
Path-regularization of linear neutral delay differential equations
with several delays

Nicola Guglielmia, Ernst Hairerb

aDipartimento di Ingeneria Scienze Informatiche e Matematica, Università dell’Aquila, via Vetoio (Coppito)
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Abstract

For differential equations with discontinuous right-hand side and, in particular, for neutral delay
equations it may happen that classical solutions do no exist beyond a certain time instant. In
this situation, it is common to consider weak solutions of Utkin (Filippov) type. This article
extends the concept of weak solutions and proposes a new regularization which eliminates the
discontinuities. Codimension-1 and codimension-2 weak solutions are considered. Numerical
experiments show the advantages of the new regularization.
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1. Introduction

Delay differential equations arise when phenomena with memory are modelled. This article
considers systems of linear neutral delay differential equations

ẏ(t) = c
(
y(t)

)
+

m∑
j=1

A j
(
y(t)

)
ẏ
(
α j(y(t))

)
for t > 0

y(t) = ϕ(t) for t ≤ 0,

(1)

where y ∈ Rn and the functions c(y), A j(y), ϕ(t) and α j(y) are sufficiently differentiable. We
consider time intervals where the solution satisfies α j(y(t)) < t for all j. The right derivative of
the solution of (1) at t = 0 is

ẏ+0 = c
(
ϕ(0)

)
+

m∑
j=1

A j
(
ϕ(0)

)
ϕ̇
(
α j(ϕ(0))

)
, (2)

and in general it is different from its left derivative ẏ−0 = ϕ̇(0). This produces a jump discontinuity
of the derivative ẏ(t) at t = 0. Since neutral delay equations are considered, the vector field of
(1) has a discontinuity when the solution y(t) crosses one of the manifolds given by α j(y) = 0, or
evolves in one of them.
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Neutral delay differential equations are closely connected to piecewise smooth dynamical
systems (PWS) and in general to ordinary differential equations with discontinuous right-hand
side. Excellent monographs on these subjects are those by Filippov [6], Utkin [14] and more
recently by Budd, Di Bernardo, Champneys and Kowalczyk [1]. It is well-known that in gen-
eral ordinary differential equations with discontinuous right-hand-side f do not have a classical
solution, and a weak solution concept becomes necessary. A quite popular definition of weak
solution is due to Filippov, see [6], who suggested to replace - at a discontinuity point - the
right-hand-side by a certain differential inclusion. The resulting method is known as Filippov
convexification (a methodology which treats all components of the solution in the same way, as
we will see). Similarly when the vector field f is discontinuous due to a discontinuity of one of
its arguments, Utkin convexification consists in replacing the discontinuous argument by a con-
vex combination of its left and right limits. Since the source of discontinuity in a neutral delay
differential equation of the form ẏ(t) = f (t, y(t), ẏ(α(y(t)))) is a jump of the solution derivative at
a past instant, it would seem natural to follow Utkin’s approach and replace the discontinuous ar-
gument ẏ(α(y(t))) by a convex combination of its left and right-hand limits. In the present work,
due to the fact the we consider linear problems, Filippov and Utkin convexifications coincide.

However, in presence of a discontinuity hypersurface of codimension bigger than 1, such a
convexification becomes ambiguous and a bunch of possible weak solutions arises, so that the
contemporary literature has focused its attention on this situation. Recent papers by Dieci, Elia
and Lopez have discussed possible ways to retain a unique weak solution. In [4] and [5] and
more recently in [2] the authors have provided a systematic way for defining vector fields on
the intersection of several surfaces. Their model passes through the use of a multivalued sign
function and is restricted to cases where the sliding manifold is attractive.

The possibility of choosing several weak solutions is a main issue of the present paper. An
alternative to an a-priori motivated choice for selecting a sliding vector-field, is that of consider-
ing regularizations. This idea has also been partially explored in the literature (see e.g. [13], [7],
[8], [3], [12]) where singularly perturbed smooth systems are proposed to replace the original
PWS and analyzed.

For neutral delay differential equations the discontinuity is due to a jump at breaking points
of the derivative of the solution, which appears on the right hand side of (1) and is determined
by the fact that the derivative of the initial function at t = 0 is different from the derivative of the
solution. Here we consider a so-called path-regularization, which replaces the derivative of the
initial datum by a continuous function. Such a path-regularization mainly aims to achieve a few
peculiar properties for the regularized solution, as the closeness to a classical solution, when it
exists, and the absence of high frequency small oscillations, which is a typical drawback (also
known as chattering) of introducing singular perturbations in non-smooth systems.

An interesting by-product of our analysis is the appearence of a so-called hidden (or dummy)
dynamics (see also [11]), which models the instantaneous behaviour of the discontinuous system
at a discontinuity. This is the key point to answer a fundamental question, which involves the
(hidden) instantaneous dynamics of a PWS at a discontinuity, which is apparently not described
by the system of ODEs.

The present article starts with a summary of previous results (Section 2) and continues with
a numerical experiment (Section 3), where the effect of the new path-regularization is illustrated.
Section 4 discusses the concept of weak solutions for neutral delay equations. It extends the
approach of Filippov [6] and Utkin [14], by allowing more flexibility, which turns out to be
essential for the space regularisations introduced in Section 5. Based on singular perturbation
techniques [9] the characterisation of [10] for the kind of solution, which is approximated by the
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regularization, is extended to arbitrary paths and to codimension-2 weak solutions. The stabil-
ity of codimension-2 weak solutions is studied in Section 6 with technical proofs postponed to
Section 7. In particular, it is shown that the new path-regularization can avoid highly oscillatory
approximations that can be present in the standard space regularization.

2. A summary of previous results

In this section we summarize the main results obtained in the recent articles [10] and [9],
which are concerned with the same kind of problem addressed here. In [10] we have considered
neutral state dependent delay differential equations with a single state-dependent delay α(y), i.e.

ẏ(t) = f
(
y(t), ẏ

(
α(y(t))

))
y(t) = ϕ(t) for t ≤ 0

(3)

where y ∈ Rn and f (y, z), ϕ(t) and α(y) are smooth functions, and we assume ϕ̇(0) , ẏ(0+).
The possible discontinuities in the right-hand-side, due to jumps in the solution derivative at
breaking points, may determine existence termination for the solution. Since such a situation
can occur only when the solution meets the manifold α(y) = 0 (or α(y) ∈ {breaking points}), we
have to weaken the concept of solution to so-called sliding modes along such a manifold. This
is a codimension-1 sliding and is therefore well-described by Filippov and Utkin methodologies.
Our goal is not that of applying such methodologies directly but to study suitable regularizations
and analyze their limit behaviour (with respect to the regularization parameter ε). In [10] we
have considered two regularizations.
First regularization. By rewriting (3) in the equivalent form

ẏ(t) = z(t)

0 = f
(
y(t), z

(
α(y(t))

))
− z(t),

(4)

where y(t) = ϕ(t) and z(t) = ϕ̇(t) for t ≤ 0, the regularization is based on the replacement of the
initial function ϕ̇(t) on the interval −ε ≤ t ≤ 0 by the function π (t/ε), where π : [−1, 0] → Rn is
a smooth monotonic function satisfying π(−1) = ẏ−0 and π(0) = ẏ+0 .
Second regularization. Next we have considered the non-neutral delay equation which is ob-
tained by associating to (4) the singularly perturbed delay differential equation (with 0 < ε � 1)

ẏ(t) = z(t)

ε ż(t) = f
(
y(t), z

(
α(y(t))

))
− z(t).

(5)

To study the solution of the regularized problems for small ε we have constructed an asymptotic
expansion after the first breaking point (i.e. t0(ε) such that α(y(t0(ε))) = 0). In [10] we have
proved that the solutions of both regularizations remain close to the solution of (3) both when
this is a classical one and when it is a weak one (in the sense of Utkin). This means that in
presence of a unique solution, either weak or classical, the regularized solutions converge to it
when ε → 0. The main differences between the two regularizations are relevant to the case
when the solution is not unique. In those cases when weak and classical solutions coexist, the
first regularization always approaches a weak solution. Instead, the second regularization can
approach a weak or a classical solution depending on the behaviour of an underlying dynamical
system.
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In [9] we have considered a natural extension of the second regularization to neutral equations
with several state-dependent delays. We have in fact associated to the neutral equation

ẏ(t) = f
(
y(t), ẏ

(
α1(y(t))

)
, ẏ

(
α2(y(t))

))
for t > 0

y(t) = ϕ(t) for t ≤ 0,
(6)

the singularly perturbed non-neutral delay equation

ẏ(t) = z(t)

ε ż(t) = f
(
y(t), z

(
α1(y(t))

)
, z

(
α2(y(t))

))
− z(t).

(7)

The main interest in [9] is an analysis of the approximation of weak codimension-2 solutions.
This can be done by studying a 4-dimensional dynamical system. The main phenomenon we
have underlined is the occurrence of rapidly oscillating solutions of (7) (with frequency propor-
tional to 1/ε), which are associated to limit cycles of the underlying 4-dimensional system. In
some cases a modified regularization allows to damp these oscillations, but there are also cases
where such damping is not possible. This phenomenon makes a numerical integration quite chal-
lenging.

The goal of the present article is that of generalizing the first regularization based on the modifica-
tion of the derivative of the initial function to the case of two delays, that means to codimension-2
discontinuity manifolds.

3. Numerical experiment

For a simple but instructive example, we let

ẏ(t) = c + Aẏ
(
α(y(t))

)
+ Bẏ

(
β(y(t))

)
(8)

with y(t) = ϕ for t ≤ 0, α(y) = y1 − 1, β(y) = y2 − 1, and

c =
(

2
1/4

)
, A =

(
1 0

1/4 0

)
, B =

(
0 −24
0 −4

)
, ϕ =

(
0

9/10

)
(these data are taken from problem (P3) in [9]).

Since ẏ(t) = ϕ̇(t) = 0 for t < 0, the solution of this problem is given by y1(t) = c1t, y2(t) =
0.9 + c2t until the first breaking point (at t0 = 0.4), which is determined by y2(t0) = 1. The
solution cannot continue into the region y2 > 1, because there the derivative of y2(t) would be
negative: c2 − 4c2 = −3/4 < 0. Beyond t0 = 0.4 we thus have a codimension-1 sliding in the
manifold y2(t) = 1. The second component of equation (8), which reads 0 = c2 − 4ẏ2(0) fixes the
value ẏ2(0) = 1/16. Inserted into the first component of (8) this yields y1(t) = 0.8 + 0.5(t − 0.4)
for 0.4 ≤ t ≤ 0.8. Since y1(t) cannot enter the region y1 > 1, we have a codimension-2 sliding
for t ≥ 0.8 which gives y1(t) = 1, y2(t) = 1 for t ≥ 0.8.

With the aim of applying standard ODE/DDE software, we regularize the discontinuous func-
tions arising in our problem. More precisely, we replace the expressions ẏ1(y1 − 1) and ẏ2(y2 − 1)
of the righthand side of (8) by π1(y1 − 1) and π2(y2 − 1), respectively, where

π j(x) =


0 for x ≤ −ε/κ j

c j (1 + κ jx/ε) for −ε/κ j ≤ x ≤ 0
c j for x ≥ 0
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Figure 1: Solution of the regularized problem of Section 3 with ε = 10−2 and different choices of κ j. The horizontal lines
indicate the interval [1 − ε, ε]. The small points on the solution indicate natural output of the numerical integrator.

The standard choice is κ1 = κ2 = 1. We introduce some additional freedom by allowing for
κ j ≥ 1 satisfying min j κ j = 1. The first picture of Figure 1 shows the solution of the regularized
differential equation for the standard choice with ε = 10−2. One notices oscillations of amplitude
O(ε) and of frequencyO(ε−1), which are not present in the exact solution. These high oscillations
make the computation with an ODE solver rather inefficient. When looking at the two discontin-
uous functions, one notices that the jump in ẏ2(0) is by a factor of 8 smaller than that in ẏ1(0).
This motivates us to consider κ2 > 1, so that π2(x) agrees with ẏ1(x) on a larger interval. The
result is shown in Figure 1. Increasing κ2 from 1 to 2 does not affect the oscillatory behaviour,
but reduces the amplitude of the oscillations. As soon as κ2 > 2, the oscillations are damped
(second picture of Figure 1). For κ2 = 8 we even get a monotonic behaviour of the solutions.
The choice κ2 = 8 is natural in the following sense that the slopes of the two regularizing func-
tions are the same. Notice that the slope is responsible for stiffness of the regularized problem.
It is not increased as long as κ2 ≤ 8.

4. Weak solutions associated to a path

Due to the discontinuity of ẏ(t) at t = 0, there is an ambiguity in the definition of the right-
hand side of (1) when y(t) is in one of the manifolds M j = {y |α j(y) = 0}. If there exists a
solution inM−j = {y |α j(y) < 0} and one inM+j = {y |α j(y) > 0} which both approach y1 ∈ M j

and have slopes ẏ−1 and ẏ+1 , respectively, and if α′j(y1)ẏ−1 and α′j(y1)ẏ+1 have the same sign, then
we have a (classical) solution that transversesM j (left picture of Figure 2). If they have opposite
sign and, in particular, if the derivative vectors ẏ−1 and ẏ+1 point towardsM j from both sides (right
picture of Figure 2), it is natural to consider “solutions” that satisfy:

• they evolve in the manifold, i.e., α j
(
y(t)

)
= 0,
5



classical
solution

M

weak
solution

M

Figure 2: Illustration of the difference between classical and weak solutions.

• the undefined value ẏ(0) in the right-hand side of (1) is replaced by an element between
the one-sided limits ẏ−0 and y+0 .

Whereas the first condition is mathematically clear, the second one requires a precision of the
meaning of “between”. In one dimension there is no ambiguity, but in higher dimension there are
several possible definitions. A common approach is to consider the line segment that connects
both one-sided limits. This then leads to weak solutions in the sense of Filippov [6] or Utkin
[14]. Nothing prevents us to consider elements for which the jth component lies between the jth
components of the one-sided limits (rectangle in Figure 3). Since the components of y typically
represent different quantities, there is no reason to insist on the same convex combination for all
components. To get a well-defined weak solution we propose to consider values for ẏ(0) that lie
on a path connecting ẏ−0 with y+0 .

ẏ−0

ẏ+0

Utkin path

ẏ−0

ẏ+0

π(u)

N

Figure 3: Admissible paths and manifold N of weak solutions.

4.1. Weak solutions – codimension-1
We consider the case m = 1 in (1) and we let A(y) = A1(y) and α(y) = α1(y). We further

fix a path π : [−1, 0] → Rn satisfying π(−1) = ẏ−0 and π(0) = ẏ+0 . Our main interest is in paths
whose jth component π j(u) is constant on [−1,−κ−1

j ] and linear on [−κ−1
j , 0] for some κ j ≥ 1 (see

Figure 3, where κ1 = 1 and κ2 = 5/3). The choice κ j = 1 for all j corresponds to the Utkin path.
A weak solution is defined as solution of the differential-algebraic equation

ẏ = c(y) + A(y) π(u)
0 = α(y).

(9)

Consistent initial values satisfy

α(y1) = 0 and α′(y1)
(
c(y1) + A(y1) π(u1)

)
= 0. (10)

This means that at the one hand y1 ∈ M = {y |α(y) = 0}, and on the other hand π(u1) lies on the
intersection of the chosen path with the manifold N = {w |α′(y1)(c(y1) + A(y1) w) = 0} (see the
right picture of Figure 3). If

α′(y1)A(y1) π′(u1) , 0, (11)

then the differential-algebraic equation (9) has a locally unique solution satisfying y(t1) = y1
and u(t1) = u1 (if π(u) is not differentiable at u1, the right derivative has to be considered if u(t)
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increases, and the left derivative if u(t) decreases at t1). Note that the solution y(t) is independent
of the choice of the parametrization of the path.

We remark that the intersection point π(u1), and hence also the weak solution, depends on
the chosen path.

4.2. Weak solutions – codimension-2
For the case m = 2 in (1) we make use of the notation A(y) = A1(y), B(y) = A2(y) and

α(y) = α1(y). β(y) = α2(y). This time we fix two paths πα : [−1, 0] → Rn and πβ : [−1, 0] →
Rn connecting ẏ−0 with ẏ+0 . A codimension-2 weak solution is then defined as solution of the
differential-algebraic equation

ẏ = c(y) + A(y) πα(u) + B(y) πβ(v)
0 = α(y)
0 = β(y).

(12)

Consistent initial values satisfy α(y2) = β(y2) = 0 and

α′(y2)
(
c(y2) + A(y2) πα(u2) + B(y2) πβ(v2)

)
= 0

β′(y2)
(
c(y2) + A(y2) πα(u2) + B(y2) πβ(v2)

)
= 0.

(13)

If the derivative of (13) with respect to (u, v) at (y2, u2, v2) is invertible, then the differential-
algebraic equation (12) has a locally unique solution satisfying y(t2) = y2, u(t2) = u2, and
v(t2) = v2.

5. Path-regularization

To avoid the discontinuity in the derivative ẏ(t) at t = 0 we choose a small regularization
parameter ε, we do not touch the initial function ϕ(t), but we replace its derivative ϕ̇(t) by

z(t) =
{
ϕ̇(t) for t ≤ −ε
π(t/ε) for − ε ≤ t ≤ 0,

(14)

where π(u) defines a path connecting ẏ−0 with ẏ+0 as in Section 4. For ease of presentation we
assume that ϕ(t) is constant for t ≤ 0. An extension to the general situation is straight-forward.
The publication [10] considers codimension-1 weak solutions for the Utkin path. Here, we focus
on codimension-2 weak solutions and on paths depending on parameters κ j ≥ 1 as explained in
Section 4.1.

5.1. Regularized weak solution – codimension-1
We briefly recall some results from [10] and thereby extend them to arbitrary paths π(u).

Since this section is concerned with codimension-1 weak solutions, we can assume m = 1 in (1),
so that the equation becomes

ẏ(t) = c
(
y(t)

)
+ A

(
y(t)

)
ẏ
(
α(y(t))

)
for t > 0

y(t) = ϕ(t) for t ≤ 0.
(15)
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The solution of (15) is not affected by the regularization as long as α(y(t)) ≤ −ε. We let t1 be the
first breaking point of the problem (15), i.e., a0 = y(t1) satisfies α(a0) = 0. Assuming that the
solution enters transversally the manifold α(y) = 0, we have

d
dt
α(y(t))

∣∣∣∣
t=t1
= α′(a0)

(
c
(
a0

)
+ A

(
a0

)
ẏ−0

)
> 0, (16)

where ẏ−0 = ϕ̇(0). Correspondingly, we let t1(ε) be the first time instant such that

α(y(t1(ε))) = −ε. (17)

Because of (16), the implicit function theorem guarantees that t1(ε) can be expanded into a series
of powers of ε. Consequently, this is also true for the solution at t1(ε) and we have an expansion

y(t1(ε)) =
N∑

j=0

a jε
j + O(εN+1). (18)

Beyond t1(ε) and as long as −ε ≤ α(y(t)) ≤ 0, the solution of the regularized problem satisfies

ẏ(t) = c
(
y(t)

)
+ A

(
y(t)

)
π
(
α(y(t))/ε

)
. (19)

Following [10], in order to cope with the singularity at ε = 0, we separate the solution by an
asymptotic expansion of the form

y(t1(ε) + t) =
N∑

j=0

ε jy j(t) + ε
N−1∑
j=0

ε jη j(t/ε) + O(εN+1). (20)

The rationale behind the representation (20) is that of separating the smooth part of the solution
from the non-smooth one, which describes the transient. In order to analyze intervals of length
independent of ε, we assume (as is done usually) that η j(τ) converges exponentially fast to zero
for τ→ ∞. Observe that (20) has to agree with the expansion (18) for t = 0 i.e.,

y0(0) = a0, y j(0) + η j−1(0) = a j for j ≥ 1. (21)

It is convenient to write the argument of π in equation (19) as

1
ε
α(y(t1(ε) + t)) =

1
ε
α(y0(t)) + α′(y0(t))

(
y1(t) + η0(τ)

)
+ O(ε) (22)

and assume (to avoid a singularity as ε→ 0)

α(y0(t)) = 0. (23)

This allows to analyze the limit, for ε→ 0, of (19) in a neighbourhood of t1(ε).
To address the case of a weak solution, we assume the existence of y1 and u1 ∈ (−1, 0) such

that (10) holds. Here, y1 = a0 is the constant term in the Taylor series expansion of y(t1(ε)) (see
(18)). Inserting (20) into (19) with N = 1 and expanding into powers of ε, the ε-independent
term yields the differential-algebraic equation (9) for the functions y0(t) and u0(t) = α′(y0(t))y1(t)
with consistent initial values y0(0) = y1 and u0(0) = u1.
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For the transient part we subtract the smooth part from (19), substitute ετ for t, and then put
ε = 0. This gives

η′0(τ) = A
(
y1)

(
π(u(τ)) − π(u1)

)
, (24)

where u(τ) = α′(y1)(y1(0) + η0(τ)). Under the consistency assumption (10) this function is
solution of the scalar autonomous equation

u′(τ) = α′(y1)
(
c(y1) + A

(
y1) π(u(τ))

)
. (25)

The initial value u(0) = −1 is obtained from (17) and from the fact that y1(0) + η0(0) = a1 is
the coefficient of ε in the Taylor series expansion of y(t1(ε)). If α′(y1)

(
c(y1) + A

(
y1) π(−1)

)
> 0

(which means that the solution of (15) enters transversally the manifold α(y) = 0), the solution
u(τ) is monotonically increasing and approaches either a stationary point or tends to infinity. We
thus have (see [10, Theorems 1 and 2]):

Lemma 1. The scalar differential equation (25) determines which solution of the neutral delay
differential equation (15) is approximated by the path regularization:

• if u(τ) → u1 ∈ [−1, 0] for τ → ∞, then it approximates the weak solution corresponding
to π(u1);

• if u(τ) ≈ cτ, c , 0 for τ→ ∞, then it approximates a classical solution.

5.2. Regularized weak solution – codimension-2
For the case m = 2 in (1) and we write the problem in the form

ẏ(t) = c
(
y(t)

)
+ A

(
y(t)

)
ẏ
(
α(y(t))

)
+ B

(
y(t)

)
ẏ
(
β(y(t))

)
, t > 0

(26)
y(t) = ϕ(t) for t ≤ 0.

We let t2(ε) be the first time instant, such that both delayed arguments, α(y(t)) and β(y(t)), fall
into the interval [−ε, 0]. Similar to the previous section we write the solution (for t ≥ 0) as

y(t2(ε) + t) = y0(t) + ε
(
y1(t) + η0(t/ε)

)
+ O(ε2). (27)

As long as α(y(t)) and β(y(t)) are in the interval [−ε, 0], the derivative in the right-hand side of
(26) can be replaced by (14). The same analysis as for the codimension-1 case shows that y0(t)
and scalar functions u0(t), v0(t) are solution of the differential-algebraic equation (12) with initial
values y2, u2, and v2. The study of the transient part leads to the two-dimensional dynamical
system

u′(τ) = α′(y2)
(
c(y2) + A(y2) πα

(
u(τ)

)
+ B(y2) πβ

(
v(τ)

))
v′(τ) = β′(y2)

(
c(y2) + A(y2) πα

(
u(τ)

)
+ B(y2) πβ

(
v(τ)

)) (28)

with initial values u(0) = u0 ∈ (−1, 0) and v(0) = −1, if the solution approaches the codimension-2
manifold through a sliding along the manifoldMα = {y |α(y) = 0}. The following result, which
we state without proof (since it is similar to that of Lemma 1), addresses the three possible
situations which may occur.

Lemma 2. The two-dimensional dynamical system (28) determines which solution of the neutral
problem (26) is approximated by the path regularization:
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• if
(
u(τ), v(τ)

)
→ (u0, v0) for τ → ∞, then it approximates a codimension-2 weak solution,

corresponding to πα(u0), πβ(v0),

• if u(τ) → u0, v(τ) ≈ cβτ for τ → ∞, or if u(τ) ≈ cατ, v(τ) → v0 for τ → ∞, then it
approximates a codimension-1 weak solution,

• if u(τ) ≈ cατ, v(τ) ≈ cβτ for τ→ ∞, then it approximates a classical solution.

The study of the dynamics of (28) is more difficult than that of (25). The following section
is devoted to the asymptotic stability of stationary points. This then explains the approximation
of codimension-2 weak solutions by the path-regularization. Note that the system (28) strongly
depends on the paths πα(u) and πβ(u).

In the context of discontinuous ordinary differential equations, and for the special case of an
Utkin path, the system (28) is called “dummy system” [11] because its flow corresponds to a
motion on a time-interval of length zero.

6. Stability of codimension-2 weak solutions

The aim of this section is the study of asymptotic stability of stationary points of the two-
dimensional dynamical system (28). This then explains the behaviour of path-regularisations
close to codimension-2 weak solutions.

To be able to work with a more compact notation, we denote the right-hand side of (28) by

gα(u, v) = α′(y2)
(
c(y2) + A(y2) πα(u) + B(y2) πβ(v)

)
gβ(u, v) = β′(y2)

(
c(y2) + A(y2) πα(u) + B(y2) πβ(v)

) (29)

and its Jacobian matrix by

G(u, v) =
(
∂ugα ∂vgα
∂ugβ ∂vgβ

)
(u, v). (30)

We assume that there exist u0, v0 ∈ (−1, 0) such that gα(u0, v0) = gβ(u0, v0) = 0 and that G(u0, v0)
is invertible. The neutral delay equation (26) then admits a codimension-2 weak solution. Our
aim is to investigate whether all eigenvalues of G(u0, v0) have negative real part. This then
implies asymptotic stability of the stationary solution of (28).

Assumption A. We consider a solution of (26), which at time t2 enters the codimension-2 mani-
fold defined by α(y) = 0 and β(y) = 0. We denote y2 = y(t2) and we further assume

• the problem (26) neither has a classical nor a codimension-1 weak solution that continues
at y2;

• there exists a codimension-2 weak solution corresponding to πα(u0) and πβ(v0);

Assumption B. We consider paths as in Section 4.2 and assume

• that the components παj (u) are constant on [−1,−1/καj ] and affine on [−1/καj , 0] with καj ≥ 1;

similarly, the components πβj (u) are constant on [−1,−1/κβj ] and affine on [−1/κβj , 0] with

κ
β
j ≥ 1.
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• that each of the curves defined by gα(u, v) = 0 and gβ(u, v) = 0, respectively, intersects
transversally the border of the square [−1, 0] × [−1, 0] exactly twice and not at corners.

• that gα and gβ are differentiable at the intersection point (u0, v0).

Assumption A just specifies the situation we are interested to analyse. Assumption B is satisfied
for the Utkin path, for which the functions gα and gβ are affine. In general, these functions are
piecewise affine. Assumption B is also satisfied for the path considered in Theorem 4 below.

Theorem 3. Under the Assumptions A and B we have

det G(u0, v0) > 0.

For stability of the codimension-2 weak solution we also have to investigate the trace of G.
Whereas the sign of the determinant of G is independent of the values of καj and κβj (obeying
the assumptions of Theorem 3), this is not the case for the trace. For the Utkin path, where
καj = κ

β
j = 1 for al j, we distinguish the following situations:

1. ∂ugα < 0 and ∂vgβ < 0 at the point (u0, v0);

2. ∂ugα and ∂vgβ have opposite sign at the point (u0, v0);

3. ∂ugα > 0 and ∂vgβ > 0 at the point (u0, v0).

In the first case, the codimension-2 weak solution is stable and there is no need for choosing
a different path. In the second case, the trace of G can be positive so that the codimension-2
solution (corresponding to the Utkin path) can be unstable.

Theorem 4. Under the Assumptions A and B we have: If at least one of the expressions ∂ugα(u0, v0)
and ∂vgβ(u0, v0) is negative for the Utkin path, then there exist καj = κ

α ≥ 1 and κβj = κ
β ≥ 1 with

min(κα, κβ) = 1 for which the trace of G is negative at the codimension-2 solution. This choice
of the path makes the codimension-2 weak solution stable.

Proof. If gα(u, v) and gβ(u, v) are the functions (29) for the Utkin path, they are g̃α(u, v) =
gα(καu, κβv) and g̃β(u, v) = gβ(καu, κβv) for the parametrized path as long as −1 ≤ καu, κβv ≤ 0.
This path therefore admits a codimension-2 solution corresponding to (̃u0, ṽ0) = (u0/κ

α, v0/κ
β).

The matrices G for the Utkin path and for the parametrized path are thus given by

GUtkin =

(
∂ugα ∂vgα
∂ugβ ∂vgβ

)
, G =

(
κα∂ugα κβ∂vgα
κα∂αgβ κβ∂vgβ

)
,

respectively. If one of the diagonal elements is negative, say, ∂ugα < 0, then putting κβ = 1 and
κα ≥ 1 sufficiently large makes the trace of G negative. �

Consider the third case, where ∂ugα > 0 and ∂vgβ > 0 at (u0, v0), so that the path of the
previous proof cannot alter the sign of the trace. In the following theorem we show that this
situation is exceptional and cannot occur under Assumption A.
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Theorem 5. Let the Assumptions A and B be fulfilled. If ∂ugα > 0 and ∂vgβ > 0 at (u0, v0) and if

gα(0, v) − gα(−1, v) > 0 for v ∈ {−1, 0}
gβ(u, 0) − gβ(u,−1) > 0 for u ∈ {−1, 0}

(31)

then the codimension-2 weak solution is isolated, i.e., there is no classical solution and no
codimension-1 weak solution of (26) that enters the codimension-2 manifold.

Note that for the Utkin path, where gα and gβ are affine functions, condition (31) is a conse-
quence of of the assumption that ∂ugα > 0 and ∂vgβ > 0 at (u0, v0). This is also true for the path
of Theorem 4 and for all paths, for which the partial functions gα(·, v) and gβ(u, ·) are monotonic.
The proofs of Theorem 3 and Theorem 5 are postponed to Section 7.

Example. We consider the example of Section 3, for which

gα(u, v) = 2 + 2π1(u) − 6π2(v)

gβ(u, v) = 1/4 + π1(u)/2 − π2(v)

The solution of gα(u, v) = gβ(u, v) = 0 is given by π1(u0) = 1/2, π2(v0) = 1/2, which corresponds
to κ1u0 = −1/2 and κ2v0 = −1/2, so that u0, v0 stay in (−1, 0) for all κ j ≥ 1. Assumption A can
be verified, and the matrix G becomes

G =
(

2κ1 − 6κ2
κ1/2 − κ2

)
In the Utkin definition of weak solutions we have κ1 = κ2 = 1, and the trace of G is positive
implying instability of the solution of (28). However, if we choose κ1 = 1 and κ2 > 2, the
codimension-2 solution becomes stable. This choice does not affect the non-existence of classical
and codimension-1 solutions, and explains the behaviour of Figure 1 in Section 3.

7. Proofs

Proof (Theorem 3 of Section 6). This proof extends that of Proposition 1 in [9] to the situation
where gα(u, v) and gβ(u, v) are not necessarily affine functions.

The signs of gα(u, v) and gβ(u, v) at the four corners of the square [−1, 0] × [−1, 0] play an
important role. The non-existence of a classical solution in the region α(y) < 0, β(y) < 0 implies
that at least one of the functions gα and gβ is positive at the corner (−1,−1). Since the involutive
transformation (

gα(u, v), gβ(u, v)
)
7→

(
gβ(v, u), gα(v, u)

)
(32)

does not affect det G, we can assume without loss of generality that gα(−1,−1) > 0. Conse-
quently, only the four sign patterns of Figure 4 have to be considered. We treat each of them
individually:

(a) gα(−1,−1) > 0, gα(0,−1) < 0, with arbitrary signs in the remaining two corners. In
this case there exists a unique u∗ ∈ (−1, 0) with gα(u∗,−1) = 0. We have ∂ugα(u∗,−1) < 0, so
that the non-existence of codimension-1 weak solutions along α(y) = 0, starting at y2, implies
gβ(u∗,−1) > 0. Consequently, the arrow for gβ(u, v) = 0 points into the region gα(u, v) > 0
implying that det G > 0 at the intersection of the curves.
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Figure 4: Sign patterns of gα(u, v) at the corners of the square. The curve in black represents gα(u, v) = 0, the curve in
grey gβ(u, v) = 0. The arrows indicate that the function is positive to the left and negative to the right.

(b) gα(−1,−1) > 0, gα(0,−1) > 0, gα(0, 0) > 0, with arbitrary sign in the remaining corner.
The non-existence of classical solutions implies gβ(0, 0) < 0 and gβ(0,−1) > 0, so that v∗ ∈
(−1, 0) exists with gβ(0, v∗) = 0 and ∂vgβ(0, v∗) < 0. The non-existence of codimension-1 weak
solutions along β(y) = 0 thus implies gα(0, v∗) < 0, so that the curve representing gα(u, v) = 0
has to be as shown in the second picture of Figure 4. Hence, we have det G > 0.

(c) gα(−1,−1) > 0, gα(0,−1) > 0, gα(0, 0) < 0, gα(−1, 0) > 0. Similar to the case (a) there
exists u∗ ∈ (−1, 0) with gα(u∗, 0) = 0 and ∂ugα(u∗, 0) < 0. This implies gβ(u∗, 0) < 0 by the
non-existence of cidimension-1 weak solutions along α(y) = 0, and consequently also det G > 0.

(d) gα(−1,−1) > 0, gα(0,−1) > 0, gα(0, 0) < 0, gα(−1, 0) < 0. The non-existence of classical
solutions implies gβ(−1, 0) < 0 and gβ(0,−1) > 0. If the arrow for gβ(u, v) = 0 would point into
the region gα(u, v) < 0, there would exist v∗ ∈ (−1, 0) satisfying gβ(−1, v∗) = 0, ∂vgβ(−1, v∗) < 0,
and gα(−1, v∗) < 0. This contradicts the non-existence of stable codimension-1 weak solutions
along β(y) = 0 and proves det G > 0.

The proof of Theorem 3 is thus complete. �

Proof (Theorem 5 of Section 6). Since the transformation (32) does not change the statement of
the theorem, it is sufficient to consider the four situations of Figure 4. In the first three situations
the value gα(u, v) is positive to the left of the curve given by gα(u, v) = 0 and negative to its right.
This implies ∂ugα(u0, v0) < 0.

It remains to consider the last situation of Figure 4. We study the solution close to the
codimension-2 manifold. By definition of the functions gα and gβ, their signs at the corners of
(−1, 0) × (−1, 0) tell us whether α(y(t)) and β(y(t)) are increasing or decreasing.

In the region {y;α(y) < 0, β(y) < 0} the value α(y(t)) is increasing because of gα(−1,−1) > 0,
and β(y(t)) is decreasing as a consequence of gβ(−1,−1) < 0, which can be seen by contra-
diction as follows: if gβ(−1,−1) > 0 there would exist v∗ ∈ (−1, 0) with gβ(−1, v∗) = 0 and
∂vgβ(−1, v∗) < 0 which is not possible by our assumptions. The situation is illustrated in the
lower left quadrant of the left picture in Figure 5. As a consequence, the solution enters and
crosses the manifold {y;α(y) = 0} to arrive in the region {y;α(y) > 0, β(y) < 0}. There, the values
α(y(t)) and β(y(t)) are both increasing, because gα(0,−1) > 0, and gβ(0,−1) > 0. Similar argu-
ments describe the situation in the remaining two regions (see the left picture of Figure 5. The
solution is seen to turn around the codimension-2 manifold. We still have to investigate whether
it spirals inwards (stability) or outwards (instability).

Starting in the region {y;α(y) < 0, β(y) < 0} at a value satisfying β(y) ≈ 0 and α(y) = −ε with
small ε > 0, the solution will satisfy α(y(t)) ≈ −ε + tgα(−1,−1) and β(y(t)) ≈ tgβ(−1,−1) until
α(y(t)) vanishes. At that point we have t ≈ ε/gα(−1,−1) and β(y) ≈ εgβ(−1,−1)/gα(−1,−1).
An analogous computation in the other three regions shows that after one complete round the
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Figure 5: Sketch of solutions close to a codimension-2 manifold. The vertical and horizontal lines indicate the manifolds
given by α(y) = 0 and β(y) = 0, respectively. The first two pictures correspond to the situation of the last case in Figure 4:
with positive trace of G (left picture) and with negative trace (picture in the middle). The last picture corresponds to the
example of Section 3.

solution arrives at a value satisfying β(y) ≈ 0 and α(y) = −γε with an amplification factor given
by

γ =
gβ(−1,−1)
gα(−1,−1)

·
gα(0,−1)
gβ(0,−1)

·
gβ(0, 0)
gα(0, 0)

·
gα(−1, 0)
gβ(−1, 0)

.

The particular sign pattern and the condition (31) imply that

gα(−1, 0) < gα(0, 0) < 0, 0 < gα(−1,−1) < gα(0,−1).

This proves the first inequality in

|gα(−1, 0) gα(0,−1)|
|gα(0, 0) gα(−1,−1)|

> 1,
|gβ(0, 0) gβ(−1,−1)|
|gβ(−1, 0) gβ(0,−1)|

> 1.

The second inequality is proved with similar arguments. Consequently, the amplification factor
satisfies |γ| > 1, and the solution cannot approach the codimension-2 manifold. This completes
the proof of Theorem 5. �

Conclusions

This article presents a new regularization of neutral delay differential equations which, in-
stead of interpolating all components of the one-sided limits y−0 and y+0 by the same convex
combination, permits to use different interpolations for the components (depending on a param-
eter κ j). Our theoretical analysis shows that the freedom in choosing the parameters κ j permits
to reduce unphysical oscillations and makes the numerical integration more efficient.

It is still a big challenge to choose suitably these parameters. Numerical experiments have
shown that choosing κ−1

j proportional to the size of the jump in the discontinuity of the jth
component, usually gives good results. It may also happen that at subsequent breaking points
the parameters κ j have to be modified to get an improved behaviour. Therefore, it is desirable to
develop a strategy that permits to choose the parameters adaptively.
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