)
if m ≥ 3. This expression is a linear combination of products zi1 · · · zik ,

where 1 ≤ i1 < . . . < ik ≤ m and k ≥ 2. Because of (34) the critical case is for k = 2. The local error term δb1
in [5, Section 7.3] can be treated, similar to the two-dimensional case, by applying Lemma 6.3 with k = 2 and
γ1 = 2, giving an order 3 + 1/3− ε for every ε > 0.

7.2. Proof of Theorem 3.2.

The proof of fractional order p = 3 + α (for every α < 1/4) uses the estimates(
|z1|α + . . .+ |zm|α

)(
|z1|+ . . .+ |zm|

)∣∣∣Û (`)
j1,...,jm

(t)
∣∣∣ ≤ τ1+α vj1,...,jm (35)(

|z1|α + . . .+ |zm|α
)∣∣∣π(z1, . . . , zm) + θ

(
z1 + . . .+ zm

)
− 1
∣∣∣∣∣∣Û (`)

j1,...,jm
(t)
∣∣∣ ≤ τ2+α wj1,...,jm (36)

with bounded
∑
j1,...,jm

|vj1,...,jm |2 and
∑
j1,...,jm

|wj1,...,jm |2, where we use the notation zi = τdiλ
(xi)
ji

as before.

These estimates are a consequence of the relation (34) and of [10, Lemma III.6.5]. The proof of Theorem 3.2
extends straight-forwardly from space dimension m = 2 (see [5]) to arbitrary m. Apart from the term that
has been shown above to give an order 3 + 1/3 − ε contribution (which is better than order 3.25), only the
convergence estimates of Lemmata 6.1 and 6.2 have to be applied.
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8. Proof of Theorem 3.3 (time-dependent boundary conditions)

For the case of time-dependent boundary conditions the extension of the convergence results to more than two
spatial dimensions is not as straight-forward. We shall see that not all convergence results, valid in dimension
two, carry over to higher dimension.

In the following we use the notation (24) and we write S for the matrix S(z1, . . . , zm) of (25). We then
express the local error (26) as ν̂n,j1,...,jm =

∑
`≥1(δ` + ωa` + ωb`), where

δ` = τ `
( 1

`!
− b>S

(
α(`) + β(`)z + γ(`)

(
π + θz − 1

)))
Û

(`)
j1,...,jm

(tn),

ωa` = τ `+1 b>Sγ(`)θ2
m∑
k=2

z[k] ϕ̂
(`)
k,j1,...,jm

(tn),

ωb` = −τ `+1 b>Sγ(`)θ

m∑
k=2

(π[k] + θz[k] − 1) ϕ̂
(`)
k,j1,...,jm

(tn),

(37)

and we observe that ωb` = 0 for spatial dimension m = 2, but not for m ≥ 3.

8.1. Proof of Theorem 3.3

The proof for order p = 1 is a straight-forward extension of the case m = 2. It requires only the application
of Lemma 6.1. Similarly, also the proofs of order p∗ = 2 of the global errors corresponding to δ` and ωa` are
extended straight-forwardly. Care has to be taken for the term ωb1, which is not present for m = 2. It is seen to
be a linear combination of terms that can be bounded by (31) with r = 2, 2 ≤ k ≤ m, and γ1 = 1, so that the
statement (32) of Lemma 6.3 applies. This completes the proof of Theorem 3.3.

8.2. Reason why the fractional order p∗ = 2.25 cannot be achieved for m ≥ 3

It is not a surprise that the impossibility for obtaining order of convergence p∗ = 2.25 is due to the term ωb1
in the local error. For time-dependent boundary conditions we do not have an estimate (35) with U(t) replaced
by ϕk(t), we only have (

|z1|α + . . .+ |zm|α
)∣∣∣ϕ̂(`)

k,j1,...,jm
(t)
∣∣∣ ≤ τα vj1,...,jm (38)

with bounded
∑
j1,...,jm

|vj1,...,jm |2. Similar to the case m = 2 we can split |z1| = |z1|1−α|z1|α in ωb1 and apply

(38). This gives the desired factor τ2+α, but the remaining expression in ωb1 cannot be uniformly bounded
by |z|/|π|. Therefore, Lemma 6.2 cannot be applied. This does not change, if we modify ωb1 with the use of
b>S(0, . . . , 0)γ(1) = 0 as in the proof for the case m = 2. In any case, the numerical experiment of Table 2
demonstrates the impossibility of obtaining p∗ = 2.25.

9. Appendix: proof of Lemma 6.3

The proof follows the reasoning of [4, Section 4.2]. Using the identity

En = −(I −Rn)(I −R)−1ν0 −
n−2∑
j=0

(I −Rn−1−j)(I −R)−1(νj+1 − νj)

we have

‖En‖ ≤ C τ ra(n) + C τ r+1
n−2∑
j=0

a(n− 1− j), (39)
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where

a(n) = τk
{ nx1∑
j1=1

· · ·
nxm∑
jm=1

(1− rnj1,...,jm
1− rj1,...,jm

)2 |λ(x1)
j1
|2 · · · |λ(xk)

jk
|2|χ̂j1,...,jm(tn)|2

(1 + θτd1|λ(x1)
j1
|)2γ1 · · · (1 + θτdm|λ(xm)

jm
|)2γ1

}1/2

with rj1,...,jm = R
(
τd1λ

(x1)
j1

, . . . , τdmλ
(xm)
jm

)
. It follows from [4, Lemma A.6 and Lemma A.2] that for an

arbitrarily chosen γ ∈ [0, 2] we have

(1− rnj1,...,jm
1− rj1,...,jm

)2
≤ τ−γ22−γT γ

1

(1− rj1,...,jm)2−γ
and

√
|λ(x1)
j1
| · · · |λ(xm)

jm
| |χ̂j1,...,jm(tj)| ≤ C2,

where nτ ≤ T . This implies

a(n) ≤ C3τ
k

{ nx1∑
j1=1

· · ·
nxm∑
jm=1

τ−γ

(1− rj1,...,jm)2−γ

(∏k
l=1 |λ

(xl)
jl
|
)(∏m

l=k+1 |λ
(xl)
jl
|−1
)∏m

l=1(1 + θτdl|λ(xl)
jl
|)2γ1

}1/2

. (40)

9.1. Use of Assumption (10)

Under the Assumption (10), and with γ1 = 1, we get from (40) the estimate

a(n) ≤ C4τ
k

{
τ−2

nx1∑
j1=1

· · ·
nxm∑
jm=1

(∏k
l=1 |λ

(xl)
jl
|
)(∏m

l=k+1 |λ
(xl)
jl
|−1
)(∑m

l=1 |λ
(xl)
jl
|
)2−γ∏m

l=1(1 + θτdl|λ(xl)
jl
|)γ

}1/2

. (41)

With the help of the arithmetic-geometric mean inequality

m∑
l=1

|λ(xl)
jl
| ≥

k∑
l=1

|λ(xl)
jl
| ≥ k · k

√
|λ(x1)
j1
| · · · |λ(xk)

jk
|

the latter sum of products can be bounded by a product of sums, and yields

a(n) ≤ C5τ
k−1
{ k∏
l=1

( nxl∑
jl=1

|λ(xl)
jl
|1−(2−γ)/k(

1 + θτdl|λ(xl)
jl
|
)γ
)

m∏
l=k+1

( nxl∑
jl=1

1

|λ(xl)
jl
|

)}1/2

. (42)

As a consequence of [10, Lemma 6.2, p. 298], the second product in (42) is bounded, i.e.,
∑nxl
jl=1 |λ

(xl)
jl
|−1 = O(1).

Regarding the first product, we are in the position to apply Lemma A.5 from [4], which states that for all α̃ ≥ 0

and β̃ ≥ 0 there exists a constant C > 0, such that

nxl∑
jl=1

|λjl |α̃/2

(1 + θτdl|λjl |)β̃
≤

 Cτ−(α̃+1)/2 if α̃+ 1− 2β̃ < 0,

Cτ−β̃
(
∆xl

)2β̃−α̃−1
if α̃+ 1− 2β̃ > 0.

(43)

The first product in (42) is a product of k identical single sums of the form (43) with α̃ = 2
(
1 − 2−γ

k

)
and

β̃ = γ. With the choice γ = 3k−4
2(k−1) + ε (with ε > 0 arbitrarily small such that γ ∈ [0, 2], for k ≥ 2), we have

α̃ + 1 − 2β̃ < 0, and from (43) and (42) we get that that (α̃ + 1)/2 = 3k−4
2(k−1) + 1

k ε and a(n) ≤ C6τ
(k−2)2

4(k−1)
− 1

2 ε.

This proves the statement (32) under the Assumption (10).
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Furthermore, when k = 2 and τ ≤ c1 min(∆x1, . . . ,∆xm), taking γ = 1− ε (with ε > 0 arbitrarily small such

that γ ∈ [0, 2]), we have α̃+ 1− 2β̃ > 0. From (43) we get, for every γ < 1, that

nxl∑
jl=1

|λjl |γ/2

(1 + θτdl|λjl |)γ
≤ Cτ−γ

(
∆xl

)γ−1
= Cτ−1(τ/∆xl)

1−γ ≤ Cτ−1.

This estimate inserted in (42) with k = 2 provides a(n) = O(1) and ‖En‖ ≤ C1τ
p2 , with p2 = r.

9.2. Use of Assumption (11)

Under the weaker Assumption (11), starting with (40) and using (11) the same computation as above leads
to

a(n) ≤ C4τ
k

{
τ−2

nx1∑
j1=1

· · ·
nxm∑
jm=1

(∏k
l=1 |λ

(xl)
jl
|
)(∏m

l=k+1 |λ
(xl)
jl
|−1
)(∑m

l=1 |λ
(xl)
jl
|
)2−γ∏m

l=1(1 + θτdl|λ(xl)
jl
|)2γ+2γ1−4

}1/2

, (44)

which, analogously as in (42), can be bounded by

a(n) ≤ C5τ
k−1
{ k∏
l=1

( nxl∑
jl=1

|λ(xl)
jl
|1−(2−γ)/k(

1 + θτdl|λ(xl)
jl
|
)2γ+2γ1−4

)}1/2

. (45)

This is again a product of factors of the form (43) with α̃ = 2
(
1− 2−γ

k

)
and β̃ = 2γ + 2γ1 − 4.

When γ1 = 2, and for 2 ≤ k ≤ m, taking γ = 3k−4
2(2k−1) + ε (ε > 0 arbitrary) gives α̃ + 1 − 2β̃ < 0, and from

(45) and the corresponding estimate in (43) we get that (α̃ + 1)/2 = 3k−4
2k−1 + 1

k ε and a(n) ≤ C6τ
(k−1)2+1
2(2k−1)

− 1
2 ε.

This proves the second estimate in (33).

When γ1 = 1, and for 1 ≤ k ≤ m, taking γ = 7k−4
2(2k−1) + ε (ε > 0 arbitrary) gives α̃ + 1 − 2β̃ < 0, and from

(45) and the corresponding estimate in (43) we get that that (α̃+1)/2 = 3k−2
2k−1 + 1

k ε and a(n) ≤ C6τ
(k−2)2−2
2(2k−1)

− 1
2 ε.

This proves the first estimate in (33).
Finally, when γ1 = 1, k = 1 and τ ≤ c1 min(∆x1, . . . ,∆xm), taking γ = 3

2 − ε (with arbitrary ε > 0 such that

γ ∈ [0, 2]), we have α̃+ 1− 2β̃ > 0. From (43) we get, for every γ < 3
2 , that

nxl∑
jl=1

|λjl |γ−1

(1 + θτdl|λjl |)2γ−2
≤ Cτ−(2γ−2)

(
∆xl

)2γ−3
= Cτ−1(τ/∆xl)

3−2γ ≤ Cτ−1.

This estimate inserted in (45) with k = 1 provides a(n) = O(τ−1/2) and ‖En‖ ≤ C1τ
p1 , with p1 = r − 1/2.

This proves the statement of Lemma 6.3. �

10. Conclusion

For the case of multidimensional linear parabolic differential equations, we have discussed PDE-convergence
of AMF-W methods.

For time-independent boundary conditions, the classical conditions for order p and a stability condition that
is slightly stronger than A0-stability imply PDE-convergence (in any space dimension) of order p, if p ≤ 3. Such
a statement does not hold for p = 4, but order p = 3.25− ε (for all ε > 0) can be achieved if a subset of order
conditions for order four hold.

For time-dependent boundary conditions, the classical conditions for order p, a stability condition that it
slightly stronger than A0-stability, and a step size restriction that is common for the study of PDE-convergence
imply PDE-convergence of order p, if p ≤ 2. Imposing the order conditions for order three, order p = 2.25− ε
(for all ε > 0) can be achieved in space dimension m = 2, but not in space dimension m ≥ 3.
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