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PDE-W-methods for parabolic problems
with mixed derivatives

S. González-Pinto · E. Hairer ·
D. Hernández-Abreu · S. Pérez-Rodŕıguez

Abstract The present work considers the numerical solution of differential
equations that are obtained by space discretization (method of lines) of pa-
rabolic evolution equations. Main emphasis is put on the presence of mixed
derivatives in the elliptic operator. An extension of the alternating-direction-
implicit (ADI) approach to this situation is presented. Our stability analysis is
based on a scalar test equation that is relevant to the considered class of prob-
lems. The novel treatment of mixed derivatives is implemented in 3rd order
W-methods. Numerical experiments and comparisons with standard methods
show the efficiency of the new approach. An extension of our treatment of
mixed derivatives to 3D and higher dimensional problems is outlined at the
end of the article.

1 Introduction

This work is concerned with time integrators applied to the space discretiza-
tion (method of lines) of parabolic partial differential equations with mixed
derivatives. We focus on W-methods, which avoid the solution of nonlinear
equations and only require an approximate solution of linear systems with
matrix I − θτW , where I is the identity, θ is a real parameter, τ the time
step size, and W is an approximation to the Jacobian matrix of the ordinary
differential equation.

To reduce the work in the solution of the arising linear systems the alter-
nating-direction-implicit (ADI) method has been proposed by Peaceman, Rach-
ford, and Douglas (see [14] and [2]). One only needs to solve a sequence of
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tridiagonal linear systems (one for each space variable). An ADI method for
parabolic problems with mixed derivatives has been proposed in [1].

There are a few well-established time integrators for the numerical solu-
tion of parabolic problems with mixed derivatives based on ADI techniques.
An extension of the Douglas scheme, including stabilizing correction stages,
is given in [9]. It is called Hundsdorfer–Verwer (HV) scheme in [11]. With
the aim of getting more freedom in the scheme of [1] and thus improving its
stability, in’t Hout & Welfert [11] propose a modified Craig–Sneyd (MCS)
scheme. Convergence has been considered in [9,10] for the HV scheme and
in [12] for the MSC scheme. These methods have been developed mainly in
view of applications in financial mathematics.

The methods HV and MCS are second order in space and second order
in time. Much effort has been made to extend the ADI approach to higher
order (in space). Based on the time integrator HV, space discretizations of
order 4 (either using five nodes or as a compact scheme) are given in [3] with
an application to financial option pricing in [4]. Based on either the MCS or
the HV scheme, compact schemes of order 4 (in space) are derived in [7,8]. All
these extensions are fourth order in space and second order in time.

The present work is mainly concerned with improving the accuracy of the
time integration by targeting an order in time that is higher than two. This
can be achieved by considering W-methods ([17], see also [6, Section IV.7]) of
classical order at least three. Extending the ADI approach to the solution of
the linear system with matrix I − θτW (where mixed derivatives are present
in the elliptic operator) an efficient implementation is possible. In contrast
to a von Neumann stability analysis, which requires periodic boundary condi-
tions, our stability analysis is based on a test problem with Dirichlet boundary
conditions.

1.1 Class of evolution equations

On a rectangular domain (x, y) ∈ [a, b] × [c, d] and for t ≥ 0 we consider the
partial differential equation

∂tu = A∂2xxu+B ∂2yyu+ 2C ∂2xyu+ g
(
t, x, y, u, ∂xu, ∂yu

)
(1.1)

with suitable boundary conditions and an initial condition at t = 0. The
coefficients A,B,C may depend on space and time. We assume that pointwise

A > 0, B > 0, AB > C2, (1.2)

so that the leading part represents an elliptic operator. The stability analysis
of Section 3 below is carried out for the case of constant coefficients A,B,C,
and for vanishing function g.

We apply a space discretization (method of lines or MOL) using finite
differences. Let a = x0 < x1 < · · · < xnx+1 = b and c = y0 < y1 < · · · <
yny+1 = d be subdivisions inducing a grid on the rectangular domain [a, b]×
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[c, d], and denote by Uij(t) an approximation to the solution u(t, xi, yj) of (1.1)
at the grid points. Using differentiation matrices Dxx and Dyy for the second
partial derivatives, and Dx, Dy for the first partial derivatives, we obtain an
ordinary differential equation

U̇ = A(I ⊗Dxx)U +B(Dyy ⊗ I)U + 2C(Dy ⊗Dx)U

+
(
g
(
t, xi, yj , Uij , ((I ⊗Dx)U)ij , ((Dy ⊗ I)U)ij

))nx,ny

i,j=1,1
+ b(t)

(1.3)

for the vector U(t) =
(
Uij(t)

)nx,ny

i,j=1,1
(in the case of Dirichlet boundary condi-

tions). The vector b(t) contains terms arising from non-homogeneous boundary
conditions. For the differential equation (1.3) we use the compact notation

U̇ = F (t, U). (1.4)

Since the differentiation matrices contain divisions by the small quantities
∆xi = xi+1 − xi and ∆yj = yj+1 − yj , the differential equation (1.4) is stiff
and suitable time integrators (implicit or linearly implicit) are recommended.

For the study of convergence of the MOL approach, connecting the errors
of the space discretization with those of the time integrator, we refer to the
standard literature on the numerical treatment of partial differential equations,
e.g., the monograph by Hundsdorfer & Verwer [10].

1.2 W-methods

In principle, all time integrators for stiff differential equations are suitable for
the numerical solution of (1.4). We focus our interest to W-methods, because
they do not require the solution of nonlinear systems, and they permit the use
of non-exact approximations for the Jacobian of the vector field. Augment-
ing (1.4) with ṫ = 1 we get formally the autonomous differential equation

ẏ = f(y), f(y) =

(
1

F (t, U)

)
for y =

(
t
U

)
. (1.5)

For its numerical integration we consider s-stage W-methods (originally pro-
posed in [17], see also [6, Section IV.7]). Denoting by τ the time step size, and
by yn, yn+1 the numerical approximations to y(t) at tn and tn+1 = tn + τ , it
is defined by

(I − θτŴn)ki = τf
(
yn +

i−1∑
j=1

aijkj

)
+

i−1∑
j=1

`ijkj , i = 1, 2, . . . , s,

yn+1 = yn +

s∑
i=1

biki.

(1.6)

The coefficients of the method are collected in A = (aij)j<i, L = (`ij)j<i and
b = (bi)i, so that the W-method is characterized by (A,L, b, θ).
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The matrix Ŵn is arbitrary, in principle, but it is expected to be a rough
approximation to f ′(yn). The construction of methods of order 3 and higher
simplifies considerably under the assumption(

f ′(yn)Ŵn − Ŵnf
′(yn)

)
ẏ(tn) = O(τ), (1.7)

which is satisfied if Ŵn = f ′(yn) +O(τ).
In view of an application to discretized parabolic differential equations,

W-methods of order 3 and higher have been constructed in [5,16,13,15].

1.3 Splitting of the Jacobian

To get reasonably high accuracy, fine grids have to be considered, so that
the dimension of the semi-discretized differential equation (1.3) is very high.

Therefore, the solution of the linear system with matrix I − θτŴn is often the
most costly part in the implementation of method (1.6).

We consider the situation, where a splitting of the vector field and of its
Jacobian exists,

f(y) =

d∑
j=0

fj(y), f ′(y) =

d∑
j=0

f ′j(y), (1.8)

such that the solution of the linear systems with matrices I − θτf ′j(yn) can be
done much more efficiently than with the matrix I−θτf ′(yn). In this situation
it is advantageous to approximate1

I − θτf ′(yn) ≈
d∏
j=0

(
I − θτf ′j(yn)

)
. (1.9)

This is the essence of the alternating-direction-implicit (ADI) approach [14,
2], where each fj(y) contains the terms in (1.3) that correspond to partial
derivatives with respect to only one space variable. The splitting could also be
into a stiff and a non-stiff part. In this situation the Jacobian of the non-stiff
part is often replaced by the zero matrix.

In the context of W-methods this approach is studied in [18] (see also [10,
Section IV.5]). The resulting methods are called AMF-W-methods (approx-
imate matrix factorization W-methods). Such an AMF-W-method is called

exact [15], if the matrix I−θτŴn is equal to the right-hand side of (1.9). This

implies that Ŵn − f ′(yn) = O(τ). It is called inexact, if one of the factors in

(1.9) is replaced by the identity matrix, so that Ŵn − f ′(yn) = O(τ) is no
longer fulfilled.

1 The notation
∏d

j=0 Aj is understood to be a multiplication from right to left, i.e.,∏d
j=0 Aj = Ad . . . A1A0.
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1.4 Outline of the rest of the paper

Section 2 explains how the presence of mixed derivatives in the elliptic operator
can be efficiently combined with the ADI approach for W-methods. The main
idea is presented for the autonomous differential equation (1.5). Mixed deriva-
tives are included in an explicit manner combined with a suitable damping.
An algorithmic description is given for the general non-autonomous problem
(1.4). The resulting W-methods are called PDE-W-methods.

Stability of these schemes is studied in Section 3. We introduce a new scalar
test equation, which takes into account the presence of mixed derivatives in
the differential equation.

Numerical experiments are presented in Section 4. We observe the numeri-
cally achieved stiff order, and we propose a transformation of non-homogeneous
Dirichlet boundary conditions to homogeneous ones. This considerably im-
proves the accuracy of the results. We also compare our implementation of
W-methods with the classical methods MCS (modified Craig–Sneyd) and HV
(Hundsdorfer–Verwer), see [11].

In a final section we show how our techniques can be applied to 3D (or
higher dimensional) problems. Numerical experiments give the same good be-
haviour as for 2D problems.

2 PDE-W-methods

PDE-W-methods are W-methods, where the arising linear system is solved in a
way that is adapted to the treatment of parabolic partial differential equations.
We start by explaining the ideas for the autonomous equation (1.5), and then
we present the algorithmic form for (1.4).

2.1 Solving the linear system by splitting

Motivated by the alternating-direction-implicit approach (ADI) of [14,2] and
by the AMF (approximate matrix factorization) implementation of W-methods
(see [15]), we assume that the Jacobian f ′(yn) can be split as

f ′(yn) = f ′0(yn) + f ′1(yn) + f ′2(yn). (2.1)

Here, f ′1(yn) and f ′2(yn) correspond to the discretization of the partial deriva-
tives with respect to the first and second space variables, whereas f ′0(yn) cor-
responds to those of the mixed derivative (and further terms that may arise).
The idea of the AMF approach is to approximate the inverse of the left-hand
matrix in (1.6) by

(
I − θτf ′(yn)

)−1
≈

2∏
j=0

(
I − θτf ′j(yn)

)−1
. (2.2)
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Since the discretization of the partial derivatives in f ′1(yn) and f ′2(yn) are
banded matrices (tridiagonal for the standard second order discretization),
the solution of linear systems of the form(

I − θτf ′j(yn)
)
k = v, j = 1, 2

can be done very efficiently. This is less evident for j = 0 since the discretiza-
tion of the mixed derivatives in f ′0(yn) is not a banded matrix (with small
band-width). Moreover, f ′0(yn) has large positive and negative eigenvalues, so

that an application of
(
I − θτf ′0(yn)

)−1
would imply a step size restriction as

for explicit time integrators. This is what we want to avoid. The idea is to
approximate(

I − θτf ′0(yn)
)−1
≈ I + θτf ′0(yn)

2∏
j=1

(
I − θτf ′j(yn)

)−1
. (2.3)

This means that we use
(
I − θτf ′0(yn)

)−1 ≈ I + θτf ′0(yn), but before applying
the operator f ′0(yn) we damp the large eigenvalues by applying successively(
I − θτf ′1(yn)

)−1
and

(
I − θτf ′2(yn)

)−1
. Such a procedure is only justified in

the situation, where the eigenvalues of f ′0(yn) are related to those of f ′1(yn)
and f ′2(yn).

2.2 W-methods for non-autonomous differential equations

Splitting the vector yn into (tn, Un), the vector ki into (Mi,Ki), and denoting

the non-zero parts of Ŵn by wn and Wn, the ith stage of the W-method (1.6)
becomes((

1 0
0 I

)
− θτ

(
0 0
wn Wn

))(
Mi

Ki

)
(2.4)

= τ

(
1

F
(
tn +

∑i−1
j=1 aijMj , Un +

∑i−1
j=1 aijKj

))+

i−1∑
j=1

`ij

(
Mj

Kj

)
,

where wn and Wn are arbitrary, but ideally they should be approximations to
∂tF (tn, Un) and ∂UF (tn, Un), respectively. The upper equation of this relation

gives Mi = ρiτ , where ρi is defined recursively by ρi = 1 +
∑i−1
j=1 `ijρj . The

first argument of F thus becomes tn + ciτ with ci =
∑i−1
j=1 aijρj .

With the splitting

F (t, U) = F0(t, U) + F1(t, U) + F2(t, U), (2.5)

induced by (2.1), we let an,j ≈ ∂tFj(tn, Un) and An,j ≈ ∂UFj(tn, Un). The
matrix to the left of (2.4) is then defined via the approach of Section 2.1 by((

1 0
0 I

)
− θτ

(
0 0
wn Wn

))−1
=

2∏
j=0

((
1 0
0 I

)
− θτ

(
0 0

wn,j Wn,j

))−1
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where wn,j = an,j and Wn,j = An,j for j = 1, 2, and((
1 0
0 I

)
− θτ

(
0 0

wn,0 Wn,0

))−1
=

(
1 0
0 I

)
+ θτ

(
0 0
an,0 An,0

) 2∏
j=1

((
1 0
0 I

)
− θτ

(
0 0
an,j An,j

))−1
.

An algorithmic presentation of the resulting method is given in the following
subsection.

2.3 Implementation of PDE-W-methods

We consider the differential equation (1.4) together with the splitting (2.1).
With an,j = ∂tFj(tn, Un) and An,j = ∂UFj(tn, Un), for j = 0, 1, 2 (or approxi-
mations if the derivatives are not available analytically), the algorithm for the
computation of the internal stages (2.4) of the W-method becomes

K
(−3)
i = τF (tn + ciτ, Un +

∑i−1
j=1 aijKj) +

∑i−1
j=1 `ijKj

(I − θτAn,1)K
(−2)
i = K

(−3)
i + θρiτ

2an,1

(I − θτAn,2)K
(−1)
i = K

(−2)
i + θρiτ

2an,2

K
(0)
i = K

(−3)
i + θτAn,0K

(−1)
i + θρiτ

2an,0

(I − θτAn,1)K
(1)
i = K

(0)
i + θρiτ

2an,1

(I − θτAn,2)K
(2)
i = K

(1)
i + θρiτ

2an,2

Ki = K
(2)
i

(2.6)

for i = 1, . . . , s. The numerical solution after one step is then given by

Un+1 = Un +

s∑
i=1

biKi.

Note that the above algorithm requires only the numerical solution of linear
systems with banded (typically tridiagonal) matrices. Since this implementa-
tion is adjusted for the solution of evolution equations with dominant elliptic
operator, we call the algorithm PDE-W-method.

2.4 Order

For a differential equation (1.5) the W-method becomes a Rosenbrock method

if Ŵn = f ′(yn). Conditions on the coefficients θ, aij , `ij , bj that guarantee

classical order p are well understood. If Ŵn is not close to f ′(yn) for τ → 0,
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then many more order conditions have to be satisfied (see for example [6,
Section IV.7]). An intermediate situation is obtained under the assumption

Ŵn − f ′(yn) = O(τ), τ → 0. (2.7)

Theorem 2.1 If the relation (2.1) is satisfied up to an error of size O(τ), then
the PDE-W-method is equivalent to a W-method (1.6) satisfying the relation
(2.7).

Proof The product of the factorization (2.2) can be considered as exact for
a modified vector wn and a modified matrix Wn which are O(τ) close to the
original ones. ut

This result implies that every W-method, which has order p under the
assumption (2.7), yields a PDE-W-method of the same order.

3 Stability

For W-methods the study of stability is a nontrivial task. The difficulty is
mainly due to the lack of commutativity of the matrices Ŵn and f ′(yn). Here,
we propose a scalar test equation that is relevant for a large class of partial
differential equations for which the dominant part is an elliptic operator with
constant coefficients.

3.1 Motivation of a test equation

On a rectangular 2-dimensional domain let us consider the PDE

∂tu = A∂2xxu+B ∂2yyu+ 2C ∂2xyu (3.1)

with homogeneous Dirichlet boundary conditions. We assume that the coeffi-
cients A,B,C are constant and satisfy (1.2), so that the differential operator
on the right-hand side is elliptic. A standard second order space discretization
of (3.1) yields the ordinary differential equation

U̇ = A(I ⊗Dxx)U +B(Dyy ⊗ I)U + 2C(Dy ⊗Dx)U, (3.2)

where Dxx and Dyy are tridiagonal Toeplitz matrices (with possibly different
dimension) having entries (1,−2, 1)/∆x2 and (1,−2, 1)/∆y2, and Dx, Dy are
tridiagonal Toeplitz matrices with entries (−1, 0, 1)/(2∆x) and (−1, 0, 1)/(2∆y),
respectively. Unfortunately, the matrices Dxx and Dx do not commute2, so
that they cannot be diagonalized simultaneously, however the full Jacobian
matrix of the linear system (3.2) is a symmetric matrix. Moreover, the stabil-
ity of the system (3.2) is guaranteed by the following result.

2 For the case of periodic boundary conditions these matrices commute and a von Neu-
mann stability analysis is possible; see [11].
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Theorem 3.1 Under the assumption (1.2), the system (3.2) is asymptotically
stable.

Proof The idea is to approximate the matrices Dxx and Dyy by the squares
D2
x and D2

y, and to study the defect. A direct computation yields the relation

Dxx = D2
x −

∆x2

4
D2
xx −

1

2∆x2
Diag (1, 0, . . . , 0, 1),

which implies that the logarithmic norm of the defect Dxx −D2
x is negative.

For the study of asymptotic stability of (3.2) we can therefore replace Dxx

and Dyy by D2
x and D2

y, respectively. All matrices of the resulting system
can be diagonalized simultaneously. Let v be an eigenvector of Dx for the
eigenvalue iλ̃, and w an eigenvector of Dy for the eigenvalue iµ̃, then v ⊗w is
an eigenvector of the matrices D2

x ⊗ I, I ⊗D2
y and Dx ⊗Dy. Written in the

basis of eigenvectors, which is orthonormal, the system (3.2) is decoupled into
scalar equations of the form

ν̇ = −Aλ̃2ν −Bµ̃2ν − 2Cλ̃µ̃ν.

Assumption (1.2) guarantees the asymptotic stability of this scalar differential
equation which, in turn, implies asymptotic stability of (3.2). ut

Motivated by the proof of the previous theorem, we consider the scalar test
equation

ν̇ = −λ2ν − µ2ν − 2cλµν. (3.3)

where we put λ = λ̃
√
A, µ = µ̃

√
B and c = C/

√
AB. Here, λ ∈ R , µ ∈ R , and

|c| < 1 by assumption (1.2).

3.2 PDE-stability

Applying a PDE-W-method (1.6) with step size τ to the test equation (3.3) and
considering in (2.6) the natural splitting for the Jacobian corresponding to the
mixed derivative, and to the derivatives with respect to x and y, respectively,

An,0 = −2cλµ, An,1 = −λ2, An,2 = −µ2, (3.4)

we get the recursion Un+1 = R(z0, z1, z2)Un, where R(z0, z1, z2) is a rational
function of the real variables,

z1 = −τλ2, z2 = −τµ2, z0 = −2τcλµ. (3.5)

It is given by

R(z0, z1, z2) = 1 + zbT (Π Is − L− zA)−11, (3.6)

where z = z0 + z1 + z2 and

Π−1 = (1− θz2)−1(1− θz1)−1
(

1 + θz0(1− θz2)−1(1− θz1)−1
)
, (3.7)
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and it is called the stability function of the method.

It should be noticed that the exact solution of the test equation (3.3) is
stable for all λ ∈ R and µ ∈ R , provided that |c| < 1, because

z = z0 + z1 + z2 ≤ 0, z1 ≤ 0, z2 ≤ 0. (3.8)

This motivates the following definition.

Definition 3.1 A numerical time integrator which, when applied to the test
equation (3.3), yields the recursion Un+1 = R(z0, z1, z2)Un with z0, z1, z2
given by (3.5), is called PDE-stable if

|R(z0, z1, z2)| ≤ 1 for all λ ∈ R , µ ∈ R , |c| < 1.

Numerical experiments with various W-methods confirm that PDE-stable
methods yield stable numerical solutions also for the system (3.2). It is, of
course, an interesting question to study whether PDE-stability implies stability
for the system (3.2) in any dimension.

3.3 PDE-stability of 1-stage PDE-W-methods

The most simple W-method is given by, (see e.g. [10, p. 398])(
I − θτŴn

)
(yn+1 − yn) = τf(yn). (3.9)

It is of classical order 1, and for θ = 1/2 it is of order 2 if (2.7) is satisfied.
The stability function is

R(z0, z1, z2) = 1 +Π−1z (3.10)

with z = z0 + z1 + z2 and Π−1 from (3.7).

The stability function (3.10) is identical to that of the modified Craig–
Sneyd scheme for the special case µ = 0, σ = θ of the 3-parameter family of
methods in [11, Formula (1.11)]. For the important case θ = 1/2, unconditional
stability of (3.10) is shown in the article [11]. The following theorem proves
unconditional stability for all θ ≥ 1/2. The proof is based on the inequality
(3.11) which will be an essential ingredient for the stability investigation of
W-methods with more than one stage.

Theorem 3.2 Assume that z0, z1, z2 are given by (3.5). Then, the stability
function R(z0, z1, z2) of (3.10) satisfies

|R(z0, z1, z2)| ≤ 1 for all λ ∈ R , µ ∈ R , |c| < 1, τ > 0,

if and only if θ ≥ 1/2.
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Proof It follows from |c| < 1 and (3.5) that

|z0| ≤ 2τ |λ||µ| ≤ τ(λ2 + µ2) = |z1|+ |z2|,

so that z0 ≥ z1 + z2 and z = z0 + z1 + z2 ≤ 0. We thus have

1 +
θz0

(1− θz1)(1− θz2)
≥ 1 +

θ(z1 + z2)

(1− θz1)(1− θz2)
=

1 + θ2z1z2
(1− θz1)(1− θz2)

> 0,

so that Π > 0. Together with an application of Lemma 3.1 below (by putting
ai := −θzi, i = 0, 1, 2 and observing 1 +a0 +a1 +a2 = 1−θz ≥ 1) this implies

0 <
1

Π
≤ 1

1− θz
. (3.11)

Consequently, from (3.8) we have that R(z0, z1, z2) = 1 + z/Π ≤ 1 and also

−1 ≤ 1 + (1− θ)z
1− θz

= 1 +
z

1− θz
≤ R(z0, z1, z2).

The inequality to the left follows from θ ≥ 1/2. ut

Lemma 3.1 Assume that a0 ∈ R, a1 ≥ 0, a2 ≥ 0 satisfy 1 +a0 +a1 +a2 > 0.
Then we have

1

(1 + a1)(1 + a2)

(
1− a0

(1 + a1)(1 + a2)

)
≤ 1

1 + a0 + a1 + a2
.

Proof A straight-forward computation gives

1

(1 + a1)(1 + a2)
− a0

(1 + a1)2(1 + a2)2
− 1

1 + a0 + a1 + a2

= −
(a0 − a1a2

2 )2 + a1a2 + a21a2 + a1a
2
2 + 3

4a
2
1a

2
2

(1 + a1)2(1 + a2)2(1 + a0 + a1 + a2)
≤ 0

which proves the statement of the lemma. ut

3.4 PDE-stability of 2-stage PDE-W-methods

There is a two-parameter family of 2-stage W-methods of order ≥ 2, see [10,
p. 400]. It is straightforward to check that the stability function only depends
on the stability parameter θ and that it is given by

R(z0, z1, z2) = 1 +
2z

Π
+
z(z − 2)

2Π2
(3.12)

with z and Π as in Section 3.2.



12 S. González-Pinto et al.

Theorem 3.3 Assume that z0, z1, z2 are given by (3.5). Then, the stability
function R(z0, z1, z2) of (3.12) satisfies

|R(z0, z1, z2)| ≤ 1 for all λ ∈ R , µ ∈ R , |c| < 1, τ > 0,

if and only if θ ≥ 1/4.

Proof By putting µ = 0 and considering the limit |λ| → ∞, we find that
θ ≥ 1/4 is a necessary condition for stability.

It follows from z = z0 + z1 + z2 ≤ 0 (see the proof of Theorem 3.2) that

R(z0, z1, z2) + 1 = 2 +
2z

Π
+
z(z − 2)

2Π2
= 2
(

1 +
z

2Π

)2
− z

Π2
≥ 0,

so that R(z0, z1, z2) ≥ −1. From the inequalities (3.11) we get

R(z0, z1, z2) = 1 +
z

Π

(
2 +

z − 2

2Π

)
≤ 1 +

z

Π

(
2 +

z − 2

2(1− θz)

)
≤ 1,

because the expression in the bracket is positive for z ≤ 0 and θ ≥ 1/4. This
proves the statement of the theorem. ut

3.5 PDE-stability of 3-stage PDE-W-methods

The family of 3-stage W-methods of order ≥ 3, under the special assump-
tion (1.7), were studied in [15, Theorem 1]. All these methods have the same
stability function (depending only on θ), which is given by

R(z0, z1, z2) = 1 +
3z

Π
+

3z(z − 2)

2Π2
+
z(z2 − 6z + 6)

6Π3
(3.13)

with z and Π as in Section 3.2. We also recall that there do not exist 3-stage
W -methods that are of order 3 without any restriction on W [17].

Theorem 3.4 Assume that z0, z1, z2 are given by (3.5). Then, the stability
function R(z0, z1, z2) of (3.13) satisfies

|R(z0, z1, z2)| ≤ 1 for all λ ∈ R , µ ∈ R , |c| < 1, τ > 0,

if and only if θ ≥ 1/3.

Proof a) Assume first that |µ| → ∞. In this case z → −∞, but z/Π converges
to a limit which we denote by −α. We have

lim
|µ|→∞

R(z0, z1, z2) = 1− 3α+
3

2
α2 − 1

6
α3, α =

1

θ(1 + τθλ2)
.

The value α∗ = 3 is maximal such that the modulus of this limit is bounded
by 1 for all α ∈ [0, α∗]. This proves the necessity of θ ≥ 1/3.
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b) By abuse of notation we write R(z,Π) = R(z0, z1, z2), and we let

R(z,Π)− 1 =
z

6Π3
f(z,Π), f(z,Π) = 18Π2 + 9Π(z − 2) + 6− 6z + z2,

so that also

f(z,Π) = 18
(
Π +

1

4
(z − 2)

)2
+

1

8

(
12− 12z − z2

)
.

From (3.11) we have thatΠ+ 1
4 (z−2) ≥ (1−θz)+ 1

4 (z−2) = 1
4 (2+(1−4θ)z) ≥ 0

for all z ≤ 0 and θ ≥ 1
3 . Since f(z, 1−θz) is a monotonically increasing function

of θ ≥ 1/3 we have f(z,Π) ≥ f(z, 1 + z/3) for all z ≤ 0. It can be checked
that the polynomial f(z, 1 + z/3) is non-negative for z ≤ 0. Consequently, we
have f(z,Π) ≥ 0 and therefore also R(z,Π)− 1 ≤ 0.

For the proof of R(z0, z1, z2) ≥ −1 we write

R(z,Π) + 1 =
1

6Π3
g(z,Π)

with
g(z,Π) = 12Π3 + 18zΠ2 +Π(9z2 − 18z) + z(6− 6z + z2)

= 12
(
Π +

1

2
z
)3
− 18zΠ + z

(
6− 6z − 1

2
z2
)
.

For z ≤ 0 this function is monotonically increasing with Π. From (3.11) and
θ ≥ 1/3 we have Π ≥ 1 − θz ≥ 1 − z/3, so that g(z,Π) ≥ g(z, 1 − z/3). A
straight-forward computation shows that the polynomial g(z, 1− z/3) is non-
negative. This completes the proof of the theorem. ut

4 Numerical experiments

We consider advection-diffusion-reaction partial differential equations, where
mixed derivatives of the solution are present. Our aim is to demonstrate nu-
merically that a stiff order larger than 2 can be achieved by the proposed time
integrator.

4.1 Advection-diffusion equation with constant coefficients

We first consider a linear advection-diffusion equation with constant coeffi-
cients,

∂tu = A∂2xxu+B ∂2yyu+ 2C ∂2xyu+D∂xu+ E∂yu+ g(t, x, y) (4.1)

on the square (x, y) ∈ [0, 1] × [0, 1], where g(t, x, y) is selected in such a way
that

u(t, x, y) = ue(t, x, y) := x(1− x)y(1− y)et + κ
((
x+ 1

3

)2
+
(
y + 1

4

)2)
et
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is the exact solution of (4.1). We impose the initial condition u(0, x, y) =
ue(0, x, y) and Dirichlet boundary conditions. If κ = 0 we have homoge-
neous boundary conditions, but when κ = 1 we get non-homogeneous time-
dependent Dirichlet conditions. To obtain an elliptic operator we always as-
sume (1.2).

We apply the MOL approach, where Dx, Dy, Dxx, Dyy are the differenti-
ation matrices corresponding to the first and second order central differences
in each spatial direction (as in Section 3.1). The resulting semi-discretized
system is

U̇ = A(I ⊗Dxx)U +B(Dyy ⊗ I)U + 2C(Dy ⊗Dx)U

+D(I ⊗Dx)U + E(Dy ⊗ I)U + (g(t, xi, yj))
N,M
i,j=1,1 + b(t)

(4.2)

where b(t) stores the terms due to non-homogeneous boundary conditions. As
in (1.4) we write this differential equation as U̇ = F (t, U), and we consider
the splitting

F (t, U) = F0(t, U) + F1(t, U) + F2(t, U),

where F1(t, U) and F2(t, U) correspond to the terms originating from dis-
cretizations with respect to x and y, respectively, and F0(t, U) collects the
rest including mixed derivatives.

We have deliberately chosen a problem, where the exact solution is a poly-
nomial of degree 2 in x and also in y. In this situation the space discretization is
without error, and it is easier to study the error due to the time discretization.

4.2 Time integrators

There exist time integrators (e.g., MCS and HV below) of orders up to 2 that
allow for a treatment of mixed derivatives in the elliptic operator. In addition
to them we consider two PDE-W-methods.

MCS is a modification of the Craig–Sneyd [1] scheme that is considered in
[11, Formula (1.3)]. Parameters are σ = θ = 1/3 and µ = 1/2− θ.

Y0 = Un + τF (tn, Un)

Yj = Yj−1 + θτ
(
Fj(tn+1, Yj)− Fj(tn, Un)

)
, j = 1, 2

Ŷ0 = Y0 + στ
(
F0(tn+1, Y2)− F0(tn, Un)

)
Ỹ0 = Ŷ0 + µτ

(
F (tn+1, Y2)− F (tn, Un)

)
Ỹj = Ỹj−1 + θτ

(
Fj(tn+1, Ỹj)− Fj(tn, Un)

)
, j = 1, 2

Un+1 = Ỹ2.

(4.3)
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HV is an extension of the Douglas scheme [2] and termed Hundsdorfer–
Verwer scheme in [11, Formula (1.4)]. Parameters are µ = 1/2 and θ = 1/3.

Y0 = Un + τF (tn, Un)

Yj = Yj−1 + θτ
(
Fj(tn+1, Yj)− Fj(tn, Un)

)
, j = 1, 2

Ỹ0 = Y0 + µτ
(
F (tn+1, Y2)− F (tn, Un)

)
Ỹj = Ỹj−1 + θτ

(
Fj(tn+1, Ỹj)− Fj(tn+1, Y2)

)
, j = 1, 2

Un+1 = Ỹ2.

(4.4)

WPDE2 is the 2-stage PDE-W-method of Section 2.3 with coefficients taken
from the book by Hundsdorfer & Verwer [10, p. 155]

A =

(
0 0

2/3 0

)
, L =

(
0 0
−4/3 0

)
, b =

(
5/4
3/4

)
.

The stability parameter is θ = (3 +
√

3)/6. This method has only 2 stages,
but it is of order 3 if (2.7) is fulfilled.

WPDE3 is the 3-stage PDE-W-method with coefficients of the W3a method [15].
The coefficients of A = (aij), L = (`ij), and b = (bi) are given by

A =

 0 0 0
1 0 0

4−
√
3

4
1
4 0

 , L =

 0 0 0

−3 +
√

3 0 0

− 3
2 − 3+

√
3

4 0

 b =


10−
√
3

6
4+
√
3

6
2
3


and the stability parameter is chosen as θ = 0.435866 . . .. The method is
of classical order 3 under the assumption (1.7).

4.3 Homogeneous Dirichlet boundary conditions

We apply the four time integrators of Section 4.2 to the space-discretized
differential equation (4.2). We fix the coefficients as A = B = 1, C = 0.5, D =
0.8, E = −0.7, and we assume homogeneous Dirichlet boundary conditions
(κ = 0). The integration interval is 0 ≤ t ≤ 1.

For our first numerical experiment we put ∆xi = 1/(nx + 1) and ∆yi =
1/(ny+1) with nx = ny = 64, so that the dimension of the ordinary differential
equation is nxny = 4096. We apply the four time integrators with constant
time step τ = 2−r, for r = 2, 3, . . . , 16 with the methods MCS and HV, and
for r = 2, 3, . . . , 14 with the two W-methods. In Figure 4.1 we plot the `2-error
for all methods. The left picture shows the error as a function of the cpu-time,
and the right picture as a function of the number of calls to a subroutine that
solves a tridiagonal linear system. It is equal to four times the number of time
steps for the methods MCS and HV, eight times the number of time steps for
the 2-stage method WPDE2, and twelve times the number of time steps for
the 3-stage method WPDE3. Both pictures are qualitatively identical, which
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Fig. 4.1 Comparison of four time-integrators applied to the equation (4.2) with parameters
A = B = 1, C = 0.5, D = 0.8, E = −0.7, and κ = 0.
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Fig. 4.2 Comparison of four time-integrators with data as in Figure 4.1, but for finer space
discretizations, nx = ny = 128 (left) and nx = ny = 256 (right).

shows that the number of calls to the linear system solver is a reliable measure
for the work.

In the figures we have included thin broken lines of slopes 2 (upper) and 3
(lower). They permit us to guess the numerical convergence order. One sees
that the methods MCS and HV show a stiff convergence order that is close
to 2. The PDE-W-methods, WPDE2 and WPDE3, show a nearly identical
`2-error. Their convergence order is close to 3.

In our second experiment we study the performance of the methods for
finer space discretizations. We repeat the previous experiment, but we choose
nx = ny = 128 and also nx = ny = 256. The result is shown in Figure 4.2. This
time we plot the `2-errors only as a function of the number of calls to a linear
system solver. The pictures for all different choices of the spatial discretization
parameter are nearly identical. The only difference is in the cpu-time. Since
the cpu-time is dominated by the time for solving the arising linear systems,
and these systems are all tridiagonal, the cpu-time depends linearly on the
dimension of the ordinary differential equation.
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Fig. 4.3 Comparison of time-integrators applied to the equation (4.2) with parameters as
in Figure 4.1, but with time-dependent non-homogeneous boundary conditions (κ = 1).

4.4 Non-homogeneous Dirichlet boundary conditions

It turns out that the PDE-W-methods lose accuracy when they are applied
to problems with time-dependent, non-homogeneous Dirichlet boundary con-
ditions (see the method WPDE3 in Figure 4.3). To avoid this drawback, we
apply the usual trick and transform the problem to an equivalent one having
homogeneous Dirichlet boundary conditions.

WPDE3H is identical to WPDE3, but applied to an equivalent problem
with homogeneous Dirichlet boundary conditions.

Let us explain the transformation to homogeneous boundary conditions. We
use the four cardinal directions to denote the boundary functions: we denote
by uS(t, x) and uN (t, x) (south and nord) the functions on the bottom and
upper sides of the square, and by uW (t, y) and uE(t, y) (west and east) those
on the left and right sides. The expressions on the four corners are denoted by
uSW (t), uSE(t), uNE(t), and uNW (t). We let

ũ(t, x, y) = xyuNE(t)+x(1−y)uSE(t)+(1−x)yuNW (t)+(1−x)(1−y)uSW (t)

be the bilinear interpolation at the four corners, and we define

û(t, x, y) = (1−x)uW (t, y)+xuE(t, y)+(1−y)uS(t, x)+yuN (t, x)− ũ(t, x, y).

The change of variables w(t, x, y) = u(t, x, y) − û(t, x, y) then transforms the
equation (4.1) into a similar one, where only the function g(t, x, y) is changed.
To perform this transformation we assume that the first and second derivatives
of the boundary functions are analytically available. Discretizing the resulting
PDE as above, we get an ordinary differential equation, similar to (4.2), for
the transformed variables Wij(t) = Uij(t) − û(t, xi, yj). Applying a PDE-W-
method to this differential equation yields approximations to Wij(tn), which
in turn gives the desired approximations to Uij(tn).

Figure 4.3 shows the numerical results for the problem of Section 4.1 with
parameter κ = 1. We compare the PDE-W-method with the methods MCS
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Fig. 4.4 Error at the endpoint of integration of the methods WPDE3 (solid lines) and
WPDE2 (broken lines). The thin broken line indicates a slope 2.

and HV, which do not require the transformation to homogeneous boundary
conditions. The pictures as a function of the cpu-time (left) and as a function
of the required calls to a linear system solver (right) show that the overhead for
the above transformation is nearly negligible. Evidently, the good behaviour
of Section 4.3 is recovered with the implementation of WPDE3H.

4.5 Diffusion with nonlinear reaction

We consider a diffusion-reaction equation on the square (x, y) ∈ [0, 1]× [0, 1],

∂tu = A∂2xxu+B ∂2yyu+ 2C(x, y) ∂2xyu+ u2(1− u) + et, (4.5)

where A = B = 1, and C(x, y) = 0.5
(
1+(x−0.5)(y−0.5)

)
is a space-dependent

diffusion coefficient. The reaction term is the same as in the experiment of [9],
and the term et is included to avoid the stationary solution u = 0. We assume
homogeneous Dirichlet boundary conditions and the initial function u0(x, y) =
4x(1− x)y(1− y) for t = 0, which is consistent with the boundary conditions.

We consider the space discretization as in Section 4.3 with nx = ny = n,
and we apply the methods WPDE2 and WPDE3 of Section 4.2 with the split-
ting as in Section 4.1, where the reaction term is included in F0(t, U).3 Fig-
ure 4.4 shows the `2-error (i.e., the difference between the numerical solution
and the exact solution of the space-discretized ordinary differential equation)
as a function of n2 times the number of calls to the linear systems solver (which
is approximately proportional to the cpu-time of the integration). The refer-
ence solution of the ordinary differential equation is obtained numerically by
an integration with very small time steps. Both integrators are applied with
constant time steps τ = 2−r, r = 2, . . . , 11. We observe from Figure 4.4 that
the convergence order is uniform from very large to very small time step sizes,

3 For a stiff reaction it is recommended to use an additional term in the splitting.
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and it is slightly larger than 2. This convergence order is specific for the ex-
ample (an order close to 3 has been observed in the previous experiments for
a linear problem). A study of the convergence order is an interesting question,
but it goes beyond the scope of the present article.

5 Extension to higher dimensions

PDE-W-methods, as introduced in Section 2, can be extended with some care
to any number m of spatial variables to cope with the time integration of
parabolic problems

∂tu =

m∑
i,j=1

αij ∂
2
xixj

u+ g(t, x1, . . . , xm, u, ∂x1
u, . . . , ∂xm

u), (5.1)

where A = (αij)
m
i,j=1 is symmetric positive definite, so that the second order

differential operator on the right-hand side is elliptic. In the present work we
restrict our considerations to a rectangular domain [0, 1] × . . . × [0, 1] and to
Dirichlet boundary conditions.

5.1 Space discretization

Standard central second order discretization for the first and second order
partial derivatives leads to the ODE system

U̇ =MU +G(t, U) + b(t). (5.2)

Here, U(t) ∈ Rnx1
·...·nxm , M is a symmetric matrix given by

M :=

m∑
i=1

αii(I ⊗ . . .⊗Dxixi
⊗ . . .⊗ I)

+ 2
∑

1≤i<j≤m

αij(I ⊗ . . .⊗Dxj ⊗ . . .⊗Dxi ⊗ . . .⊗ I),

(5.3)

where Dxixi
and Dxi

are in the (m− i+ 1)th position of the tensor product,
and Dxj is in the (m− j + 1)th position. The function G(t, U) corresponds to
the spatial discretization of g(t, x1, . . . , xm, u, ∂x1u, . . . , ∂xmu), and the vector
b(t) contains the terms arising from Dirichlet boundary conditions. The differ-
entiation matrices Dxixi

and Dxi
are assumed to be tridiagonal with entries

(1,−2, 1)/∆x2i and (−1, 0, 1)/∆xi, respectively, and ∆xi = 1/(nxi
+ 1).

Neglecting the expression g(. . .) in (5.1) we are concerned with a purely
parabolic differential equation. Assuming homogeneous Dirichlet boundary
conditions its dicretization is

U̇ =MU (5.4)

withM given by (5.3). The stability of (5.4) can be studied as in Theorem 3.1.
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Theorem 5.1 If the coefficient matrix A = (αij)
m
i,j=1 in (5.1) is positive

definite, then the system (5.4) is asymptotically stable.

Proof The matrix M can be decomposed as M =M0 +
∑m
i=1Mi with

Mi = αii(I ⊗ . . .⊗
(
Dxixi

−D2
xi

)
⊗ . . .⊗ I), i = 1, . . . ,m,

M0 =

m∑
i,j=1

αij(I ⊗ . . .⊗Dxj ⊗ . . .⊗Dxi ⊗ . . .⊗ I).

As in the proof of Theorem 3.1, the logarithmic norm of the defect Dxixi−D2
xi

is negative for i = 1, . . . ,m. If we let vi be an eigenvector of Dxi
with eigen-

value iλi, then vm ⊗ . . . ⊗ v1 is an eigenvector of M0 corresponding to the
eigenvalue

m∑
i,j=1

αij(−λiλj) = −(λm, . . . , λ1)A(λm, . . . , λ1)T < 0.

This proves the asymptotic stability of the system (5.4). ut

5.2 Numerical algorithm

As in Section 2 we write the differential equation (5.2) as U̇ = F (t, U) with
F (t, U) =MU +G(t, U) + b(t). We split vector field F (t, U) as

F (t, U) = F0(t, U) + F1(t, U) + . . .+ Fm(t, U), (5.5)

where Fj(t, U) (for j = 1, . . . ,m) correspond to the discretization of the partial
derivatives with respect to each space variable, whereas F0(t, U) corresponds
to what remains including the mixed derivatives. We let an,j = ∂tFj(tn, Un)
and An,j = ∂UFj(tn, Un). The PDE-W-methods of Section (2.3) allow for
a straight-forward extension to the m−dimensional PDE problem (5.1) as
follows:

K
−(m+1)
i = τF (tn + ciτ, Un +

∑i−1
j=1 aijKj) +

∑i−1
j=1 `ijKj

(I − θτAn,l)Kl−(m+1)
i = K

l−(m+2)
i + θρiτ

2an,l, l = 1, . . . ,m,

K
(0)
i = K

−(m+1)
i + θτAn,0K

(−1)
i + θρiτ

2an,0

(I − θτAn,l)K(l)
i = K

(l−1)
i + θρiτ

2an,l, l = 1, . . . ,m,

Ki = K
(m)
i

(5.6)

for i = 1, . . . , s, and with advancing solution after one step given by

Un+1 = Un +

s∑
i=1

biKi.
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5.3 Stability of PDE-W-methods

The stability analysis of Section 5.1 suggests to consider the scalar equation
u̇ = −

∑m
i,j=1 αijλiλj u for the study of the stability of PDE-W-methods.

Substituting
√
aiiλi → λi this equation becomes

ν̇ = −
m∑
i=1

λ2i ν − 2
∑

1≤i<j≤m

ci,jλiλjν, (5.7)

with ci,j = αij/
√
αii · αjj for 1 ≤ i, j ≤ m. Note that with A = (αij)

m
i,j=1 also

the matrix C = (ci,j)
m
i,j=1 is positive definite.

Applying a PDE-W-method to (5.7) with An,i = −λ2i for i = 1, . . . ,m, and
An,0 = −2

∑
i<j ci,jλiλj yields a recursion Un+1 = R(z0, z1, . . . , zm)Un, where

R(z0, z1, . . . , zm) is a rational function of the real variables

zi = −τλ2i , i = 1, . . . ,m, z0 = −2τ
∑

1≤i<j≤m

ci,jλiλj . (5.8)

It is given by (3.6), where z = z0 + z1 + . . .+ zm, and

Π :=

m∏
j=1

(1− θzj)
(

1 + θz0

m∏
j=1

(1− θzj)−1
)−1

. (5.9)

According to Definition 3.1 we have PDE-stability if

|R(z0, z1, . . . , zm)| ≤ 1

for all λi ∈ R and for all symmetric matrices (ci,j)
m
i,j=1 (with ci,i = 1 for all i)

that are positive definite. An essential ingredient of such a stability analysis
is upper and lower bounds for the AMF factor.

Theorem 5.2 Let λi ∈ R and assume that C = (ci,j)
m
i,j=1 (with ci,i = 1) is

positive definite. With zi of (5.8) and z = z0 + z1 + . . .+ zm the AMF factor
Π (with θ ≥ 0) given by (5.9) satisfies

1

Π
≤ 1

1− θz
. (5.10)

Proof This inequality follows from Lemma 5.1 below by putting ai = −θzi for
0 ≤ i ≤ m. ut

Lemma 5.1 Assume that a0 ∈ R, ai ≥ 0, 1 ≤ i ≤ m (m ≥ 1), satisfy
1 + a0 +

∑m
i=1 ai > 0. Then

1∏m
i=1(1 + ai)

(
1− a0∏m

i=1(1 + ai)

)
≤ 1

1 + a0 +
∑m
i=1 ai

.
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Proof Let Pm :=
∏m
i=1(1 + ai) ≥ 1 and Sm :=

∑m
i=1 ai ≥ 0. A direct compu-

tation shows that

1

Pm

(
1− a0

Pm

)
− 1

1 + a0 + Sm

=
−
(
a0 + 1

2 (1 + Sm − Pm)
)2

+ 1
4 (1 + Sm + Pm)2 − P 2

m

P 2
m(1 + a0 + Sm)

.

To prove the non-positivity of this expression, we notice that

1

4
(1 + Sm + Pm)2 − P 2

m =
1

4

(
1 + Sm + 3Pm

)(
1 + Sm − Pm

)
.

The first factor is positive, and the second one is ≤ 0, because

Pm = (1 + a1) · . . . · (1 + am) = 1 + a1 + . . .+ am + a1a2 + . . . ≥ 1 + Sm.

This proves the inequality of the lemma. ut

The stability analysis of PDE-W-methods (Section 3) also needs the posi-
tivity of Π, which we formulate as an assumption.

Assumption P The matrix C = (ci,j)
m
i,j=1 (with ci,i = 1) satisfies

m∏
j=1

(1 + λ2j )−
∑
i6=j

ci,jλiλj > 0 for all λi ∈ R . (5.11)

With the substitution λi →
√
θτλi, this inequality becomes equivalent to

the positivity of the factor Π of (5.9). It would be desirable to have a result
that states the validity of Assumption P for all positive definite matrices C.
This is true in dimension m = 3 (Theorem 5.3), but it is not true in general
for m ≥ 4 (Remark 5.1 below).

Theorem 5.3 Let C = (ci,j)
3
i,j=1 be positive definite, with ci,i = 1 for all i.

Then, (5.11) holds.

Proof Since |ci,j | <
√
ci,i · cj,j = 1 (1 ≤ i, j ≤ 3), it holds for all λj ∈ R that∏3

j=1(1 + λ2j )−
∑
i6=j ci,jλiλj ≥ 1 +

∑3
j=1 λ

2
j +

∑
i<j λ

2
iλ

2
j −

∑
i 6=j |λi||λj |

≥ −2 +
∑3
j=1 λ

2
j +

∑
i<j(|λi||λj | − 1)2.

Now, consider f(x, y, z) = −2+(x2+y2+z2)+(xy−1)2+(xz−1)2+(yz−1)2

for x, y, z ≥ 0. It is not difficult to check that the critical points of f(x, y, z)
fulfil x = y = z. In fact, the minimum value of f is f( 1√

2
, 1√

2
, 1√

2
) = 1

4 > 0.

This completes the proof. ut

Remark 5.1 The previous result for dimension m = 3 does not extend to
higher dimension. Here, we state a sufficient condition and a necessary one.
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Sufficient condition. If the matrix C is such that 2I−C is positive semi-definite,
then Assumption P is fulfilled. Expanding the product in (5.11) and ne-
glecting some positive terms shows that Assumption P holds, if

λ21 + . . .+ λ2m −
∑
i6=j

ci,jλiλj ≥ 0. (5.12)

Because of ci,i = 1 this is equivalent to 2I − C ≥ 0.
Necessary condition. Assumption P does not hold for general positive definite

matrices C = (ci,j)
m
i,j=1, with ci,i = 1 (1 ≤ i ≤ m) whenever m ≥ 4. To see

this, it is enough to take in (5.11) λj = λ ≥ 0 (1 ≤ j ≤ m) and consider

f(λ) = (1 + λ2)m −Kλ2, K =
∑
i 6=j

ci,j .

If K ≥ m, the function f(λ) attains its minimum at λ∗ ≥ 0, where

(λ∗)2 = −1 +
(K
m

)1/(m−1)
.

For this value, one has f(λ∗) > 0 if and only if

K =
∑
i 6=j

ci,j < m
( m

m− 1

)m−1
.

This is a necessary condition for Assumption P.

We are now in the position to formulate PDE-stability of W-methods also
in dimension m ≥ 3 under Assumption P.

Theorem 5.4 Consider parabolic problems (5.1) in any number m of spa-
tial dimensions (mixed derivatives are allowed), i.e. having a positive definite
matrix A. Under Assumption P, the PDE-W-methods of 1, 2, and 3 stages
with stability functions given by (3.10), (3.12) and (3.13) are PDE-stable for
θ ≥ 1/2, θ ≥ 1/4 and θ ≥ 1/3, respectively.

Proof By taking into account the Assumption P and the bound (5.10), the
proof follows the same steps as the proofs of Theorem 3.2 for s = 1 stage, of
Theorem 3.3 for the case of s = 2 stages and of Theorem 3.4 for s = 3. ut

5.4 Numerical experiment

Extending the example of Section 4.1 we consider the partial differential equa-
tion

∂tu =

3∑
i,j=1

αi,j ∂
2
xixj

u+

3∑
i=1

αi ∂xi
u+ g(t, x, y, z)
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Fig. 5.1 Comparison of four time-integrators applied to the problem of Section 5.4 with
coefficients of (5.13).

on the cube (x, y, z) ∈ [0, 1] × [0, 1] × [0, 1], where g(t, x, y, z) is chosen such
that

u(t, x, y, z) = x(1− x)y(1− y)z(1− z)et

is the solution of the differential equation. We arbitrarily fix the coefficients as

α1,1 = α2,2 = α3,3 = 1, α1,2 = 0.5, α1,3 = 0.25, α2,3 = −0.5,

α1 = 0.8, α2 = −0.7, α3 = 0.6
(5.13)

guaranteeing that the second order operator is elliptic. We assume homoge-
neous Dirichlet boundary conditions.

To this problem we apply PDE-W-methods with the implementation of
Section 5.2. For a comparison with standard methods we also apply the MCS
method (with parameters as in Section 4.2) and the HV method (again with
µ = 1/2 and θ = 1/3). We discretize the cube in such a way that we have
in every direction 64 grid points in the interior of [0, 1]. Figure 5.1 shows
the `2-error as a function of the cpu-time (left picture) and as a function of
the number of calls to the subroutine that solves a linear tridiagonal system
(right picture), which equals six times the number of steps for the MCS and
HV methods and for each stage of the PDE-W-methods. The results are very
similar to those of Figure 4.1.

6 Conclusions

This article considers parabolic partial differential equations, where mixed
derivatives are present in the elliptic operator of the problem. Dirichlet bound-
ary conditions are considered and the MOL (method of lines) approach is used
for the space discretization. The resulting ordinary differential equation is nu-
merically integrated with methods that allow for an efficient application of the
AMF (approximate matrix factorization) technique to solve the arising linear
systems. An important class of such integrators are W-methods, which are
linearly implicit time integrators that only require an approximation to the
Jacobian of the vector field.
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In the present work a new treatment of discretized mixed derivatives in
the AMF technique is proposed. These mixed derivatives are treated in an
explicit manner, however, due to the application of suitable damping matrices
time step size restrictions are avoided. For a stability analysis a new scalar
test equation is considered. PDE-stability (i.e., unconditional stability with
respect to the test equation) is studied for s-stage W-methods with s ≤ 3.
Numerical experiments indicate that the proposed test equation is relevant for
the system obtained by the MOL approach.

An interesting question for further research is to study whether PDE-
stability of a PDE-W-method is sufficient for the stability of the method,
when it is applied to the MOL discretization in any dimension.
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3. B. Düring, M. Fournié, and A. Rigal. High-order ADI schemes for convection-diffusion
equations with mixed derivative terms. In Spectral and high order methods for partial
differential equations—ICOSAHOM 2012, volume 95 of Lect. Notes Comput. Sci. Eng.,
pages 217–226. Springer, Cham, 2014.
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