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Abstract

This article reviews some of the phenomena and theoretical results on

the long-time energy behaviour of continuous and discretized oscillatory

systems that can be explained by modulated Fourier expansions: long-

time preservation of total and oscillatory energies in oscillatory Hamil-

tonian systems and their numerical discretisations, near-conservation of

energy and angular momentum of symmetric multistep methods for ce-

lestial mechanics, metastable energy strata in nonlinear wave equations.

We describe what modulated Fourier expansions are and what they are

good for.

1.1 Introduction

As a new analytical tool developed in the past decade, modulated Fourier

expansions have been found useful to explain various long-time phenom-

ena in both continuous and discretized oscillatory Hamiltonian systems,

ordinary differential equations as well as partial differential equations.

In addition, modulated Fourier expansions have turned out useful as a

numerical approximation method in oscillatory systems.
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In this review paper we first show some long-time phenomena in os-

cillatory systems, then give theoretical results that explain these phe-

nomena, and finally outline the basics of modulated Fourier expansions

with which these results are proved.

1.2 Some phenomena

1.2.1 Time scales in a nonlinear oscillator chain

stiff
linear

soft
nonlinear

Figure 1.1 Particle chain with alternating soft nonlinear and stiff
linear springs.

Following Galgani, Giorgilli, Martinoli & Vanzini [GGMV92], we con-

sider a chain of particles interconnected alternately by stiff linear springs

and soft nonlinear springs, as shown in Figure 1.1. We assume that the

particles are of unit mass and that the spring constant of the stiff linear

springs is ε−2 for a small parameter ε. This example was chosen as a

model problem for nonlinear oscillatory Hamiltonian problems with a

single constant high frequency ω = 1/ε in [HLW06, Chap.XIII].

The system shows different behaviour on several time scales. On the

fast time scale ε there is the almost-sinusoidal vibration of the stiff

springs. The time scale ε0 is that of the motion of the nonlinear springs.

On the slow time scale ε−1, there is an energy transfer between the stiff

springs. Over very long times ε−N with N > 1 and even over exponen-

tially long times t ≤ ec/ε, there is almost-conservation of the sum of the

harmonic energies of the stiff springs. The total energy is conserved for

all times.

This behaviour is illustrated in Figure 1.2, where various energies in

the system are plotted as functions of time. In all four pictures, the upper

constant line is the total energy. In the final, long-time picture the total

energy does not appear as constant, because the upper line represents

the total energy along a numerical solution that was computed with

large step size h > ε. It is remarkable that the numerical method, which

here is a trigonometric integrator, shows no drift in the total energy
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Figure 1.2 Different time scales in the oscillator chain (ε = 1/50).

over such long times, just small oscillations about the correct value.

The lower almost-constant line in the pictures represents the oscillatory

energy, that is, the sum of the harmonic energies of the stiff springs. It is

not exactly conserved, but stays close to its initial value over extremely

long times, both in the exact and the numerical solution. This calls for

an explanation.

Let us briefly describe the further curves in Figure 1.2: the sinusoidal

curve in the first picture represents the kinetic energy of the first stiff

spring, the smooth curve in the second picture represents the kinetic en-

ergy in the first nonlinear spring. The third and fourth picture show the

energy transfer between the stiff springs: the curves show the harmonic

energies of the three stiff springs, starting from an initial configuration

where only the first spring is excited, while the second and third stiff

springs are at rest.

1.2.2 Symmetric multistep methods over long times

We consider the numerical solution of second-order differential equations

ẍ = −∇U(x)
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by linear multistep methods. It was reported in the astrophysical liter-

ature [QT90] that some symmetric multistep methods exhibit excellent

long-time behaviour in the computation of planetary orbits, similar to

that known for symplectic one-step methods. Since multistep methods

cannot be symplectic, as was shown by Tang [Tan93], such behaviour

comes unexpected.
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Störm
er (A

)

t

Figure 1.3 Error in energy and angular momentum of three multistep
methods applied to the Kepler problem.

Figure 1.3 shows the error in the total energy and the angular mo-

mentum of three multistep methods applied to the Kepler problem, all

three of the same order 8. The linear error growth in energy and angular

momentum corresponds to a non-symmetric method, the eighth-order

Störmer method (A). One symmetric method exhibits exponential error

growth (B), but another symmetric method shows no drift in energy and

angular momentum (C). Such behaviour needs to be explained.

1.2.3 Metastable energy strata in nonlinear wave

equations

We consider the nonlinear wave equation utt −uxx +
1
2u = u2 with peri-

odic boundary conditions on a space interval of length 2π and report a

numerical experiment from [GHLW11]. The initial data are chosen such

that only the first Fourier mode is excited initially, with harmonic en-

ergy E1(0) = ε = 10−4. All higher-mode harmonic energies are initially

zero. As is shown in Figure 1.4, due to the presence of the nonlinearity,

they become non-zero immediately. Surprisingly, however, the jth mode

energy settles quickly at level εj (the zero-mode energy at ε2) and stays

there for extremely long times. There is no perceptible energy transfer

among the modes.
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Figure 1.4 Mode energies versus time on different time windows.

1.3 Some theorems

We give theoretical results that explain the long-time phenomena en-

countered in Section 1.2.

1.3.1 Oscillatory ordinary differential equations

We consider a system of second-order differential equations for x0 ∈ Rd0 ,

x1 ∈ Rd1 ,

ẍ0 = −∇x0U(x0, x1) (1.1)

ẍ1 +
1

ε2
x1 = −∇x1U(x0, x1), 0 < ε≪ 1.

With the momenta y0 = ẋ0, y1 = ẋ1, this is a Hamiltonian system with

the Hamilton function

H(x0, x1, y0, y1) =
1

2
∥y0∥2 +

1

2
∥y1∥2 +

1

2
ε−2∥x1∥2 + U(x0, x1).

Example. If we describe the position of the 2m particles in the non-

linear oscillator chain of Figure 1.1 (where m = 3) by the coordinates

of the centres of the stiff linear springs, x0 = (x0,1, . . . , x0,m), and by

their elongations from the rest length, x1 = (x1,1, . . . , x1,m), then the

equations of motion take the above form. The potential U is given as

U(x0, x1) = V (s0)+ . . .+V (sm), where sj denotes the elongation of the

jth soft nonlinear spring with potential V .

The oscillatory energy

E1 =
1

2
∥ẋ1∥2 +

1

2
ε−2∥x1∥2 =

d1∑
j=1

(
1

2
ẋ21,j +

1

2
ε−2x21,j

)
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turns out to be almost invariant. The following result over exponentially

long times in 1/ε was proved by Benettin, Galgani & Giorgilli [BGG87]

using a sequence of nonlinear coordinate transformations from Hamilto-

nian perturbation theory, and later by Cohen, Hairer & Lubich [CHL03]

using modulated Fourier expansions, working in the original coordinates.

Theorem 1.1 If U is analytic and the oscillatory energy is bounded

by E1(0) ≤M , then

|E1(t)− E1(0)| ≤ Cε for t ≤ ec/ε,

provided that (x0(t), 0) stays in a compact subset of the domain of an-

alyticity of U . The constants C and c are independent of ε, but depend

on M , ∥ẋ0(0)∥ and bounds of U .

The condition on x0(t) is satisfied, for example, if U(x0, 0) → +∞ as

∥x0∥ → ∞, since the total energy H is constant along the solution.

Theorem 1.1 explains the almost constant line for E1 in the lower

right picture of Figure 1.2 — at least for the exact solution, whereas the

picture was obtained with a numerical method with large step size h > ε,

which nevertheless shows remarkably good long-time energy behaviour.

The numerical method employed is a trigonometric integrator, a method

that is exact for ẍ1 + ε−2 x1 = 0 and reduces to the Störmer-Verlet

method for ẍ0 = f(x0). The method is of the form

xn+1
0 = xn0 + hẋn0 +

1

2
h2gn0

ẋn+1
0 = ẋn0 +

1

2
h
(
gn0 + gn+1

0

)
xn+1
1 = cos

(h
ε

)
xn1 + ε sin

(h
ε

)
ẋn1 +

1

2
h2ψ

(h
ε

)
gn1

ẋn+1
1 = −1

ε
sin

(h
ε

)
xn1 + cos

(h
ε

)
ẋn1 +

h

2

(
ψ0

(h
ε

)
gn1 + ψ1

(h
ε

)
gn+1
1

)
with gnj = −∇xjU(xn0 , ϕ

(
h
ε

)
xn1 ) for j = 0, 1 and with filter functions ψ,

ψ0, ψ1, ϕ that take the value 1 at 0. Exchanging n↔ n+1 and h↔ −h
in the method, it is seen that the method is symmetric for all values of h

and ε if and only if ψ(ξ) = sinc(ξ)ψ1(ξ) (where sinc(ξ) = sin(ξ)/ξ) and

ψ0(ξ) = cos(ξ)ψ1(ξ), which we assume in the following. The method is

symplectic if and only if ψ(ξ) = sinc(ξ)ϕ(ξ). A popular choice, proposed

by Garcia-Archilla, Sanz-Serna & Skeel [GASSS99], is ϕ(ξ) = sinc(ξ),

ψ(ξ) = sinc(ξ)2, but other choices are also favoured in the literature, see

Hairer, Lubich &Wanner [HLW06, Chap.XIII] and Grimm & Hochbruck

[GH06].
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We are interested in the long-time behaviour of the total energy

Hn = H(xn0 , x
n
1 , ẋ

n
0 , ẋ

n
1 )

and oscillatory energy

En
1 =

1

2
∥ẋn1∥2 +

1

2
ε−2∥xn1∥2

along the numerical solution. For a numerical analogue of Theorem 1.1

we need the following conditions:

• the energy bound E0
1 ≤M

• a condition on the numerical solution: the values (xn0 , 0) stay in a

compact subset of a domain on which the potential U is smooth;

• conditions on the filter functions: ψ and ϕ have no real zeros other

than integral multiples of π; they satisfy

|ψ(h/ε)| ≤ C1 sinc
2(

1

2
h/ε) , |ϕ(h/ε)| ≤ C2 |sinc(

1

2
h/ε)| ,

|ψ(h/ε)ϕ(h/ε)| ≤ C3 |sinc(h/ε)| ;

• the condition h/ε ≥ c0 > 0 ;

• a numerical non-resonance condition: for some N ≥ 2,

| sin(1
2
kh/ε)| ≥ c

√
h for k = 1, . . . , N.

Theorem 1.2 Under the above conditions, the total and oscillatory

energies along the numerical solution satisfy

Hn = H0 +O(h)

En
1 = E0

1 +O(h)
for 0 ≤ nh ≤ h−N+1.

The constants symbolized by O are independent of n, h, ε satisfying the

above conditions, but depend on N and the constants in the conditions.

This result from Hairer & Lubich [HL01], see also Hairer, Lubich &

Wanner [HLW06, Chap.XIII], was the first long-time result proved with

modulated Fourier expansions. That technique could easily be transfered

from the continuous to the discrete problem, which does not seem possi-

ble for the nonlinear coordinate transforms of Hamiltonian perturbation

theory with which Theorem 1.1 was first proved.

The differential equation (1.1) has just a single high frequency ω =

1/ε. Extensions of Theorem 1.1 to problems with several high frequen-

cies are proved by Benettin, Galgani and Giorgilli [BGG89] (via Hamil-

tonian perturbation theory) and Cohen, Hairer & Lubich [CHL05] (via

modulated Fourier expansions). The latter paper gives a multi-frequency
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version of Theorem 1.2 for the numerical solution. An additional diffi-

culty in the multi-frequency case appears because of possible resonances

among the frequencies, which need to be studied carefully. In the case

of non-resonant frequencies ωj = λj/ε, each of the oscillatory energies

Ej =
1
2∥ẋj∥

2+ 1
2ω

2
j ∥xj∥2 is nearly preserved over long times, but in res-

onant cases only certain linear combinations of the Ej , and in particular

their sum, are nearly preserved.

1.3.2 Symmetric multistep methods over long times

We now consider a second-order system of ordinary differential equations

with conservative forces (here with just one time scale)

ẍ = f(x), f(x) = −∇U(x), (1.2)

with a smooth potential U . The system is Hamiltonian with

H(x, ẋ) =
1

2
∥ẋ∥2 + U(x).

For the numerical approximation xn ≈ x(nh) we consider a linear mul-

tistep method with step size h,

k∑
j=0

αjx
n+j = h2

k∑
j=0

βjf(x
n+j), (1.3)

with the following properties:

• the method is symmetric: αj = αk−j , βj = βk−j

• all zeros of
∑
αjζ

j are simple, except a double root at 1

• the method is of order p ≥ 2.

We recall that the order of the method is characterized by the relation

1

h2

∑
αje

jh∑
βjejh

= 1 +O(hp) for h→ 0,

which entails a double zero of
∑
αjζ

j at 1. The method is completed

with a velocity approximation

ẋn ≈ 1

h

ℓ∑
j=−ℓ

δjx
j ,

which we also assume to be of order p. The velocity approximations are

computed a posteriori and are not propagated in the scheme. Moreover,
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we assume that the error of the starting approximations x0, . . . , xk−1 is

O(hp+1).

The following result on the long-time near-conservation of the total

energy Hn = H(xn, ẋn) is proved in [HL04].

Theorem 1.3 Under the above assumptions,

Hn = H0 +O(hp) for nh ≤ h−p−2.

The constant symbolized by the O-notation is independent of n and h

with nh in the stated interval. If no root of
∑
αjζ

j other than 1 is a

product of two other roots, then there is energy conservation up to O(hp)

even over times nh ≤ h−2p−3.

Systems with a rotational symmetry preserve angular momentum.

This comes about through an invariance

U(eτAx) = U(x) for all x and real τ

with a skew-symmetric matrix A via Noether’s theorem: the system then

has the quadratic first integral

L(x, ẋ) = ẋTAx.

The following result from [HL04] states the long-time near-conservation

of angular momentum Ln = L(xn, ẋn) along the numerical solution.

Theorem 1.4 Under the above assumptions,

Ln = L0 +O(hp) for nh ≤ h−p−2.

The constant symbolized by the O-notation is independent of n and h

with nh in the stated interval.

Theorems 1.3 and 1.4 explain the excellent long-time behaviour of the

favourable of the three methods of Figure 1.3. The method with the

linear error growth in energy and angular momentum is not symmetric,

and the method with the exponential error growth is symmetric but its

characteristic polynomial has further double roots apart from 1.

At first sight, the problem considered in this subsection bears little

resemblance to that of the previous subsection, but in fact both can be

viewed as perturbed linear problems. Here, it is the numerical scheme

that introduces a fast time scale h on which the solutions of the linear

recurrence relation
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k∑
j=0

αjx
n+j = 0

oscillate, with parasitic terms ζni , where the ζi are the zeros of the charac-

teristic polynomial
∑
αjζ

j that are different from the principal root 1.

The squared norms of parasitic solution components in the nonlinear

problem play a similar role to the oscillatory energies Ei of the previ-

ous subsection and can be shown to remain almost constant along the

numerical solution. The proof uses similar analytical techniques, that is,

modulated Fourier expansions.

Bounding parasitic components is the main obstacle to obtaining sim-

ilarly good long-time results for symmetric multistep methods applied to

more general Hamiltonian systems than (1.2), see [HLW06, Chap.XV]

and Console & Hairer [CH11].

1.3.3 Metastable energy strata in nonlinear wave

equations

We now turn to a surprising long-time result in weakly nonlinear partial

differential equations. The linear Klein–Gordon equation

utt −∆u+ ρu = 0 (x ∈ Rd, t ∈ R); with ρ ≥ 0

with initial data a eik·x+b e−ik·x for some (fixed) wave vector k ∈ Rd has

a solution that is a linear combination of plane waves ei(±k·x±ωt) (with

frequency ω =
√
|k|2 + ρ). We now consider the nonlinearly perturbed

equation

utt −∆u+ ρu = g(u) (1.4)

with the same initial data and ask the question: Are plane waves stable

under nonlinear perturbations of the equation?

The solution has a Fourier series

u(x, t) =
∑
j∈Z

uj(t) e
ijk·x,

where the coefficient functions satisfy the infinite system of second-order

differential equations

üj + ω2
juj = − ∂U

∂u−j
(u), j ∈ Z,
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with frequencies ωj =
√
j2|k|2 + ρ and the potential

U(u) = −
∑
m

g(m−1)(0)

m!

∑
j1+...+jm=0

uj1 . . . ujm for u = (uj)j∈Z.

We are interested in the size of the mode energies

Ej(t) =
1

2
|u̇j(t)|2 +

1

2
|ωjuj(t)|2

for large t and in the energy transfer to higher modes.

We note that Ej(t) = E−j(t) for real solutions of (1.4). We assume

the following:

• real initial data with E1(0) = ε, Ej(0) = 0 for |j| ̸= 1

• a real-analytic nonlinearity g with g(0) = g′(0) = 0.

The following long-term stability result is proved by Gauckler, Hairer,

Lubich & Weiss [GHLW11] using modulated Fourier expansions in time.

Theorem 1.5 Assume the above conditions and fix an integer K > 1.

Then the following holds true: For almost all mass parameters ρ > 0 and

wave vectors k, solutions to the nonlinear Klein–Gordon equation (1.4)

satisfy, for sufficiently small ε and over long times

t ≤ c ε−K/4,

the bounds |E1(t)− E1(0)| ≤ Cε2, E0(t) ≤ Cε2,

Ej(t) ≤ Cεj , 0 < j < K,
∞∑

j=K

ε−(j−K)/2Ej(t) ≤ CεK .

The constants C are independent of ε and t in the stated interval.

This result explains the stable energy strata observed in Figure 1.4.

It holds for almost all (with respect to Lebesgue measure) ρ > 0 and k,

for which it can be shown that the frequencies ωj =
√
j2|k|2 + ρ satisfy

a non-resonance condition. For ρ = 0 the frequencies are fully resonant,

and there are no stable energy strata.

1.3.4 Further results

Modulated Fourier expansions have been used to prove a variety of fur-

ther long-time results for oscillatory ordinary and partial differential

equations and their numerical discretisations:
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• energy distribution in Fermi–Pasta–Ulam chains of particles [HL10]

• long-time Sobolev regularity of nonlinear wave equations [CHL08b]

• Sobolev stability of plane wave solutions to nonlinear Schrödinger

equations [FGL11]

• long-time near-conservation of actions in Hamiltonian partial differ-

ential equations [CHL08b, GL10a, Gau10]

• ... and their numerical counterparts [CHL08a, GL10a, GL10b, Gau10,

HL08].

A common theme in all these works is the long-time behaviour of nonlin-

early perturbed oscillatory systems and their numerical discretisations.

1.4 Modulated Fourier expansions

Modulated Fourier expansions in time have been developed as a tech-

nique for analysing weakly nonlinear oscillatory systems, both continu-

ous and discrete, over long times. There are two ingredients:

• a solution approximation over short time (the modulated Fourier ex-

pansion properly speaking)

• almost-invariants of the modulation system.

Together they yield long-time results as illustrated in the previous sec-

tion. The technique can be viewed as embedding the original system in a

larger modulation system that turns out to have a Hamiltonian/Lagran-

gian structure with an invariance property from which the long-time

behaviour can be inferred.

The technique was first developed for the long-time analysis of numer-

ical integrators for highly oscillatory ordinary differential equations in

[HL01] and was subsequently extended by the authors of the present re-

view together with Cohen, Console, Gauckler and Weiss (see references)

to treat analytical and numerical problems in Hamiltonian ODEs, PDEs,

and lattice systems over long times. The approach was also taken up by

Sanz-Serna [SS09] for analysing the heterogeneous multiscale method

for oscillatory ODEs. In addition to the use of modulated Fourier ex-

pansions as an analytical technique, they have also been found use-

ful as a numerical approximation method by Hairer, Lubich & Wan-

ner [HLW06, Chap.XIII], Cohen [Coh04], and Condon, Deaño & Iserles

[CDI09, CDI10].
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We illustrate the procedure on the model problem

ẍj + ω2
jxj =

∑
j1+j2=j mod N

xj1xj2 for j = 1, . . . , N (1.5)

for large frequencies ωj = λj/ε, with λj ≥ 1. We assume that the oscil-

latory energies Ej = 1
2 ẋ

2
j +

1
2ω

2
jx

2
j are initially bounded independently

of ε.

We make the approximation ansatz

xj(t) ≈
∑
k

zkj (t) e
i(k·ωωω)t (1.6)

with slowly varying modulation functions zkj , all derivatives of which

should be bounded independently of ε. The sum is taken over a finite

set of multi-indices k = (k1, . . . , kN ) ∈ ZN , and k · ωωω =
∑
kjωj . The

slowly changing modulation functions appear multiplied with the highly

oscillatory exponentials ei(k·ωωω)t =
∏N

j=1

(
eiωjt

)kj
, which are products of

solutions to the linear equations ẍj + ω2
jxj = 0.

Modulation system and non-resonance condition. When we

insert this ansatz into the differential equation (1.5) and collect the co-

efficients corresponding to the same exponential ei(k·ωωω)t, we obtain the

infinite system of modulation equations

(ω2
j − (k ·ωωω)2) zkj + 2i(k ·ωωω)żkj + z̈kj = − ∂ U

∂z−k
−j

(z). (1.7)

The left-hand side results from the linear part in (1.5) and the right-hand

side from the nonlinearity. It turns out to have a gradient structure with

the modulation potential

U(z) = −1

3

∑
j1+j2+j3=0 mod N

∑
k1+k2+k3=0

zk
1

j1 z
k2

j2 z
k3

j3 .

The infinite system is truncated and can be solved approximately (up

to a defect εK) for polynomial modulation functions zkj under a non-

resonance condition: we require that small denominators ω2
j − (k · ωωω)2

are not too small. For example, we might suppose, as in [CHL05],

|k · λ| ≥ c
√
ε for k ∈ ZN with 0 < |k| ≤ 2K,

where |k| = |k1|+ . . .+ |kN |. Under such a non-resonance condition one

can construct and suitably bound the modulation functions zkj , and the

modulated Fourier expansion (1.6) is an O(εK) approximation to the

solution over a short time interval t = O(1).
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The case of resonant frequencies can also be treated by requiring

a non-resonance condition outside a resonance module; cf. [BGG89,

CHL05]. The situation is at present less clear for almost-resonances.

Almost-invariants of the modulation system. With the func-

tions ykj (t) = zkj (t)e
i(k·ωωω)t, the modulation equations (1.7) take the New-

tonian form

ÿkj + ω2
j y

k
j = − ∂ U

∂y−k
−j

(y).

The modulation potential has the obvious, but important invariance

property

U(Sℓ(θ)z) = U(z) for Sℓ(θ)z = (eikℓθzkj )j,k.

Formally applying Noether’s theorem, this leads to formal invariants

Eℓ
(
z,
dz

dτ

)
=

1

2

∑
j

∑
k

kℓωℓ

(
(k ·ωωω)|zkj |2 − iz−k

−j

dzkj
dτ

)
,

which are almost-invariants of the truncated modulation system (1.7).

They turn out to be close to the oscillatory energies Eℓ. By patching

together many short time intervals, the drift in the almost-invariants Eℓ
can be controlled to remain small over long times, and in this way also

the drift in the oscillatory energies Eℓ is under control.

With these ingredients and many problem-specific technical details

and estimates we obtain results on the long-time behaviour of the oscil-

latory energies Eℓ.

1.5 Conclusion

We close this review with a citation from the very influential paper by

Fermi, Pasta & Ulam [FPU55] (see [Gal08] for a reprint and review):

“This report is intended to be the first one in a series dealing with the

behavior of certain nonlinear physical systems where the non-linearity is

introduced as a perturbation to a primarily linear problem. The behavior

of the systems is to be studied for times which are long compared to the

characteristic periods of the corresponding linear problem.”

This is just what modulated Fourier expansions are good for, both for

continuous problems and their numerical discretisations.
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