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Ordinary differential equations arise everywhere in science – Newton’s law in
physics, N-body problems in astronomy and in molecular dynamics, engineering
problems in robotics, population models in biology, and many more. Since their
analytic solution can be obtained only in exceptional situations, one is usually
restricted to numerical simulations and/or to qualitative investigations of the flow.
This article reviews a recent technique - the modulated Fourier expansion - which
permits to get insight into the long-term behaviour of numerical solutions of multi-
value methods as well as of analytic solutions of highly oscillatory differential
equations.

1 Two problems with high-frequency oscillations

We start with illustrating the main results of this survey by two typical situations.
In the first example, high oscillations are due to the discretization, whereas in the
second example oscillations are inherent in the differential equation.

Long-term integration of Hamiltonian systems with multistep
methods. We consider the equations of motion for a coupled triple
pendulum in the plane as shown in the small figure. Due to the
closed loop it is simpler to write them in Cartesian rather than in
minimal coordinates. We denote the coordinates of the four mass
points by Q1,Q2,Q3,Q4, so that (assuming mass and gravity con-
stant equal to one) the potential energy U is the sum of the vertical
components, U = eT2 (Q1 +Q2 +Q3 +Q4). The coordinates have
to satisfy five constraints: The distance between the upper mass points and their
suspension point is fixed, say equal to one, and the mass points are connected
by massless rods of length one as shown in the small figure (initial position is
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Figure 1: Numerical error in the Hamiltonian for the coupled triple pendulum
problem as a function of time (two different intervals). The multistep method is
applied with step size h = 0.01 and with two different starting approximations.

drawn in grey). We collect the coordinates of Q1, . . . ,Q4 in a vector q, and we
write the constraints as g(q) = 0 with a quadratic function g : R8→R5. Denoting
by G(q) = g′(q) the matrix of partial derivatives, the equations of motion for the
time-dependent position vector q(t) ∈ R8 and the Lagrange multipliers λ(t) ∈ R5

are given by the differential-algebraic system (with dots denoting time derivatives)

q̈ =−∇U(q)−G(q)Tλ, g(q) = 0 (1)

with initial values q(0) = q0, q̇(0) = q̇0.
For its numerical integration we choose the 4-th order multistep method

qn+4−2qn+3 +2qn+2−2qn+1 +qn =
h2

6

(
7 fn+3−2 fn+2 +7 fn+1

)
0 = g(qn+4),

(2)

where h is the step size, fn = −∇U(qn)−G(qn)
Tλn, and qn ≈ q(nh) for n =

0,1,2, . . . . Starting approximations q1,q2,q3 and λ1,λ2 are needed in addition
to q0. They can be obtained by a one-step Runge–Kutta method from the initial
values q(0) and q̇(0). The application of the method is as follows: For given
vectors {q j} j≤n+3 and {λ j} j≤n+2, one first inserts qn+4 into g(qn+4) = 0 and
computes λn+3 by modified Newton iterations, and then qn+4 is obtained in an
explicit manner. Approximations to the velocity p = q̇ can be obtained by finite
differences. For a fourth order method we use

pn = q̇n =
1

12h

(
8
(
qn+1−qn−1

)
−
(
qn+2−qn−2

))
.
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Figure 1 shows the total energy H(q, p) = 1
2 pTp+U(q) along the numerical so-

lution obtained with step size h = 0.01 on two time intervals (one in the beginning
and the other much later). The thick smooth curve corresponds to very accurate
starting approximations, whereas the highly oscillatory function corresponds to
starting approximations that are obtained by the 2nd order implicit midpoint rule.
The frequency of the oscillations is proportional to the inverse of the step size h.
Question. Classical error estimates contain a term of the form h4 exp(Lt) with
t = nh, where L is the Lipschitz constant of the vector field, and they are use-
ful only on small time intervals. Numerical experiments show that the energy is
well conserved and the parasitic oscillations remain small and bounded over much
longer time intervals. Can this be proved rigorously?

Adiabatic invariants for highly oscillatory differential equations. As a second
example we consider a chain of mass points connected by alternating stiff and soft
springs (Figure 2). We let Qk denote the displacement from the position of rest of
the k-th mass point, and we assume that the potential of the stiff springs is, accord-

Q1 Q2 Q2m−1 Q2m· · ·

stiff soft

Figure 2: Chain of alternating stiff harmonic and soft nonlinear springs.

ing to Hook’s law, proportional to the square of the increment due to compression
or extension of the spring (with a large spring constant). The potential of the soft
springs is assumed to be proportional to the fourth power of the increment (with a
moderately sized spring constant). This leads to a Hamiltonian system with total
energy (using Q0 = Q2m+1 = 0)

H(Q, Q̇) =
1
2

2m

∑
k=1

Q̇2
k +

1
4

m

∑
j=1

ω
2
j (Q2 j−Q2 j−1)

2 +
m

∑
j=1

(Q2 j+1−Q2 j)
4,

where the natural frequencies ω j are assumed to be large. After a canonical
change of coordinates, where q j = (Q2 j −Q2 j−1)/

√
2 represents the compres-

sion/extension of a stiff spring and q j+m = (Q2 j +Q2 j−1)/
√

2 its mean position,
we obtain a Hamiltonian system of the form ( j = 1, . . . ,m)

q̈ j +ω2
j q j = −∇jU(q)

q̈ j+m = −∇j+mU(q).
(3)

Here, U(q) is the potential for the soft springs expressed in the new coordinates,
and we use the notation ∇jU(q) for the partial derivative of U(q) with respect
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Figure 3: Total oscillatory energy for the chain of springs corresponding to fre-
quencies proportional to 200 (thin curve) and to 1000 (thick curve).

to q j. Neglecting the nonlinearity in (3) we are concerned with m decoupled
harmonic oscillators corresponding to the m stiff springs. Their individual energy
is

I j(q j, q̇ j) =
1
2
(
q̇2

j +ω
2
j q2

j
)
,

and we let

I(q, q̇) =
m

∑
j=1

I j(q j, q̇ j)

be the total oscillatory energy of the system, which is a conserved quantity in the
absence of the soft springs. We are mainly interested in studying the influence of
the soft springs to the long-time behaviour of I(q, q̇).
For a numerical experiment we consider the situation of Figure 2 with three stiff
springs (m = 3), and we let their frequences be

ω1 =
1
ε
, ω2 =

2
ε
, ω3 =

1.002
ε

, (4)

so that there is an exact resonance between the first two frequencies and a near
resonance with the third one. We choose zero initial values except q1(0) = 1/ω1,
q4(0) = 1, q̇1(0) = 1, and q̇4(0) = 1.5, so that the initial oscillatory energy is
I
(
q(0), q̇(0)

)
= 1. In Figure 3 we plot the total oscillatory energy as function of

time (once on an interval of length 5.5 close to t = 50 and once close to t = 2050)
for two different values of ε. The thin curve corresponds to ε = 1/100 and the
thicker churve to ε= 1/500. We observe high oscillations (frequency proportional
to ε−1 and amplitude proportional to ε) around the constant value 1.
Question. Neglecting the potential U(q) in (3) the oscillatory energy I

(
q(t), q̇(t)

)
is an exact invariant of the system. Standard perturbation arguments using Gron-
wall’s inequality yield the near-preservation of the oscillatory energy on intervals
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of length O(ε−1). This near-preservation is observed on much longer time inter-
vals. Can this be proved rigorously?

2 Modulated Fourier expansion

Figures 1 and 3 show similar phenomena although they originate from completely
different problems. We observe different time scales – high frequency oscillations
superposed on a smooth slow motion. In this section we present the technique
of modulated Fourier expansions, which gives much insight into the long-time
behaviour for both problems.

Modulated Fourier expansion for linear multistep methods. For second order
differential equations we consider linear multistep methods of the form

k

∑
j=0

α j qn+ j = h2
k

∑
j=0

β j fn+ j, (5)

where fn = f (qn) for problems q̈ = f (q), and fn =−∇U(qn)−G(qn)
Tλn with λn

determined by g(qn) = 0 for constrained Hamiltonian systems (1). We denote the
generating polynomials of the coefficients of (5) by

ρ(ζ) =
k

∑
j=0

α j ζ
j, σ(ζ) =

k

∑
j=0

β j ζ
j.

For h→ 0 the multistep method (5) becomes a linear difference equation, whose
solution is a linear combination of ζn

j where ρ(ζ j) = 0. Due to the nonlinearity
in the right-hand side of (5) this cannot remain true for h > 0. Nevertheless, it is
natural to approximate the numerical solution by an expression (called modulated
Fourier expansion) of the form

qn ≈ y(t)+ ∑
j∈I

ζ
n
j z j(t), t = nh, (6)

where y(t) and z j(t) are h-dependent smooth functions in the sense that, together
with all their derivatives, they are bounded uniformly for 0 < h ≤ h0. The index
set I corresponds to the roots of ρ(ζ) that are different from 1. For constrained
Hamiltonian systems (1) it turns out that in addition to the roots of ρ(ζ), the index
set I has to contain also the non-zero roots of σ(ζ). For the study of the long-time
behaviour of linear multistep methods one has to

- study properties of the function y(t), which will be an approximation to the
exact solution q(t) of the differential equation.

- control the parasitic components z j(t). They should remain bounded and
small over long time intervals.
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Figure 4: Numerical error in the Hamiltonian for the coupled triple pendulum
problem with data as in Figure 1. Every fourth approximation is connected by a
line, which gives four curves for each starting approximation.

Let us illustrate the above expansion for the numerical solution of the example of
Section 1. There we have applied a multistep method with ρ(ζ) = (ζ−1)2(ζ2+1)
and σ(ζ) = (7ζ3−2ζ2+7ζ)/6. An analysis of the functions z j(t) shows that those
corresponding to zeros of σ(ζ) are by a factor of h smaller than those correspond-
ing to the roots of ρ(ζ) = 0. We thus have

qn ≈ y(t)+ in z1(t)+(−i)n z2(t),

where, for real data, y(t) is a real function and z2(t) is the complex conjugate of
z1(t). To get an impression of the perturbation functions z j(t) we connect every
fourth approximation: q4n ≈ y(t)+ 2ℜz1(t) at t = 4nh, q4n+1 ≈ y(t)+ 2ℑz1(t)
at t = (4n+ 1)h, q4n+2 ≈ y(t)− 2ℜz1(t) at t = (4n+ 3)h, and finally q4n+3 ≈
y(t)− 2ℑz1(t) at t = (4n+ 3)h. This yields four smooth curves instead of one
highly oscillating curve that is obtained by connecting all qn.
We apply the linear multistep method (2) to the coupled triple pendulum problem
with the same step size and the same starting approximations as in Figure 1. Fig-
ure 4 shows the error in the Hamiltonian H(qn, pn), where every fourth approxi-
mation is connected by a line. For the accurate starting approximation the function
z1(t) is so small that all four curves coincide and give the function H

(
y(t), ẏ(t)

)
(thick curve). For the starting approximations obtained by the implicit midpoint
rule we can clearly distinguish four curves that approximate

H
(

y(t)±2ℜz1(t), ẏ(t)±2ℜż1(t)
)
, H

(
y(t)±2ℑz1(t), ẏ(t)±2ℑż1(t)

)
.

This experiment illustrates that the functions z j(t) of the modulated Fourier ex-
pansion are as smooth as the approximation y(t), and it encourages the study of
(6) for getting insight into the long-time behaviour of multistep methods.
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Modulated Fourier expansion for perturbed harmonic oscillators. The motion
of a chain of mass points connected by alternating stiff and soft springs leads to a
highly oscillatory differential equation, which is of the form

q̈ j +ω
2
j q j = −∇jU(q), j = 0,1, . . . ,n, (7)

where q = (q0,q1, . . . ,qn) with q j ∈Rd j , and ∇j denotes the partial derivative with
respect to q j. We assume ω0 = 0 and

ω j ≥
1
ε
, 0 < ε� 1, j = 1, . . . ,n.

Suppressing the right-hand side in (7), the problem is reduced to harmonic os-
cillators with solution q j(t) = c1eiω jt + c2e−iω jt . It seems therefore natural to
approximate the solution q(t) of the complete nonlinear system (7) with a linear
combination of e±iω jt , where the coefficients depend smoothly on t. However,
since the oscillations are here of much larger amplitude than the numerical (arti-
ficial) oscillations in computations with multistep methods, this is not sufficient.
Due to the mixing of exponentials by the nonlinearity, we have to consider also
products of such exponential terms. For an analysis of the solutions of (7) we thus
consider an ansatz (also called modulated Fourier expansion) of the form

q(t) ≈ y(t)+ ∑
k∈K

zk(t)ei(k·ω)t . (8)

For a multi-index k = (k1, . . . ,kn) ∈ Zn and the vector ω = (ω1, . . . ,ωn) of high
frequencies we write k ·ω = k1 ω1+ . . .+kn ωn, so that ei(k·ω)t becomes a product
of pure exponentials eiω jt . We also consider the norm ‖k‖= |k1|+ . . .+ |kn|. The
coefficient functions y(t) and zk(t) are vector-valued with the same dimension and
partitioning as q(t) and they are assumed to be smooth. This means that together
with all their derivatives they are bounded independently of ε for 0 < ε ≤ ε0, so
that the high oscillations are well separated from the slow motion in (8). The sum
in (8) is over a suitably chosen finite set of multi-indices K ⊂ {k ; ‖k‖ ≤ N} with
suitably chosen N. For getting insight into the long-time behaviour of the total
oscillatory energy

I(q, q̇) =
n

∑
j=1

I j(q j, q̇ j), I j(q j, q̇ j) =
1
2

(
|q̇ j|2 +ω

2
j |q j|2

)
,

where |q j| denotes the Euclidean norm in Rd j , we are confronted with the follow-
ing problems:

- find a relation between the total oscillatory energy I(q, q̇) and the coefficient
functions of the modulated Fourier expansion.

7
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Figure 5: Total oscillatory energy connected at stroboscopic samples for the chain
of springs with data as in Figure 3.

- control the coefficient functions zk(t) corresponding to high oscillations.
They should remain bounded of size ‖zk(0)‖ over long time intervals.

To become convinced of the existence of an expansion (8) we perform a stro-
boscopic sampling, similar to our previous experiment with a linear multistep
method (see Figure 4). We consider the example of Section 1 with three stiff
springs having frequencies (4). We assume that the dominant oscillating terms
in (8) are those corresponding to k = ±〈 j〉, where 〈 j〉 = (0, . . . ,1, . . . ,0) is the
j-th unit vector. They are given by z±〈 j〉(t)e±iω jt . At stroboscopic time instances
t = tn = t0 +2πεn we thus have

q(t) ≈ y(t)+2ℜ

(
z〈1〉(t)eiω1t0 + z〈2〉(t)eiω2t0 + z〈3〉(t)eiω3t0

)
,

which is expected to be smooth in contrast to the highly oscillatory solution (see
Figure 3) of the differential equation. In Figure 5 we interpolate the oscillatory
energies

{
I
(
q(tn), q̇(tn)

)}
n≥0 for five different values of t0, namely t0 = 2πε l/5

for l = 1, . . . ,5. Thin curves correspond to ε = 1/200, thick curves to ε = 1/1000.
It is striking how smooth these curves are (higher order terms of (8) are present
but not visible in the plot), and that their qualitative behaviour is maintained on
very long time intervals (on much longer intervals than shown in the figure).

Connection between both types of modulated Fourier expansions. Comparing
the modulated Fourier expansion (6) for linear multistep methods with the expan-
sion (8) for highly oscillatory Hamiltonian systems, we notice the correspondence
ζn

j ↔ eiω jt for t = nh. To a zero ζ j = eiθ j of ρ(ζ) (resp. σ(ζ)) corresponds a fre-
quency ω j = θ j/h in the problem (7).
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3 Results on the long-time behaviour

In this section we present two typical results that can be proved with the technique
of modulated Fourier expansions – one on the energy preservation of linear multi-
step methods, the other on the near-preservation of the total oscillatory energy of
highly oscillatory systems. We also give an overview on further results and hints
to the literature.

Near-preservation of energy with linear multistep methods. We consider a
method (5) and apply it to a constrained Hamiltonian system (1) with total energy
H(q, q̇) = 1

2 q̇Tq̇+U(q). We assume that the method coefficients satisfy

• the method is irreducible and of order p, i.e., the generating polynomials
ρ(ζ) and σ(ζ) do not have common roots, and they satisfy

ρ(ζ)

(logζ)2 −σ(ζ) = O
(
(ζ−1)p) for ζ→ 1.

• it is symmetric, i.e., α j = αk− j and β j = βk− j for all j.

• the equation ρ(ζ)= 0 has only simple roots with the exception of the double
root for ζ = 1; all roots are on the unit circle.

• the equation σ(ζ) = 0 has only simple non-zero roots; all non-zero roots
are on the unit circle.

• starting approximations satisfy

q j−q( jh) = O(hp+2) and g(q j) = 0 for j = 0, . . . ,k−1

λ j−λ( jh) = O(hp) for j = 1, . . . ,k−2

(the latter for the case of an explicit method with βk = 0 and βk−1 6= 0).

The following result is taken from [11].

Theorem 1. The numerical solution of a linear multistep method satisfying the
above assumptions preserves the total energy of the constrained Hamiltonian sys-
tem (1) up to O(hp) over time O(h−p−1):

H(qn, q̇n) = H(q0, q̇0)+O(hp) for nh≤ h−p−1.

The constant symbolized by O is independent of n and h subject to nh≤ h−p−1.

This result explains the excellent long-time energy preservation in the experiment
of Section 1 (Figure 1). The ideas of the proof will be outlined in Section 4.
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Hints to the literature. The first rigorous proofs of long-time energy preservation
of linear multistep methods for second order Hamiltonian systems without con-
straints is given in [21], see also [24]. There, the technique of modulated Fourier
expansion is further used to prove near-preservation of momentum and an at most
linear growth of the global error for integrable Hamiltonian systems. These re-
sults are extended in [11] to constrained Hamiltonian systems (1). The technique
of modulated Fourier expansion can also be applied to general first order Hamilto-
nian systems [19]. However, there one typically gets near-preservation of energy
only over time intervals of length O(h−2). This is elaborated in [10] for partitioned
linear multistep methods and in [12] for general multi-value methods.

Near-preservation of the total oscillatory energy in differential equations. We
consider a highly oscillatory Hamiltonian system of the form

q̈ j +ω
2
j q j = −∇jU(q), j = 0,1, . . . ,n, (9)

where q = (q0,q1, . . . ,qn) with q j ∈ Rd j , and ω0 = 0, and we are interested in the
long-time behaviour of the total oscillatory energy

I(q, q̇) =
n

∑
j=1

I j(q j, q̇ j), I j(q j, q̇ j) =
1
2

(
|q̇ j|2 +ω

2
j |q j|2

)
. (10)

We make the following assumptions:

• the frequencies ω1, . . . ,ωn are bounded from below as

ω j ≥
1
ε
, 0 < ε� 1, j = 1, . . . ,n.

• there exist δ > 0 and a set K ⊂ Rd0 such that the potential U has bounded
derivatives of all orders in a δ-neighborhood of K×0×·· ·×0.

• the initial values q(0), q̇(0) are such that

I
(
q(0), q̇(0)

)
≤ E, (11)

where the bound E is independent of ε.

The following result is taken from [15].

Theorem 2. Consider the Hamiltonian initial value problem (9) satisfying the
above assumptions. For an arbitrarily fixed integer N ≥ 1 there then exist C > 0
and ε∗ > 0 such that the following holds for 0 < ε≤ ε∗: along the solution of (9)
the oscillatory energy deviates from its starting value by no more than∣∣I(p(t),q(t))− I

(
p(0),q(0)

)∣∣≤C ε
3/4 for 0≤ t ≤ ε

−N , (12)

provided that q0(t) stays in the set K for such long times. The threshold ε∗ and
the constant C depend on n and N, on the energy bound E and on bounds of
derivatives of the potential U.

10



This result explains the excellent long-time preservation of the total oscillatory
energy in the experiment of Figure 3. Our proof is based on modulated Fourier
expansions and will be outlined in Section 4.

Hints to the literature. Modulated Fourier expansions for the long-term analysis
of highly oscillatory differential equations have first been used in [20] for the
case of a single high frequency ω. Exponentially long times t ≤ ecω are covered
in [6]. The case of several high frequencies satisfying a non-resonance condition
is studied in [7]. The result of Theorem 2, taken from [15], does not require any
condition on the high frequencies. Modulated Fourier expansions have also given
new insight into the FPU problem [23]. They have been successfully applied
to studying long-time regularity and stability of Hamiltonian partial differential
equations (nonlinear wave equation [9, 16], nonlinear Schrödinger equation [14,
17]).
Related results have been obtained in [2], [3], [4], [1] with canonical transforma-
tion techniques of Hamiltonian perturbation theory.
Modulated Fourier expansions have in addition proved very useful in analyzing
numerical methods for highly oscillatory differential equations [24, 20, 7, 25] and
Hamiltonian partial differential equations [8, 5, 13, 18, 22].

4 Sketch of the proof

Although Theorems 1 and 2 treat two completely different situations, their proofs
with modulated Fourier expansions are closely connected. We sketch the main
steps in the proof. For details we refer the reader to the original literature.

4.1 Construction of the coefficient functions

The first step of the proof consists in the construction of coefficient functions for
the modulated Fourier expansion.

Linear multistep methods. To keep the presentation as simple as possible we
restrict ourselves to Hamiltonian systems without constraints. We consider the
method (5) and we are looking for approximations to qn of the form

q̂n = y(t)+ ∑
j∈I

ζ
n
j z j(t), t = nh, (13)

where the index set I corresponds to roots of ρ(ζ) that are different from 1. To
achieve this we insert this expansion into the multistep formula and compare the
coefficients of ζn

j . Writing the Taylor series of a function as y(t + h) = ehDy(t),

11



where D denotes differentiation with respect to time, this yields

ρ(ehD)y = h2 σ(ehD) f (y)+O(h2‖z‖2)

ρ(ζ jehD)z j = h2 σ(ζ jehD) f ′(y)z j +O(h2‖z‖2)
(14)

with the notation ‖z‖=max j |z j|. Since ζ= 1 is a double root of ρ(ζ) = 0 we have
ρ(ehD) = h2D2ρ0(hD), and for the simple roots ζ j we have ρ(ζ jehD) = hDρ j(hD),
where ρ j(0) 6= 0 for all j. Applying the inverse of the operators ρ j(hD) to these
relations yields (after truncation and omitting the remainder) the differential equa-
tions

ÿ = f (y)+h f1(y)+h2 f2(y)+ . . .+hN−1 fN−1(y)

ż j = h
(
a1(y)+ha2(y)+ . . .+hN−1aN−1(y)

)
z j.

(15)

This construction guarantees that for every solution of the system (15) the ap-
proximations q̂n of (13) satisfy the multistep relation with a defect of size
O(hN+2)+O(h2‖z‖2). Initial values for (15) are obtained from the starting ap-
proximations q0,q1, . . . ,qk−1 by putting t = 0,h, . . . ,(k− 1)h in (13). We notice
that both the coefficient functions in (15) and the initial values for the system (15)
are uniquely determined.

Oscillatory differential equation. For the solution q(t)=
(
q0(t),q1(t), . . . ,qn(t)

)
of the system (9) we consider an approximation

q̂(t) = y(t)+ ∑
k∈K

zk(t)ei(k·ω)t . (16)

We let y(t) = z0(t), and we denote the components of the super-vector zk(t) by
zk

j (t), j = 0,1, . . . ,n. To avoid technical difficulties we assume here that the fre-
quencies ω1, . . . ,ωn are non-resonant, so that k ·ω 6= 0 for all multi-indices in the
set K \{0}. Inserting this ansatz into the differential equation (9) and comparing
the coefficients of ei(k·ω)t yields(

ω
2
j−(k ·ω)2)zk

j +2i(k ·ω) żk
j + z̈k

j = ∑
m≥0

∑
s(α)=k

1
m!

g(m)
j (y)

(
zα1, . . . ,zαm

)
, (17)

where we use the notation g j(y) = ∇jU(y) for the derivative of the potential
with respect to y j. The second sum is over m-tuples of non-zero multi-indices
α1, . . . ,αm, such that s(α) = α1 + . . .+αm = k.
To get smooth coefficient functions (with derivatives bounded independently of ε)
we determine the dominating term in the left-hand expression, we put the other
terms to the right-hand side, and we iteratively eliminate the higher derivatives.
After suitable truncation this yields a second order differential equation for the
case ( j,k) = (0,0), first order differential equations for k =±〈 j〉 with j ≥ 1, and
algebraic relations for all other situations.

12



When dividing the equation by (k ·ω) or by
(
ω2

j − (k ·ω)2), one may encounter
small denominators. To avoid this difficulty, this requires either non-resonance
assumptions for the frequencies or the introduction of modified frequencies.
For every solution of the resulting differential-algebraic system, the function q̂(t)
of (16) satisfies the equation (9) up to a small defect. Unique initial values for the
functions zk

j are obtained from q0, q̇0 by putting q̂(0) = q0, ˙̂q(0) = q̇0.

4.2 Formal invariants for the modified equations

The second step heavily relies on the fact that we are concerned with Hamiltonian
differential equations. For this situation we derive invariants for the coefficient
functions of the modulated Fourier expansion.

Linear multistep methods. We again consider the relation (14), but instead of
multiplying it by the inverse of a factor of ρ(ζ jehD), we multiply it by the inverse
of the operator σ(ζ jehD). Expanding σ(ζ jehD)−1ρ(ζ jehD) into a series of powers
of h this yields (notice that σ(ζ j) 6= 0 and ζ j is a simple zero of ρ(ζ))

c j1 ih ż j + c j2 h2 z̈ j + c j3 ih3 ...z j + . . . = h2 f ′(y)z j +O(h2‖z‖2) (18)

with real coefficients c jl , and c j1 6= 0. We then take the scalar product with the
complex conjugate vector z j. For Hamiltonian systems we have f (y) =−∇U(y),
so that f ′(y) is a symmetric matrix and ℑ(zTj f ′(y)z j) = 0. Furthermore, we have
2ℜ(zTj ż j) =

d
dt ‖z j‖2, and it turns out that the imaginary part of the whole left-

hand side of (18) can be written as a total differential of an expression, which
after division by c j1h and suitable truncation, is of the form

K j(y,z j) = ‖z j‖2 + zTj
(
hE j,1(y)+ . . .+hN−1E j,N−1(y)

)
z j.

Consequently, up to a small truncation error the function K j(y,z j) is an invariant of
the system (15) for the coefficient functions of the modulated Fourier expansion.
This is essential for a long-time bound of the parasitic components in symmetric
multistep methods.

Oscillatory differential equation. For the system (9) one can recover a Hamil-
tonian structure in the equations (17) for the coefficient functions. With the scalar
function

U(z) =U(y)+
N

∑
m=1

n

∑
j1,..., jm=0

∑
k1+...+km=0

1
m!

∇
m
j1,..., jmU(y)

(
zk1

j1 , . . . ,z
km
jm

)
,

the right-hand side of (17), up to a defect due to the truncation of the series, can be
written as ∇

−k
j U(z), where ∇

−k
j denotes the derivative with respect to z−k

j . The
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important observation is now that the extended potential U(z) is invariant under
the action of the one-parameter group S(θ)z = (ei(k·ω)θzk

j ), i.e.,

U
(
S(θ)z

)
= U(z) for all θ ∈ R.

By Noether’s theorem this implies the existence of a conserved quantity of the
system (17). It turns out that this conserved quantity is close to the total oscillatory
energy of the Hamiltonian equation (9).

4.3 From short to long time intervals

In Section 4.1 we have constructed smooth coefficient functions for the modu-
lated Fourier expansion. The approximation (13), when inserted in the multistep
formula, yields a small defect of size O(h2δ2) as long as ‖z‖ ≤ δ. Similarly, the
approximation (16), when inserted into the oscillatory differential equation (9),
yields a small defect of size εN . In both situations this implies that on a short
interval of size O(1) the approximation coincides with the exact solution up to an
error of the size of the defect.
An application of Gronwall-type estimates then yields bounds on the difference
q̂(t)−q(t), respectively q̂(t)−q(t), that grow exponentially with time. Such esti-
mates cannot be improved in general, because the formulation of our two problems
admits chaotic problems, where perturbations in initial values propagate exponen-
tially with time. However, they are not useful for a proof of Theorems 1 and 2.
At this point we need the existence of invariants (Section 4.2) for the system defin-
ing the coefficient functions of the modulated Fourier expansion. These invariants
have to be close to the quantities that we want to have under control. We want to
get bounds for the spurious oscillations in the application of symmetric multistep
methods and for the variation of the total oscillatory energy in highly oscillatory
differential equations.
Let us explain the ideas for estimating the parasitic oscillations of multistep
methods over long times. We consider a grid 0 = t0 < t1 < t2 < .. ., such that
tm+1− tm = O(1). On the m-th subinterval we consider the coefficient functions
y[m](t), z[m]

j (t) of the modulated Fourier expansion which are defined by the condi-
tion q̂(tm) = qm, where qm denotes the numerical solution of the multistep method
at time t = tm. From Section 4.2 we know that∥∥K j

(
y[m](tm),z

[m]
j (tm)

)
−K j

(
y[m](tm+1),z

[m]
j (tm+1)

)∥∥≤ δ1,

where δ1 is a small quantity. On the small interval [tm, tm+1] the difference between
the modulated Fourier expansion q̂n and the exact numerical values qn is bounded
by the defect in the multistep formula. By the uniqueness of the coefficients of

14



the Fourier expansion (Section 4.1) we therefore have∥∥K j
(
y[m](tm+1),z

[m]
j (tm+1)

)
−K j

(
y[m+1](tm+1),z

[m+1]
j (tm+1)

)∥∥≤ δ2,

where δ2 is proportional to the defect. Summing up these two estimates, using the
triangle inequality and a telescopic summation, we obtain∥∥K j

(
y[m](tm),z

[m]
j (tm)

)
−K j

(
y[0](t0),z

[0]
j (t0)

)
‖ ≤ m(δ1 +δ2).

Since K j(y,z j) is close to ‖z j‖2, this proves that the parasitic components z j(t)
remain small over very long time intervals.
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