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Abstract

Inspired by the theory of modified equations (backward error anal-
ysis), a new approach to high-order, structure-preserving numerical
integrators for ordinary differential equations is developed. This ap-
proach is illustrated with the implicit midpoint rule applied to the full
dynamics of the free rigid body. Special attention is paid to methods
represented as B-series, for which explicit formulae for the modified
differential equation are given. A new composition law on B-series,
called substitution law, is presented.
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1 Introduction

For an accurate numerical integration of a system of differential equations

v=rf(y), y0)=w (1)

it is important to use methods of high order (say, at least order 4). Clas-
sical approaches for getting high order are multistep, Runge-Kutta, Taylor
series, extrapolation, composition, and splitting methods. In this article
we present a new approach for constructing high order methods by using
modified differential equations.

The idea is the following: for a given one-step method y,11 = Pf(yn)
(typically very simple to implement, and of order 1 or 2), find a modified
differential equation, written as a formal series in powers of the step size h,

J=f(y) =f)+hfa(y) + R f3(y) +---,  y(0)=yo, (2)

such that the numerical solution of the method ®; applied to the modified
differential equation (2) yields the exact solution of (1) in the sense of formal
power series, i.e.,

P50, () = orn(y)- (3)
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Here, ¢.(y) denotes the exact time-t flow of the problem y = f(y).

Once a few coeflicient functions f;(y) are known, this permits us to con-
struct high order integration methods for (1). We suggest the name modi-
fying integrators for this approach, because the vector field (1) is modified
into (2) before the basic method is applied.

Modifying integrator. Forr > 1, consider the truncation

g=f"y) = fly) +hfa(y) +-- + () (4)

of the modified equation (2) for which (3) holds. Then,

Ynt+1 = P11 5 (Yn) (5)
defines a numerical method of order r for (1).

An intrinsic feature of this approach is that geometric properties of the
flow of (1) which are conserved by the basic method, are in general retained
by the high order modifying integrator (see Sect.2 below).

There are a few methods that can be cast into the framework of mod-
ifying integrators. This is the case for the generating function methods
of Feng Kang [4], Feng, Wu, Qin & Wang [5], and Channel & Scovel [1].
There, Hamiltonian systems f(y) = J-'VH(y) in canonical form are con-
sidered together with simple symplectic integrators (e.g., symplectic Euler
method, or the implicit midpoint rule). It turns out that the modified differ-
ential equation is Hamiltonian and can be obtained as formal solution of the
Hamilton—Jacobi partial differential equation (see [6, Sect. VI.5.4]). A re-
cent modification by McLachlan & Zanna [11] of the discrete Moser—Veselov
algorithm for solving the Euler equations for the free rigid body can also be
interpreted as a modifying method (although it is not constructed in this
way).

Modifying integrators will be efficient when the evaluation of the trun-
cated vector field in (4) is not much more expensive than that of f(y). This is
definitely the case for the equations of motion for the full dynamics of a rigid
body (see Sect. 3). We shall see later in Sect. 4 that the coefficient functions
fj(y) depend on derivatives of f(y). McLachlan [10] discusses situations
(N-body problems, lattice systems) where the computation of derivatives is
cheap when it is performed together with the evaluation of f(y). In these
situations the modifying integrators have a large potential.

This paper is organized as follows: the construction of the modified
differential equation (2) is discussed in Sect. 2, where also some important
geometric properties are presented. As an example of modifying integrators,
a new efficient high-order method (based on the implicit midpoint rule) is
developed in Sect.3 for the motion of a free rigid body. Many numerical
one-step methods (e.g., all Runge-Kutta and Taylor series methods) can be
represented as a B-series. For this case, a substitution law for B-series is



introduced, which yields general formulae for the modified equation (Sect. 4),
with technical details postponed to Sect. 5.

2 The modified differential equation

We explain the construction of the modified equation (2), and we discuss
how the modified equation inherits the geometric properties of the numerical
integrator.

2.1 Construction of the modified equation

In the following, we assume that the vector field of (1) is infinitely differen-
tiable, and that the numerical integrator ®; is smooth in h and in f, and
of order at least one.

If the basic integrator @y, (y) is well-defined for all smooth vector fields
f(y), then one can simply develop both sides of (3) into a Taylor series
around h = 0. A comparison of equal powers of h then yields recursively
the functions f;(y) of the modified differential equation (2). This can con-
veniently be done with a formula manipulation program like MAPLE.

It may happen that the basic integrator is only defined for a subclass
of differential equations (e.g., the Discrete Moser—Veselov algorithm for the
motion of a free rigid body, cf.[7]). In this case, the following recursive
construction is in general possible. Suppose that the functions f;(y) are
known for j = 1,...,r (we use fi(y) = f(y)). If the basic method is well-
defined for the vector field fI"l(y) of (4) (this is certainly the case for r = 1)
and if it satisfies ®fy.0n(y) = Pru(y) + heg(y) + O(h%e), the function
fr+1(y) is obtained from the relation

@i (y) = ornly) — B fra(y) + O(R7F2), (6)

Remark 2.1 The above construction is similar to that for modified differ-
ential equations considered in the theory of backward error analysis. There,
one interprets the numerical solution ®¢4(y) as the exact solution of a mod-
ified differential equation of the form (2), i.e.,

CinW) = Prnly). (7)

The only difference between (3) and (7) is that the roles of the integrator
® and of the exact flow ¢ are interchanged. Backward error analysis is
fundamental for the study of geometric integrators and it is treated in much
detail in the monographs of Sanz-Serna & Calvo [13], Hairer, Lubich &
Wanner [6], and Leimkuhler & Reich [9].



2.2 (Geometric properties

The importance of backward error analysis in the context of geometric nu-
merical integration lies in the fact that properties of numerical integrators
are transfered to corresponding properties of modified equations (see [6,
Chap. IX]). Due to the close relationship between backward error analysis
and our approach of modifying integrators, it is not a surprise that most
results of backward error analysis can be extended to our situation. Let us
collect the most important properties of the modified equation (2):

e if the numerical integrator ®¢;(y) has order p, i.e., the local error
satisfies 7, (y) — ¢rn(y) = O(RPT), then we have f;(y) = 0 for
j = 2a -5 D5

o if the integrator ®(y) is symmetric, i.e., 7 _p(y) = @;}l(y), then
the modified differential equation has an expansion in even powers of
h, i.e., f2j(y) = 0 for all j, and the modifying integrator is symmetric;

e if the basic method ®,(y) exactly conserves a first integral I(y) of
(1), then the modified differential equation has I(y) as first integral,
and the modifying integrator exactly conserves I(y);

e if the basic method is symplectic for Hamiltonian systems of the form
Y = J7IVH(y), then the modified differential equation is also Hamil-
tonian, i.e., f(y) = J_IVﬁ(y); the modifying integrator is also sym-
plectic;

e if the basic method is a Poisson integrator for Poisson systems of the
form y = B(y)VH(y), then the modified differential equation is also
a Poisson system with the same structure matrix B(y), and the mod-
ifying integrator is a Poisson integrator;

e if the basic method is reversible for reversible differential equations,
then the modified differential equation and the modifying integrator
are reversible;

e if the basic method is volume preserving for divergence-free differential
equations, then the modified differential equation is also divergence-
free, and the modifying integrator is volume preserving.

Rigorous proofs of these statements are obtained by adapting those of The-
orems [X.1.2, 1X.2.2, 1X.2.3, 1X.3.1, IX.3.5, and Corollary 1X.5.4 in [6]. One
only has to interchange the roles of the numerical and the exact flows.

3 Modifying midpoint rule for the rigid body

As an example of a modifying integrator, we introduce a new efficient high-
order method for the dynamics of a free rigid body. As basic numerical



integrator yn4+1 = P(yn), we choose the implicit midpoint rule,

Yn + yn-i—l). ®)

yn+1:yn+hf< 2

It is a simple symmetric method that exactly preserves quadratic first in-
tegrals. For simplicity, we present the modifying implicit midpoint rule of
order 6, but the procedure can be extended straight-forwardly to higher
orders.

3.1 Solving the Euler equations of the rigid body

The Euler equations of motion for the free rigid body are

U1 = ay2ys, a=I"1 1"
Y2 = BYysy1, B=1I"t -1, (9)
Us = YY1y2, y=I1' -1,

where y1(t), y2(t), y3(t) are the angular momenta of the rigid body, and the
constants Iy, Is, I3 are the three moments of inertia. This system has two
quadratic first integrals (Casimir and Hamiltonian)

Lo 2 2 1 y% y% yg
. d H :—(— %)
C(y) 2(y1+y2 +y3) an (y) =3 L tL T ]3) (10)

Since the midpoint rule exactly conserves C(y) and H(y), the modi-
fied differential equation (2) has these two functions as first integrals (see
Sect. 2.2). Therefore, it is a time transformation of (9). Since the method
is also symmetric, it is in even powers of h, and the truncated modified
equation (order 6) reduces to

9= fPly) = (1 + hs3(y) + hiss(y)) f (), (11)

where f(y) is the right-hand side of (9). The scalar functions s3(y), s5(y)
can be computed using MAPLE and are given by

1
s59) = 35 (ﬁvy% + ayy3 + aﬂysf), (12)

6 1
s5(y) = gs§(y) + 60 afBy (6 yi’ys® + vty + Oéy32y22) .

Notice that the scalar functions s3(y) and s5(y) are not constant along
a particular solution (except in the case of a symmetric body). A modified
equation of the same structure has been studied in [14] in the context of
backward error analysis.



3.2 The full dynamics: the configuration update

To obtain the full dynamics of the free rigid body, one has to solve the
augmented differential equation
0 —¥B ®»

<Q>‘<Qw<y> meowe=lh ) W

where Q(t) is an orthogonal matrix that gives the position of the body in the
fixed coordinate system at time t. The modified vector field for the implicit

midpoint rule is given by
9\ _ ([ P >
(&) = (awelty): )

where fPl(y) is the vector field of (11) and the skew-symmetric matrix
Whl(y) is given by
Whl(y) = w(yP). (15)

Here, y°! is the vector with components
o= (1 R (ss() + L ds(0) + B (s5() + L ds(v) ), 5= 1,23,

where s3(y) and s5(y) are the functions of (12), and (using MAPLE)

1
ds(y) = 35 (~CO) +6H©)),

1
ds(y) = o5 (1CW)? +6:CWH W) + & H(y)? + 57 (3:C() + 5H W) ).
The constants A, dg,...,d5 only depend on the three moments of inertia

I, I, I3, and are given by

1 8 7 7
A=11I = (212 + 912 _3J? 2 _ Lt _ 4
1 0 = J (Gl 4205 = 30) & 70— = 7
1 I + 13 I + I I, + I3
So==(I1+ I+ I 53 =342 2 _3
0 2(17L 2+ 13), 3 + T + A L
1 1 1 1 1
6= (10 —66).  bi=5(—=)(£-7) 6 =—dds
1 A( 1 0)- 4 AV 5 004

Since the vectors y and yl°! are not collinear, the modified equation (14)
is not a time transformation of the original system (except in the case of a
symmetric body).

Applying the implicit midpoint rule to the system (14) thus yields a
numerical integrator of order 6 for the full dynamics of the free rigid body.



3.3 Efficient implementation

Since C(y) and H(y) are two invariants, for the modifying integrator of
order 4 (and similarly for higher orders) it is possible to avoid some costly
multiplications in (12) for the computation of s3(y) by writing it in the form

s3(y) = c1C(y) + caH(y) + 393, (16)

where the constants c; only depend on Iy, I, I3, and can be calculated once
for all. Then, when using a fixed point iteration to compute the internal

stage n

2 ?
it is not necessary to evaluate C(Y) and H(Y) with the formulae (10).
Indeed, one can use the estimates C(y,) and H(y,) instead of C(Y) and
H(Y),

(17)

s3(Y) & c1C(yn) + coH (yn) + c3 Y7,

where Y7 is the first component of Y. The method is still symmetric because
C(yn) = C(yYns1), and the order remains 4 since C(Y) = C(y,)+O(h?) (and
similarly for H(Y')).

We now turn our attention to the computation of the configuration up-
date. For an efficient implementation, it is a standard approach to use
quaternions to represent orthogonal matrices (see [6] in the context of rigid
body integrators implementations). This reduces the midpoint rule

Qn-i—l = Qn + h(%) W[5] (Y)a

where WP in given in (15) and Y is defined in (17), to a simple multiplica-
tion of quaternions through the equivalent formulation

Qny1 = Qn S

Here, € is the orthogonal matrix defined by the Cayley transform
h h —1
Q (I + 5 %% (Y)) (I 5 W (Y))

which can be represented by the quaternion ”5—” of norm 1 given by

h v y ol vyl
ST YA G
w +2111+jj2+13
Numerical experiment. We consider the system (13) for the free rigid
body on the interval [0,100], and we use I; = 0.9144, I, = 1.0980, I3 =
1.6600, and initial values y(0) = (0.4165, 0.9072, 0.0577)% as in [11]. As
numerical integrators we apply the standard implicit midpoint rule and also
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Figure 1: Work-precision diagram for the implicit midpoint rule (order 2)
and its modifying versions of orders 4 and 6.

the modifying versions of orders 4 and 6. The errors as a function of the
computational work (number of steps) are drawn as solid lines in Figure 1.

We are also curious to see how much work the modifying versions require
with respect to the standard application of the midpoint rule. For this,
we have carefully implemented the implicit midpoint rule IMR2 and the
modifying versions IMR4 and IMR6 of orders 4 and 6 (using quaternions for
the rotation matrices). Table 1 shows the cpu time (normalized with respect
to that of IMR2) of the different implementations, and also the error in the
angular momentum for three different choices of the step size. Although
the numbers should not be overestimated, one clearly sees that IMR4 needs
not more than twice and IMR6 not more than 2.5 times the work of IMR2.
This is cheaper than what can be expected for either s-stage Runge-Kutta
methods of the same order or for composition methods. FORTRAN codes
for the modifying implicit midpoint rule introduced in this article can be
obtained from the authors on request.

Table 1: Normalized computational work and accuracy

IMR2 IMR4 IMRG
nstep || work error work error work error
100 1.0 40-1072| 1.5 74-107*| 1.8 21-107°
400 || 1.0 25-103| 1.9 3.0-106| 2.5 54-107?
1600 || 1.0 1.5-107*] 1.8 1.2-107%] 2.2 1.3-107'2

4 Analysis for B-series methods

The discrete flow of many numerical integrators (including Runge-Kutta
methods) can be expanded into a B-series as introduced and studied in [8].
We follow the notation of [6, Chap.III], where a more comprehensive pre-
sentation of this theory is given.



4.1 Substitution law for B-series vector fields

Let T'= {+, /,Y,...} be the set of rooted trees, and let () be the empty
tree. For 71,...,7, € T, we denote by 7 = [11,...,T,;,] the tree obtained
by grafting the roots of 7, ..., 7, to a new vertex which becomes the root
of 7. The order |7| of a tree 7 is its number of vertices and its symmetry
coeflicient is defined recursively by

o(e)=1, o(t)=o0(m) - o(mm)plug! -+, (18)

where the integers p1, po, . .. count equal trees among 7, ..., 7. Eventually,
elementary differentials Fy(7) are given by

Fr()y) =f),  Fr(m) ) = ™) (Fp(r) @), ... Fr(mn) (). (19)

For real coefficients a(0)) and a(7),7 € T, a B-series is a series of the form
Akl
B(f,a) = a(0) Id + EE:T o AE (D) (20)

where Id stands for the identity Id (y) = y. The Taylor series of the exact so-
lution of (1) can be written as a B-series y(h) = B(f, e)(yo) with coefficients
e(1) = (1), where

WD =1 ) = el -+ {Tm) ()

The flow yp4+1 = P¢i(yn) of a Runge-Kutta method is of the form &) =
B(f,a) with a(7) depending only on the coefficients of the method (see [6,
Chap. I11] for more details).

With the aim of unifying the theory of this article with backward error
analysis, we let (2) be the modified equation defined by

Pz, (y) = Vrn(y) (22)

where ® and ¥ are two numerical integrators that can be expressed as B-
series @75, = B(f,a) and ¥¢j = B(f,c). For Y¢,,(y) = ¢fn(y) we recover
formula (3), and for (Inyh(y) = ‘Pf,h(y) we get (7).

In terms of B-series, formula (22) becomes B(f,a) = B(f,c). When
computing recursively some of the coefficient functions of (2), one is quickly
convinced that they are linear combinations of elementary differentials and
that f(y) = h=*B(f,b)(y) with coefficients b(7) that have to be determined
(notice that we necessarily have b(()) = 0). This motivates the following

theorem, introduced in [2].

Theorem 4.1 For b(()) = 0, the vector field R~ B(f,b) inserted into B(-,a)
gives a B-series

B(h™'B(f,b),a) = B(f,bxa).

We have (b a)(0) = a(), some further coefficients are given in Table 2,
and a general formula for (b*a)(T) is given in (26) of Sect. 5 below.



Table 2: Coefficients of the substitution law for B-series vector fields.

bxa)®) = a0
bxa c) = a(+)b .)
bxa Db(J) +a( 7)b(+)?

[
>4
S|

We postpone the proof of this theorem to Sect.5, and briefly discuss
some of the most important properties and applications. Further properties
may be found in [2].

The question of finding the modified equation defined by (22), i.e., of
finding the coefficients b(7) for given a(7) and ¢(7) in the relation

B(h™'B(f.b),a) = B(.0),
results in solving for b(7) the algebraic system
(bxa)(r) =c(r) for Te€T. (23)
We notice that
(bxa)(r) = a()b(r) + --- +a(7)b(+)"",

where the three dots involve only trees of order strictly less than |7]. Con-
sequently, for consistent integrators ®;;, = B(f,a) and Vs, = B(f,c), for
which a(@) = a(+) = 1 and ¢(0) = ¢(+) = 1, the coefficients b(r) can be
computed recursively from (23). In this way, the computation of the vector
fields f;(y) in the modified differential equation (2) is reduced to that of real
coefficients.

Modifying integrators. In this case Wy, is the exact h-flow of (1) which
is a B-series with coefficients e(7) = v(7)~!. Consequently, the coefficients
b(7) of the modified differential equation for ®; = B(f,a) are obtained
from

(bxa)(T) = e(T) for 7e€T. (24)

Backward error analysis. The modified differential equation of a method
U, = B(f,c) is obtained by putting ®;; equal to the exact flow. Its
coefficients b(7) are therefore obtained from

(bxe)(r) =c(T) for 7e€T.

Remark 4.2 The B-series h1B(f,b) of mappings b : T'U {(}} — R with
b(()) = 0 represent vector fields. The product b a defines a group structure
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on the set {c : T U {0} — R;c(0) = 0,¢(+) = 1} which represents such
vector fields. Its unit element is given by ¢(+) =1 and ¢(7) = 0 for |7| > 1,
and it corresponds to the original vector field f(y).

We mention that the presented theory can be extended straightforwardly
to partitioned integration methods (P-series). This is particularly important
for the consideration of symplectic integrators.

4.2 Modifying implicit midpoint rule

As an example, consider the implicit midpoint rule (8) which admits a B-
series expansion B(f,a) with a(r) = (%)M_l. Determining the functions
f3(y) and f5(y) in the modified differential equation (2) amounts to com-
puting (up to order 5) the coefficients b(7) of the B-series B(f,b) from the

relation (24). The formulae of Table 2 yield
1 1
b )= 1 b = b = — b = ——.
(=1 =0 BV)=.  HH=-&
The coefficients for trees of order 4 vanish due to the symmetry of the

method, and those for order 5 can be calculated from (26). We thus arrive
at the following modified vector field:

5 _ SR
o=t 12( fff+2f (fyf)) (25)
h* 1 gl gl gt 1" I, L oiwn w
+ g (FFFFE =G FH+ 51T E1D)
h4 1//// 1 el / 1 " "
+ g (=TGN I GL )+ 50 E L)

This formula reduces to (11) for the Euler equations and to (14) for the full
dynamics of the rigid body.

4.3 Elementary differential Runge—Kutta methods

The idea of modifying integrators applied to Runge-Kutta methods provides
an easy way to construct high-order methods for the numerical solution
of (1). Methods obtained in this manner are a particular case of the so-
called elementary differential Runge-Kutta methods (EDRK), introduced by
Murua [12].

Consider a s-stage Runge-Kutta method y, 11 = ®f5(yn) of order p. It
admits a B-series expansion ®;;, = B(f,a). Applying this method to the
modified vector field f"! (y), truncated at some order r greater than p, leads

11



to a r-derivative EDRK method of order (at least) r given by
Yi = ynt hZaijf[r](Yj), 1=1,...,s,
j=1

Uni1 = yn+hY_bifI(Y)).
i=1

By Theorem 4.1 the modified vector field is a B-series

My) = F@) + R fpa(y) +- + B fa(y),
G = S rme), =1

o(7)
I7|=j
Its coefficients b(7) are obtained from the relation (24).

Example 4.3 Consider the s-stage Runge-Kutta method of order p = 2s
(Gauss method). Since it is symplectic and symmetric, the modified vector
field fI"/(y) is Hamiltonian for all Hamitonian systems ¢ = J~'VH(y), and
we have fo;(y) = 0 for all j (see Sect. 2.2). Then, if we take an odd integer 7,
we obtain an implicit symplectic and symmetric r-derivative EDRK method
of order (at least) r 4+ 1. The special case s = 1 yields the symplectic
generating function methods based on the implicit midpoint rule [5].

For instance, for s = 2, r = 5, we obtain a 5-derivative EDRK method
of order 6, and coefficients b(7) for trees of order |7| =5 are given by

W) = 1 W) = 5o b<;> -

together with the algebraic conditions on the coefficients b(t) for fI'l(y) to
be a Hamiltonian vector field (see [6, Sect.1X.9.2]).

Remark 4.4 It would be interesting to know whether there exist symplectic
(and symmetric) EDRK methods that are not modifying classical Runge—
Kutta methods and have an order higher than max(2s,r + 1).

5 An explicit formula for the substitution law

In this section, we give a computation formula for the substitution law of
B-series introduced in Sect. 4.1. We begin with some definitions.

12



5.1 Partitions and skeletons

A partition p” of a tree 7T is obtained by cutting some of its edges [2]. The
resulting list of trees is denoted P(p™). Eventually, the set of all partitions
p” of 7 is denoted P7. Now, given a partition p”, the corresponding skeleton
Xx(p7), as introduced in [3], is the tree obtained by contracting each tree of
P(p™) to a single vertex « and by re-establishing the cut edges (see Table 3).
We observe that a tree 7 € T has exactly 2/7I=1 partitions p” € P7, and that
different partitions may lead to the same list P(p").

Table 3: The 8 partitions of a tree of order 4 with associated functions

y Y LYY Y Y

oy | - | s |2 v [ Pyl Y

!
Pe) [ (3| 6w | 60 [ G oy | ety [ o0 | (oo

5.2 The substitution law formula

We are now in position to state the main result of this section. The coef-
ficients (b* a)(7) of the substitution law can be expressed in terms of the
coefficients a(6) and b(0) with |#] < |7| in the following polynomial expres-

| bra)) = Y ax@) [[ »6) (26)

pTEP(T) deP(pT)

for 7 € T'. For the example of Table 3, this formula yields

bra)(Y) = a(-)o(¥)+a(2)b(-)o(V) +2a(2)b(+)b(})
T a(V)b(+)26( 1) + 2a( })b(+)2b(7) + a( Y Jo(+)*.

5.3 Proof of the substitution law formula

Multiplying (27) with a(f) and summing up yields B(g,a) = B(f,b x a).
Formula (26) is thus obtained by multiplying (28) with a(f) and summing
up. It therefore remains to prove the following lemma.

Lemma 5.1 Let g(y) = h™'B(f,b)(y) be a (h-dependent) vector field de-
fined by a B-series with b(()) = 0. Then, for 6 € T, we have

jad

0_(0) Fg(e) :B(fybe)v (27)
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where the coefficients by(T) are given by bg(d) =0, and for 7 € T,
bo(r) = D [T 6. (28)
PTEPT, x(pT) =0  SeP(pT)

Before proving this lemma, we need the following Lemma 5.2 which
requires a few more definitions illustrated in Table 4. Given a partition p”
of a tree 7, the tree of P(p™) which contains the root of 7 is denoted r(p7).
For brevity of formulae, we further use P*(p”™) = P(p”)\{r(p")}. A partition
pT is said to be admissible if the path from the root to any vertex has at
most one cut. The set of admissible partitions of 7 is denoted AP7”.

Table 4: The 8 partitions of a tree of order 4 with other associated functions

p YIYI Y|y Y| Y

nroR I 4IPS 1D 20 N 20 NN P R I

P O 1AV e e [ 2 L) feee )

p" € APT ? || yes | yes | yes | yes | yes no no no

Lemma 5.2 Let g(y) be defined by g(y) = h™'B(f,b)(y) with b(()) = 0.
Then, for § = [01,...,0m] € T, we have

Blol
o5 9" W) (FrO)w), - FrGn)w)) = Bl dib)w),  (29)

where dsb(7) is defined by dsb(0)) =0, and for 7 € T,
dsb(T) = > b(r(p")). (30)
PTEAPT, P*(p7)={61,..0m )}

Proof. The proof follows closely that of Lemma 1X.9.1 in [6] and it is thus
omitted. Notice that admissible partitions correspond to ordered subtrees
in [6]. O

Proof of Lemma 5.1. We proceed by induction on |]|. From Fj(.) =
g = h='B(f,b) we have b, (7) = b(r) for all 7 € T. Consider now a tree
0 =101,...,0y) with |0] > 2, and assume (27) and (28) are satisfied for trees
of order strictly less than [0|. By definition of F;(#) and multi-linearity of
g @)(,...,-), we have

Rl o(01)---o(Om) 1 “
mFgw)(y) = IO'T Z —<Hb9i(7—i)>

T1yeey Tm €T U(Tl) o U(Tm)
BTG () (Fr (1) () -+, Fy (1) (9))
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with 7 = [11,..., 7). Formula (29) of Lemma 5.2 then gives, for v € T

L L M T

o(11) -+~ 0(7m)

T1yeer, TmET
Now, taking into account the fact that permutations among 71,..., 7, do
not change the tree 7 = [11,..., 7] (and similarly for ), it follows that
m
W= X ([T
T=[11, ..., Tm]ET 01, ..., 0m €T, \i=1
[01,...,0m] =0

and Formula (30) allows one to write

bolw) = > > () [Toa(m).
[T1y ey Tm]ET p¥ € APY, 01, ...,0m €T, i=1
P (pY) ={r1, ..., Tm}  [01, ..., O0m] =0

Using the induction hypothesis we eventually obtain

bo(v) = > > b(r() ] ()

(71, .., 7m] € T, pTIEPTL, .., pTm EPTM, deuU™  P(p™)
e ﬂ)p G{AP ) ) [X(PT), - s x(P])] =0
p = Tly - -3 T

= > I »6).

pveP?, x(p¥)=0 J€P(p?)

which proves the statement of Lemma, 5.1. ]
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