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Abstract

This article presents two regularization techniques for systems of state-de-
pendent neutral delay differential equations which have a discontinuity in
the derivative of the solution at the initial point. Such problems have a rich
dynamics and besides classical solutions can have weak solutions in the sense
of Utkin. Both of the presented techniques permit the numerical solution
of such problems with the code RADARS, which is designed to compute
classical solutions of stiff and differential-algebraic (state-dependent) delay
equations.
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1. Introduction

Phenomena with memory often lead to delay differential equations, and
when the derivative at a time instant also depends on the derivative in the
past we are concerned with neutral delay equations. In this article we are
interested in systems of state-dependent neutral delay equations of the form

i =y iaw®))  for t>0
y(t) = o(t) for t<0

with smooth vector functions f(y,z), ¢(t) and scalar deviating argument
a(y) satisfying a(y(t)) < t (non-vanishing delay). More general equations

(1)
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(e.g., dependence of f on time ¢ and on y(a(y(t)))) could be treated as well
without presenting additional difficulties. In the present article we focus on
the situation, where the derivative of the solution has a jump discontinuity
at the starting point, i.e.,

$(0) # f(p(0), p(a((0)))). (2)
Such a system has the following particularities:

e since it is of neutral type, this discontinuity is in general propagated to
further breaking points;

e since the deviating argument is state-dependent, it may occur that at
breaking points a classical solution ceases to exist.

Let us discuss the second item in some more detail. At the first breaking
point ¢, where we have a(y(ty)) = 0 and a(y(t)) < 0 for ¢t < ¢y, the left-hand
derivative of a(y(t)) is generically positive, i.e., o/(y(to) f(y(to), y(07)) > 0,
and we expect that the solution enters the region a(y) > 0. However, if the
right-hand derivative of a(y(t)) is negative, i.e., &/ (y(to)f(y(to),y(01)) < 0,
it cannot enter this region, and a classical solution ceases to exist.

Such a situation is closely related to ordinary differential equations having
a discontinuous vector field. In this situation it is possible to consider weak
solutions (in the sense of Filippov [3] and/or Utkin [13]), where one looks for
solutions staying in the manifold a(y) = 0 (sliding mode) and one permits
the derivative y(0) to be multi-valued.

To our knowledge, codes for delay equations cannot handle such a situa-
tion in an efficient way. Typically, the code will stop the integration at such
a breaking point with the message that too small step sizes are needed. The
aim of the present article is to discuss regularizations of the neutral delay
equations (1), which permit the use of standard software packages for an
efficient computation of classical and weak solutions.

In the present article we study two regularization techniques for the prob-
lem (1). The first one (Section 2.1) consists in changing the derivative of the
initial function ¢(t) on the interval (—¢, 0] in such a way that the discontinu-
ity of §(t) is suppressed at the origin. The second one (Section 2.2) is based
on turning the problem into the ¢ — 0 limit of a singularly perturbed delay
equation (as proposed in [7]). We shall show in Sections 3 and 4 that the
solutions of the regularized problems (which are classical solutions) remain
close to a solution of (1) independent of whether it is a classical or a weak



one. Numerical experiments (Section 5) demonstrate the applicability of the
code RADARS to the regularized problems, and they confirm the theoretical
results of this paper.

2. Regularization techniques

The functions f(y, z), a(y), and ¢(t) of the system (1) are assumed to be
sufficiently differentiable. The discontinuity of the solution is generated by
the fact that the derivative ¢(0) does not match the right-hand side of the
delay equation at t = 0. We consider two approaches (Sections 2.1 and 2.2)
of regularizing this discontinuity. Other regularizations have been considered
in [4], where the right-hand side is replaced by its average on a small interval,
and in [1], where the problem is regularized by its numerical discretization
based on the Euler method (an idea also used for other classes of differential
equations as discussed in [2]).

The analysis of singularly perturbed state-dependent delay equations is an
interesting subject in itself and has received the attention of many researchers
in recent years (see e.g. [11]) both from the theoretical and the numerical
point of view.

2.1. Regularization of the initial function

By introducing a new variable for the derivative, a neutral delay equa-
tion can be transformed into a differential-algebraic delay equation. In our
situation the equation (1) becomes

gty = =(t)
0 = fly@®),z(aly®))) — 2(1),

where y(t) = p(t) and z(t) = ¢(t) for t < 0. This permits us to treat the
functions y(t) and z(t) independently of each other. We do not touch the
condition y(t) = ¢(t) for t < 0, but we replace the condition z(t) = ¢(t) on
the interval —e <t <0 by

2(t) = p(=e) + x(t/e) (g — ¢(=2)),  dg = f((0),0(c((0)))),  (4)

where x : R — R is a sufficiently differentiable function satisfying x(—1) = 0,
x(0) =1, and x'(7) > 0 for 7 € [0, 1], e.g., the linear interpolation polynomial
x(7) = 7+ 1. In this way, the function z(t) is continuous at ¢ = 0 and

(3)



the problem will have a (classical) solution, where the original problem did
not. Consequently, codes for differential-algebraic (index 1), state-dependent
delay equations can be applied to solve the problem.

We remark that this regularization presents similarities with the approach
considered in [12] and in general to regularizations which replace the discon-
tinuity in the right-hand side by a continuous link.

2.2. Regularization to a non-neutral delay equation
Another type of regularization is by turning the algebraic relation of (3)
into a singularly perturbed differential equation as follows (0 < & < 1)

gty = 2(t)

ez(t) = fy(t), z(a(y(®)))) — 2(b).

In this situation we can keep the initial functions y(t) = ¢(t) and z(t) = p(t)
for t < 0. Continuity in z(¢) at ¢ = 0 is guaranteed by the fact that we
now have a differential equation also for this variable. This regularization is
proposed in [7], where the ¢ — 0 behavior is analyzed at the breaking point,
where the classical solution ceases to exist for the first time.

Any code for stiff, state-dependent delay equations (like RADARS by
Guglielmi and Hairer [5, 6]) can be applied to solve the singularly perturbed
problem (5).

()

3. Analysis of the regularization of Section 2.1

Let ty be the first breaking point of the problem (1), ie., ap = y(to)

satisfies a(ag) = 0. Assuming that the solution enters transversally the
manifold a(y) = 0, we have
d .
3 ew)| = o(ao) f(ao,55) >0, (6)
t=to

where g, = $(0). The regularization of Section 2.1 does not affect the
solution as long as a(y(t)) < —e, and we denote the first time instant with
equality by to(e) < to, i.e.,

a(y(to(e))) = —e. (7)

Because of (6), the implicit function theorem guarantees that to(e) can be
expanded into a series of powers of €. Consequently, this is also true for the
solution at ty(¢) and we have an expansion

y(to(g)) = ag + cay +€2a2+... . (8)



3.1. Asymptotic expansion after the first breaking point
Beyond the point ty(¢) and as long as —¢ < a(y(t)) < 0, the solution of
the regularized problem satisfies

i0) = £ (v, -2) + x(“UD) i - p(-2). ©

To cope with the singularity at e = 0, we separate the solution into a smooth
and a transient part by an asymptotic expansion of the form

y(to(e) +1) = Z ely;(t) +e z_: eln;(t/e) + O™, (10)

which has to match the expansion (8) for t = 0 i.e.,
yo(O) = Qo, yj(O) + ’f}j_l(O) = aj for j > 1. (11)

There is some freedom in choosing the coefficient functions, e.g., an expres-
sion t¥ can be considered as part of y,(t) or of ny_1(7), because t¥ = e*7* for
T =t/e. If we are interested in intervals of length O(¢), we can exploit this
freedom to get simple formulas. If intervals of length O(1) are an issue, we
assume that 7;(7) converges exponentially fast to zero for 7 — oc.

The argument of x in equation (9) can be written as

1 1
~aly(to(e) +1) = Z alyo(t)) + &/ (yo()) (w1 (1) +10(7)) + O(e). (12)
To avoid the division by ¢ we assume
a(yo(t)) = 0. (13)
We then distinguish the following two situations:
Weak solution. There exists 6y € (0, 1] such that
o/(ao) f (a0, Jg + Oo(y — o)) = 0. (14)
If 0 < 6y < 1, the original problem (1) possesses a weak solution

evolving in the manifold a(y) = 0. If y = 1, the (weak or classical)
solution is tangential to the manifold.

Classical solution. We have
o (a) f(ao, Jg + 09 —95)) >0 for 0<6<1. (15)

This implies o/ (ag) f(ao, §g) > 0, and consequently the existence of a
classical solution beyond the breaking point .



3.2. Construction of the coefficient functions (weak solution)

Inserting (12) together with (13) into (9) and expanding into powers of ¢,
the smooth (7-independent) part of the ° coefficient becomes

9o(t) = f(yo(t), g +uo()(We —19)),  ua(t) = x(c/(yo(t))ua(t)), (16)

where 3, = ¢(0). Differentiating the assumption (13) with respect to time
and using the relation (16) yields

o (yo(t) f (o(t), 9o+ uo(t) (g — Jo ) = 0 (17)

Assumption (14) implies that for ¢ = 0 this relation holds with uy(0) = 6.
If we assume in addition that!

o/(ao) f-(ao, Jo + bo(dg — 1o ) (5 — ) <0, (18)

the implicit function theorem guarantees that ug(t) can be expressed in terms
of yo(t) in an e-independent neighborhood of (ag, 6y). Consequently, (16) is a
differential equation on the manifold a(y) = 0, which has a unique solution
for the initial value y4(0) = ay.

The leading term of the non-smooth part is obtained by subtracting the
smooth part (16) from (9), then substituting e for ¢, and finally putting
¢ = 0. This leads to

m(r) = flao, gy + x(e'(a0)(y1(0) + no())) (o — o))

- o (19)
— flao, 9y +0o(Yo — U0 ))-
Under the assumption (14) the scalar function
(1) = & (ao) (y1(0) + no(7))
therefore solves the differential equation
Mo (1) = o/ (a0) f (a0, 9o + x(7o(7)) (G5 — ¥o))- (20)

The initial value 75(0) = —1 is obtained from (7), (12) and (13). Since this
differential equation is scalar and autonomous, and 7y (0) > 0 by (6), its

Tt would be sufficient to assume that the expression is different from zero. However,
the sign is important for the estimation of the remainder in the asymptotic expansion.
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solution converges monotonically and exponentially fast to the value v for
which x(v9) = 6 is the smallest positive root of the equation (14). Once
No(7) is known, the function 7y(7) is obtained by integration from (19). The
integration constant is determined by assuming ny(7) — 0 for 7 — oo. The
matching condition (11) then fixes the initial value y;(0).

The construction of the functions y;(t) and n;(7) is very similar to the
above procedure. The ! coefficient of the smooth part yields

1) = g1(yo(t), y1.(1) + fwo(t), 9y + uo(t) (" — w9 ))ua () (G5 — G ), (21)

where w1 (t) = X' (&/(yo(t))y1(t))a' (yo(t))y=(t), and g; is a smooth function.
In the first step we have expressed wuo(t) = x(a/(vo(t))y1(t)) as a func-
tion of yo(t). Differentiating this relation with respect to time shows that
X' (& (yo(t))y1(t)) ' (yo(t))91(t) can be expressed in terms of y;(¢) and the
known functions yo(t), 9o(t). The same is true for o/(yo(t))yi(t), because
X'(7) is uniformly bounded away from zero (see the assumptions on x(7)
in Section 2.1). Multiplying (21) with o/(yo(t)), we see that under the as-
sumption (18) the value u;(t) can also be expressed in terms of y;(¢) and the
known functions yo(t), 7o(t). As in the first step, we obtain one after another
the functions y;(t), then 7y (7) = o/(ao)(y2(0) + n1(7)), m(7), and the initial
value y5(0). This procedure is extended straightforwardly to obtain further
coefficient functions of the asymptotic expansion (10).

3.3. Construction of the coefficient functions (classical solution)

Under the assumption (15) we expect the solution of the regularized prob-
lem to satisfy —e < a(y(t)) < 0 only on an interval of length O(g). We there-
fore exploit the freedom in the asymptotic expansion and assume o (t) = ao
to be constant, and y;(¢) =0 for j > 1.

Differential equations for the remaining coefficient functions n;(7) are
obtained by inserting the expansion (10) into (9) and comparing like powers
of . In this way we get

(1) = flao, g + x(e/(ao) no(7)) (4" = 95 ), (22)

and linear differential equations for 7;(7) with coefficients depending on
no(7), - ..,m;—1(7). Initial values n;(0) are given by (11).

It follows from (7), (12) and (13) that the initial value 7y(0) = a; sat-
isfies @/(ag)no(0) = —1. As in Section 3.2 the scalar function o' (ag)ne(7) is



monotonically increasing. However, its slope is at least ¢, where

- . / . S+ =
¢ = min o(ao)f(ao o +0 (o — 7)) >0,
as long as a/(ag)no(7) < 0. Consequently, o'(ag)no(t) > —1 + cr, which
implies that
a(y(te(e) +1)) > —e +ct + O(e%).

The solution satisfies —¢ < «(y(t)) < 0 on an interval 0 < t < At with
At < e/c+ O(e?).

3.4. Estimation of the remainder

For the estimation of the remainder in (10) it is convenient to introduce a
new variable v = a(y)/e, so that after differentiation of v(t) the problem (9)
becomes equivalent to the singularly perturbed differential equation

gt) = fly(t), ¢(=e) + x(v(®) (0 — (=€)
eo(t) = o'(y0)fy(t), ¢(—¢) + x(v(t) (G5 — ¢(—2))),

provided that the initial value for v(t) satisfies v = a(y)/e. The coefficient
functions of Sections 3.2 and 3.3 have been constructed in such a way that
the truncated asymptotic expansion, when inserted into the differential equa-
tion (23), has a defect of size O(eV11).

In the situation of Section 3.2 we assume (cf. condition (18))

(23)

Jmax o(ao) f(ao, 9o + 003" —90)) (95 — o) <0 (24)
This together with the monotonicity of x(7) permits us to follow the proof of
Theorem VI.3.2 of [8], and to conclude that the remainder in (10) is bounded
by O(eM*1). In the situation of Section 3.3 it is sufficient to work with a
classical Gronwall inequality, because only intervals of length O(e) have to
be considered. We thus have proved the following result.

Theorem 1 (weak solution). Consider the regularization of Section 2.1,
and assume the existence of 0y € (0, 1) such that (14) and (24) hold. Further-
more, assume that the solution yo(t), uog(t) of the reduced problem (16)-(17)
exists on an e-independent interval [0, T], and satisfies

mma o (yo(0)) 1+ wol0), i+ w6 — 35 — i) < 0.



Then, the problem (9) has, for sufficiently small € > 0, a unique solution
on the interval [to(e),to(e) + T, which is of the form (10). The coefficient
functions are those constructed in Section 3.2. U

Theorem 2 (transition to classical solution). Consider the regulariza-
tion of Section 2.1, and assume that (15) holds. Then, the problem (9) has,
for sufficiently small € > 0, a unique solution of the form

Yltole) +1) = g0+ e 3 einy(t/e) + OEH),  0<1<T(e)

where T'(e) = O(e) is such that a(y(to(e) + T'(¢))) = 0, the constant value
Yo is given by (11), and the coefficient functions are those constructed in
Section 3.3. The function no(T) is monotonically increasing. O

Example 1. We consider the neutral delay equation

y@t) = fly(t) = 1)), f(z) = (1= Biz)(1 = faz), (25)

with y(t) = 0 for ¢ < 0. The constants v, §; < [ are assumed to be
positive. The solution of the regularized problem (in the sense of Section 2.1)
is y(t) = vt for 0 <t < to(e) = v (1 — ). Beyond this breaking point we
have the following situations:

e (37 < 1: there is only a classical solution;
e 317 <1 < fByv: there is only a weak solution;

e 1 < (B17: there is a classical and a weak solution.

In the first two cases the solution of the regularized problem approximates
correctly the unique solution. In the third case, it always approximates a
weak solution. Moreover, it approaches monotonically the manifold defined
by a(y) =y — 1 =0 (see Figure 1). This is in contrast to the regularization
of Section 2.2, where the regularized solution turns out to approximate, de-
pending on the choice of the parameters ~, 3, and s, either the classical or
the weak solution, and in the latter case it typically oscillates around a limit
manifold (see [7]).
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Figure 1: Solution of the regularized problem (in the sense of Section 2.1) with ¢ =
1/2,1/4,1/8,1/16 for example 1 with parameters v = 2.3, 51 = 0.6, Sz = 1.

3.5. Continuation of the solution

The expansions of Theorems 1 and 2 are valid on compact intervals as
long as a(y(t)) remains between —e and 0. We let ¢1(¢) be the first breaking
point after ¢y(e), and we distinguish between the following situations:

e a(y(t1(¢))) = —e and the solution continues in the region a(y) < —e¢.
Here, the problem (1) is the ordinary differential equation, where ¥ is
replaced by ¢ in the right-hand side. Standard existence and unique-
ness theory can be applied. The depencence on € comes only through
the initial value at t1(¢). For the next breaking point t5(c) we are
exactly in the same situation as at to(e).

e a(y(t1(¢))) = 0 and the solution continues in the region 0 < a(y) <
to(e). Also here the expression y(a(y(t))) is independent of e, and
the standard theory for ordinary differential equations is applicable.
Denoting the next breaking point by ¢5(g), we have the two subcases:

a(y(ta(€))) = 0 and the solution continues in the region —e <
a(y) < 0. This case is identical to the one discussed in Sections 3.2
and 3.3. The only difference is that the initial value for 7y is zero, and
the function 7)o(7) is monotonically decreasing.

a(y(ta(€))) = to(e) and the solution continues in the region to(e) <
a(y) < ti(e). The difference to the former analysis is that the function
o(—¢e) + x(t/e) (g — ¢(—¢)) in the argument of (9) is replaced by
the asymptotic expansion (10), which is a smooth function of t/e. Its
dominating term is monotonically increasing as it is assumed for x(7).

The analysis at further breaking points is similar and thus omitted.
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4. Analysis of the regularization of Section 2.2

The regularization of Section 2.2 was introduced and analyzed in [7]. One
of the aims of the present work is to compare this regularization with that of
Section 2.1, and to extend the analysis of [7] to subsequent breaking points.

The main difference between the two regularizations is the treatment of
the discontinuity in the derivative at the starting point. Whereas the regu-
larization of Section 2.1 modifies the derivative ¢(t) of the starting function
on an interval of length ¢ just before the starting point 0 and leaves the equa-
tion unchanged right after it, the regularization of Section 2.2 does not touch
the initial function nor its derivative, but replaces the differential-algebraic
system (3) having inconsistent initial values by the singularly perturbed prob-
lem (5). This removes the discontinuity in the derivative by introducing a
transient layer immediately after the initial point.

4.1. Asymptotic expansion after the first breaking point

The first breaking point ¢y (e) appears when «(y(t)) crosses zero, i.e., when
a(to(e) = 0. At this point the solution possesses an asymptotic expansion

’y(to(E)) = ag + €ay + 52a2 + ... s ’y(to({f)) = bo + Ebl + €2b2 + ... (26)

The analysis of [7] shows that on an e-independent non-empty interval the
solution has the form

to(e) +1) = D" Iy(t) +2 Y eIt/ + O, (@)

J=0

as it is the case in the analysis of Section 3. The smooth function yo(t) is
the same as before, but there is a significant difference in the function 7y(7)
which dominates the transient layer after the breaking point. The function
Mo(7) = &/(ao)(y1(0) +no(7)) which, apart from a constant, is the component
of no(7) that is orthogonal to the manifold a(y) = 0, is the solution of the
scalar second order differential equation®

o' (1) = =1y (1) + g(max(0,7(7))) (28)

2Recall that for the regularization of Section 2.1, 7jo(7) is a solution of the scalar first
order differential equation (20), which can be written as 7y (1) = g(1 — x(7o(7))).

11



with initial values 7y(0) = 0, 7, (0) = &/(ag)bo > 0, where

9(n) = o/(ao) f (a0, 95 + ™" (g — 90 ))- (29)

It is proved in [7] that the solution of the initial value problem (28) completely
determines the behavior of the regularized solution. There are exactly two
possibilities: either the solution (7y(7), 7, (7)) of (28) converges to a station-
ary point (c, 0) satisfying g(c) = 0 with ¢ > 0, or it approaches exponentially
fast the linear function 7o(7) ~ g(400)7 (with g(4+00) > 0) when 7 — oco. In
the first case, the solution of the singularly perturbed problem (5) approaches
the weak solution of (1), which satisfies ¢(to) = f(y(to), ¥q + e “(¥g — Ug))-
In the second case, it approaches the classical solution of (1).

The main differences between the regularization of Section 2.1, which we
abbreviate (INI) because it modifies the initial function, and the regular-
ization of Section 2.2, which we denote (SPD) because it is defined via a
singularly perturbed differential equation, are the following:

e In the co-existence of weak and classical solutions, the regularization
(INT) always approaches a weak solution. More precisely, it approaches
the weak solution for which the second argument in the derivative of
the solution y(to) = f(y(to), Uy + 0o(Ja — ¥p )) is closest to g .

e In the co-existence of weak and classical solutions, the regularization
(SPD) can approach a weak or a classical solution, depending on the
solution of the initial value problem (28). This is illustrated in Figure 2
at the neutral equation of Example 1. Both, the weak and the classical

2.0

T

)

|
—
~
o~

1.5}

%) S — ===
r weak solution

5F

0: e e e ] 0'....|....|....|....|....|
.0 5 1.0 1.5 2.0 250 5 1.0 1.5 2.0 2.5

Figure 2: Solution of the regularized problem (in the sense of Section 2.2) with ¢ =
1/4,1/8,1/16,1/32 of example 1 with parameters v = 2.3, 51 = 0.6, B2 = 1 (left picture)
and v = 2.3, f1 = 0.6, B2 = 3 (right picture).
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solution are shown by a broken line. With data corresponding to the left
picture, the classical solution is approximated, whereas in the situation
of the right picture the weak solution is approximated. Notice that the
data of the left picture of Figure 2 are the same as those of Figure 1.

e The transition at the first breaking point is monotone for the regular-
ization (INT). When a weak solution is approximated, the regularized
solution never crosses the manifold a(y) = 0 close to this breaking
point.

e The transition at the first breaking point shows in general damped
high oscillations of amplitude O(¢) for the regularization (SPD). The
regularized solution always crosses the manifold a(y) = 0 at least once.
When a weak solution is approximated, the expression a(y(t)) for the
regularized solution can change sign several times on an interval of
length O(e) before it stays positive on an e-independent interval.

e With the regularization (INI), breaking points of the neutral prob-
lem (1) induce pairs of breaking points in the regularized equation (the
first, when a(y(t)) crosses —¢, and the second, when it crosses 0). This
is not the case for the regularization (SPD).

4.2. Asymptotic expansion at subsequent breaking points

The article [7] gives a detailed analysis for the regularization (SPD) at
the first breaking point and, in the case of a weak solution, at the point
where the solution leaves the manifold «(y) = 0. This is done by the study
of various kinds of asymptotic expansions separating smooth and transient
parts of the solution. Here, we indicate an extension of this analysis to the
situation of subsequent breaking points, i.e., points ¢, for which the solution
of the neutral delay equation (1) satisfies a(y(t1)) = to.

A breaking point ¢;(¢) that is induced by the previous breaking point
to(e) is defined by (invoking the implicit function theorem)

aly(ti(e))) = to(e) = to + ety + X+ ... .
The solution at ¢;(g) of the regularized problem admits an expansion
y(t1(e)) = ap +car + 2ag + . .., Y(t1(e)) = by +eby + by + ... .

The coefficients a; and b; are different from those in (26), but they will
play the same role. The same argumentation as for the first breaking point

13



leads to o/(ag)a; = t} and o/(ag)by > 0. Beyond the next breaking point we
consider the asymptotic expansion

V() +0) = ) + 2 Y e/ + O, @0

J=0

where we again do not change the notation of the coefficient functions. In-
serting this expansion and its term-by-term derivative into the singularly
perturbed equation (5), and comparing like powers of ¢ in the transient and
smooth parts, yields equations that are very much the same as those ob-
tained in Section 5 of [7]. The only difference comes from the fact that the
argument «(y(t)) of the delay term is no longer close to zero, but it is now
close to ty(e). This affects only the function 7y(7) = o' (ag)(y1(0) + 1n0(7)),
which also satisfies the differential equation (28), but the initial values are
M0(0) = a/(ag)a; =t} and 7 (0) = o’(ag)by > 0, and the function g(n) is now
given by B

9(n) = a'(a0) fao, 51 + Go(n)), (31)

where (o(7) is the derivative with respect to 7 of the known function no(7),
which is the leading transient term in the asymptotic expansion (10) after
the first breaking point. This function satisfies (o(0) = 75 — ¢ and it
converges exponentially fast to zero for 7 — 4-o00. Here, the vectors g, and
g represent the left-hand and right-hand derivative of the solution of the
neutral equation (1) at the first breaking point ¢.

In [7] the equation (28) is studied for the case where g(n) is given by (29),
and it turned out to be advantageous to introduce a new variable § = e~ in
place of 1. This can also be done for the function (31), so that all statements
and proofs carry over to the present situation. In particular, there are again
exactly two possibilities for the solution of (28) with the new function g(n):
either it converges to a finite stationary point and the regularization approx-
imates a weak solution after the breaking point ¢;(¢), or it tends to infinity
like g(+00)T and the regularization approximates a classical solution. An
extension to subsequent breaking points is straightforward.

It is worth to remark that several phenomena occur over different time
scales (O(1), O(e) and O(/e)) - see [7] for details - giving rise to a rich
multiscale dynamics which presents very interesting analogies to some phe-
nomena discussed in [11] for a singularly perturbed scalar delay differential
equation.
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5. Numerical experiments with RADARS

Both regularizations of the present work are useful for a numerical treat-
ment of state-dependent neutral delay equations, because they transform the
problem into a (non-neutral) state-dependent delay equation, so that stan-
dard software can be applied. Notice, however, that for very small € > 0 the
resulting equations are stiff, which restricts the class of integrators. In this
section we present some experiments with the code RADARD of [5].

5.1. A system of Lotka—Volterra-like equations

We consider a model similar to that considered in [9, 10] to describe the
interaction between two competing species. This kind of model has received
the attention of researchers in the last few years since it seems natural to
include a memory effect in such a type of interplay. The main modification we
include here is that we make use of a state-dependent delay («;) in contrast
to the fact that usually simply constant delays are considered. The equations
we consider (for ¢t > 0) are the following:

in®) = ron(®) (1= pir(oa(n (1) — ags(as(t)))

n(t) = o) (75— = 1(0) = emlen(r)

(32)

where the deviating arguments are
ar(yi(t)) =y (t) — 0.5 and a(t) =t —5,

and the positive constants in the model are chosen as r; = ry =1, p = 3,
a=0.2,b=1.8, and ¢ = 0.25.

We also consider as initial functions, for ¢ < 0, y;(t) = 0.33 — ¢/10,
y2(t) = 2.22 + t/10. It turns out that a classical solution ceases to exist at
the breaking point ¢ ~ 0.4366338. For this reason we consider the regularized
system, according to Section 2.2,

it = =
4t = nn® (1-palm@®) - epes®)) - 20) (33
(1) = ran(t) (7= — ) — e (a(r)

which coincides with (32) if ¢ = 0.
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Figure 3: The first solution component of the regularized problem (33) (left) and its
derivative (right).
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Figure 4: Solution of the regularized problem (33) in the phase space (y1,y2).

We denote by y5(t), 25(t) and y5(t) the solution of (33). Figures 3 and 4
show pictures of the solution computed by RADARS for ¢ = 107*. Note
that when y; () is constant it corresponds to the fact that o (y;(¢)) remains
constant which implies that we are in the presence of a weak solution. This
appears clearly in Figure 3 and also in Figure 4 where the vertical branch
yi(t) =~ 0.5 identifies a regime of weak solution. The observed dynamics
is interesting since it consists of periodic solutions alternating classical and
weak branches. In Figure 4 a limit cycle is observed with the typical shape
of Lotka—Volterra systems, that is phases where the magnitudes of the pop-
ulations have alternatively small and large sizes.

Using the regularization of Section 2.1 provides very similar pictures.

We conclude that by means of the considered regularizations we are able
to approximate generalized periodic solutions of mixed type (classical/weak)
in a simple way, which does not need any modification of the existing code.

16



References

1]

[9]

[10]

[11]

A. Bellen, M. Zennaro, Numerical methods for delay differential equa-
tions, Numerical Mathematics and Scientific Computation, The Claren-
don Press Oxford University Press, New York, 2003.

A. Bressan, Singularities of stabilizing feedbacks, Rend. Sem. Mat. Univ.
Politec. Torino 56 (1998) 87-104 (2001). Control theory and its applica-
tions (Grado, 1998).

A F. Filippov, Differential equations with discontinuous righthand sides,
volume 18 of Mathematics and its Applications (Soviet Series), Kluwer
Academic Publishers Group, Dordrecht, 1988. Translated from the Rus-
sian.

G. Fusco, N. Guglielmi, A regularization for discontinuous differential
equations with application to state-dependent delay differential equa-
tions of neutral type, J. Differential Equations 250 (2011) 3230-3279.

N. Guglielmi, E. Hairer, Implementing Radau ITA methods for stiff delay
differential equations, Computing 67 (2001) 1-12.

N. Guglielmi, E. Hairer, Computing breaking points in implicit delay
differential equations, Adv. Comput. Math. 29 (2008) 229-247.

N. Guglielmi, E. Hairer, Asymptotic expansions for regularized state-
dependent neutral delay equations, Submitted for publication (2010).

E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff
and Differential-Algebraic Problems, Springer Series in Computational
Mathematics 14, Springer-Verlag, Berlin, 2nd edition, 1996.

Y. Kuang, On neutral-delay two-species Lotka-Volterra competitive sys-
tems, J. Austral. Math. Soc. Ser. B 32 (1991) 311-326.

Y. Kuang, Qualitative analysis of one- or two-species neutral delay pop-
ulation models, STAM J. Math. Anal. 23 (1992) 181-200.

J. Mallet-Paret, R.D. Nussbaum, Superstability and rigorous asymp-
totics in singularly perturbed state-dependent delay-differential equa-
tions, J. Differential Equations 250 (2011) 4037-4084.

17



[12] J. Sotomayor, M.A. Teixeira, Regularization of discontinuous vector
fields, in: International Conference on Differential Equations (Lisboa,
1995), World Sci. Publ., River Edge, NJ, 1998, pp. 207-223.

13] V.I. Utkin, Sliding mode control: mathematical tools, design and ap-
g g

plications, in: Nonlinear and optimal control theory, volume 1932 of
Lecture Notes in Math., Springer, Berlin, 2008, pp. 289-347.

18



