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Abstract

The Discrete Moser—Veselov algorithm is an integrable discretisa-
tion of the equations of motion for the free rigid body. It is symplectic
and time-reversible, and it conserves all first integrals of the system.
The only drawback is its low order. We present a modification of this
algorithm to arbitrarily high order which has negligeable overhead but
considerably improves the accuracy.

Keywords: rigid body, preprocessed vector field integrator, geo-
metric numerical integration, Discrete Moser Veselov algorithm.

1 Introduction

The motion of a rigid body, relative to a fixed coordinates system, is de-
scribed by an orthogonal matrix Q(t). Its dynamics is determined by a
Hamiltonian system constrained to the Lie group SO(3). In the absence of
an external potential, the Hamiltonian is given by T = %(Ilw% + Iow? +
Igwg), where (w1, ws,w3)? is the angular velocity in the body frame and
the constants I, I3, I3 are the three moments of inertia of the rigid body.
The equations of motion can be written in terms of the angular momentum

y = (y1,92,y3)1, yj = Ljwj, as follows:
g=y1"y, Q=QIy, (1)
where I = diag (11, I2, I3) (see [4, Sect. VIL.5]). We use the standard hatmap

notation for the correspondence between vectors and skew-symmetric ma-
trices,

Y1 0 —y3 2
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We notice that the flow of (1) exactly conserves the energy and the angular
momentum relative to the fixed frame. In formulae, this means that Qy and

_ Lo 9 o Y
C(y)—2(y1+y2+y3) and H(y)—2(h+12+[3) (2)

(Casimir and Hamiltonian) are first integrals of the system.
As numerical integrator we consider the Discrete Moser—Veselov (DMYV)
algorithm [8] with update for @,, proposed by [6]. It can be written as

?/J\n+1 =Qn ?/J\n an Qn+1=Cn an (3)
where the orthogonal matrix €2, is computed from
QO'D - DQ, = hip,. (4)

Here, y, =~ y(tn), Qn =~ Q(t,), and h is the step size. The entries of the
diagonal matrix D = diag(d;,d2,ds) are determined by

di+dy =13, do+ds=1;, d3+d=Is, (5)

so that w!Tw = trace (@D &T). It is shown in [7] that this discretisation
is equivalent to the RATTLE algorithm which is designed to solve general
constrained Hamiltonian systems (see also [5, Chap. 8] and [4, Sect. VI1.5.3]).

This Discrete Moser—Veselov algorithm is an excellent geometric inte-
grator. It exactly conserves (up to round-off) the Hamiltonian H(y), the
angular momentum Qy (in the fixed frame) and, since @ is orthogonal,
also the Casimir C'(y). It is a symmetric (time-reversible) and symplectic
discretisation of (1) and therefore well suited for long-time integrations.

The algorithm (3)-(4) gives a second order approximation to the solu-
tion of (1), and this low order is its only drawback. Based on the ideas
of [2] we propose here a modification that allows us to increase the order
arbitrarily high, so that a significantly improved accuracy can be obtained.
The modification simply consists in replacing the moments of inertia I; by
expressions that depend in a suitable way on H(y) and C(y) (Sect.2). Nu-
merical experiments and a theoretical justification are presented in Sects. 3
and 4, respectively. An important suggestion for the implementation of the
algorithm using quaternions (Sect.5) and a MAPLE script for the computa-~
tion of the modified moments of inertia (Sect.6) conclude this article.

Let us mention that a time transformation has been proposed recently
in [7] which improves the order of the DMV algorithm for the angular mo-
mentum y but not for the rotation matrix Q. Our modification for the y
variables is closely related to but different from this time transformation.



2 Preprocessed DMV algorithm

A technique for increasing the order of numerical methods has recently been
proposed in [2] (preprocessed vector field integrators). It consists in apply-
ing the same numerical scheme to a modified differential equation. In the
context of the equations of motion for the free rigid body, we consider a
modified equation which consists in replacing the moments of inertia I; by
I; = I;(y) of the form (j = 1,2,3)

= = (1 Bsaly) 4 Blssly) +..) + R2day) + Kds(w) 4o . (6)

In the DMV algorithm we only have to use D= diag (dl, dg, d3) instead of
D, where the d; are computed from I =1 i (yn) via the relations (5).

Theorem 2.1 There exist two formal series,
1+ h2s3(y) +htss(y) +... = s(H(y),C(y)),
R2ds(y) + h'ds(y) +... = d(H(y),C(y)),

depending on y only via H(y) and C(y), such that the DMV algorithm (3)-
(4) applied with fj(yn) from (6) yields the exact solution of (1) in the sense
of formal power series in h. The first terms of these series are given in
Table 1 (see also the appendiz of Sect. 6).

Table 1: Scalar functions for the preprocessed DMV algorithm
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The proof of this theorem is postponed to Sect.4. We notice that the
modified differential equation
i=91)7y, Q=QI(y 'y, (7)
with I(y) from (6) shares most of the geometric properties with that of (1).
It still has Qy, the Casimir C'(y), and the Hamiltonian H (y) as first integrals.
For the angular momentum this is true for general s;(y) and d;(y); for the
Hamiltonian only if they depend exclusively on H(y) and C(y). However,
the Hamiltonian structure is inherited only if I (y)~ly is the gradient of a
scalar function. This is the case when the series in (6) are truncated after
the h? term, but not in general.
Theorem 2.1 suggests the following modification of the DMV algorithm.

Algorithm 2.2 (Preprocessed DMV of order 2r)

1. Compute the modified moments of inertia I~1, fg, I~3 from (6) truncated
after the h?"~2 terms and evaluated at y,,.

2. Apply the DMV algorithm (3)-(4) to a rigid body with the moments of
inertia 11, Io, I3 instead of I, Io, I3.

For instance, the preprocessed version of order 4 reads

1 1
= = —(1+M2sy(yn)) + Rda(yn), G = 12,3,
Ij Ij
1,1 1 1 L+ 1+ 13
53(yn) 3<11+12+13> (vn) + 61, I I3 (),
L+ 1+ 13

1
d n n) o1 1 1 nj-

Proposition 2.3 The numerical solution obtained with Algorithm 2.2 sat-
isfies the following properties:

it has order 2r;

e it exactly preserves Qy, C(y), and H(y);

it is symmetric (time-reversible);

restricted to the angular momentum y, it is a Poisson integrator.

Proof. By Theorem 2.1 the error after one step is a O(h*" 1) perturbation
of the exact flow. This implies that the method is of order 2r.

One step of Algorithm 2.2 is precisely the DMV method with I; replaced
by the constant value fj(yn) Hence, it exactly conserves Qy, C(y) and H (y),
where H(y) = %Z] fj(yn)_ly?. Due to the particular structure in (6) we
have

H(y) = (1+h2s3(yn) +...) H(y) + (1 + h%d3(yn) +...)C(y),

and the conservation of C(y) and H(y) implies that of H(y).



The statement on the symmetry follows from the exact conservation of
H(y) and C(y), so that I;j(yn+1) = Ij(yn). In Sect.4.3 we shall show that
this algorithm is a Poisson integrator for the angular momentum. ([l

Remark 2.4 The time transformation of the DMV algorithm (3)-(4) pro-
posed in [7] is equivalent to replace the step size h by a modified step size h
of the form

ho=h(1+ h%s3(yn) + hrss(yn) +...). (8)

It is possible to complement this time transformation to obtain high order
also for the rotation matrix Q. Since the matrix QI is orthogonal, it can be
represented by a Cayley transform

af = (Id + gf/—l?n) (Id - gl/—l?n) o 9)

where Id stands for the identity matrix, and Y;, is a vector close to y,. Now,
one can use the new update

Qn+1 - Qn Qz;a

where the matrix QF is defined as in (9), but with modified moments of
inertia I(y,) = diag (I1, I, I3) of the form (6), instead of the diagonal ma-
trix 1.

We notice that this modification of the DMV algorithm is not equivalent
to the preprocessed DMV Algorithm 2.2 (for y and also for Q). The scalar
functions sy (y), dx(y) in (8) and in I(y,,) are the same as in Table 1 for k = 3
but not for £ > 3. Our numerical tests revealed that this modification of

DMV is inferiour to that of Algorithm 2.2.

3 Comparison with other rigid body integrators

In this section, we compare the preprocessed Discrete Moser-Veselov Algo-
rithm 2.2 (denoted DMV2r), with several free rigid body integrators!:

e DMV, the Discrete Moser-Veselov algorithm (3)-(4),

e IMR2r, the implicit midpoint rule for r = 1, and the preprocessed
implicit midpoint rule for r > 1, introduced in [2],

e JEM2r [1] where the Euler equations are integrated exactly using Jacobi
elliptic functions, and the rotation matrix is approximated using a
truncated Magnus series,

!The FORTRAN codes used in this section are available from the authors upon request.



e SR2r, the so-called Symmetric+Rotation Splitting algorithm based on
the Strang splitting H(y) = %R(y) + S(y) + %R(y) where

2Ry _1(y%+y§ y?,)

combined with a composition method of order 2r (see for instance [4]).

For the numerical experiments, SR4 and SR6 are chosen as compositions
of respectively 5 and 9 times the basic method sr2.

Geometric properties In Table 2, we compare the geometric properties of
the above integrators. Column “symplectic” indicates whether the method
is a symplectic integrator. In the context of backward error analysis (see
Sect. 4.3) this means that the modified differential equation is of the form

—

y=9VH" (y),  Q=QvH™(y).

If the modified equation has this form only for the ¥ component, the method
is still a Poisson integrator. This is indicated in column “Poisson”.

Table 2: Geometric properties

order of | exact preservation of
integrator || accuracy | quadratic invariants | Poisson | symplectic

y Q| Qy Cly) H(y)

DMV2r 2r 2r| Vv Vv Vv no
v 2 2] v v v |V v
IMR27 2r 2r | Vv Vv no no
JEM2r exact 2r | mno Vv Vv Vv no
SR2r 2r  2r | / Vv no Vv Vv

Numerical experiments We consider the system (1) for the free rigid
body on the interval [0,10] with two different sets of moments of inertia:
an asymmetric body with Iy = 0.6, Io = 0.8, I3 = 1.0 (as in [1]) and a flat
body with I = 0.345, I, = 0.653, I3 = 1.0, which corresponds to the water
molecule as considered in [3]. Initial values are y(0) = (1.8, 0.4, —0.9)” and
Q(0) is the identity matrix.

We have carefully implemented the above integrators in FORTRAN, using
quaternions for the rotation matrices in all codes. Since there is no external
potential, the invariants H(y), C(y) and the modified moments of inertia
are constant along the numerical solution, so they need to be computed
only once. However, to simulate the presence of an external potential, in
our implementation we recalculate them in every step. All codes permit to
include an external potential.
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Figure 1: Work-precision diagrams for rigid body integrators: DMV, DMV4,
DMV6 (solid lines), IMR2, IMR4, IMR6 (dotted lines), JEM2, JEM4 (dashed
lines), SR2, srR4, SrR6 (dashed-dotted lines).

For each method and many different step sizes, we plot in Figure 1
the global errors at the endpoint for the angular momentum (left pictures)
and the quaternion representation of the rotation matrix (right pictures),
as a function of the cpu times (on a SUN Blade 1500 work station). The
execution times are taken as the average of 1000 experiments. For symmetric
bodies similar results are obtained with the exception that the splitting
method used yields the exact solution.

We observe that all methods show the correct order (lines of slope 2, 4,
and 6). It is remarkable that the preprocessed methods IMR2r and DMV2r
significantly improve the accuracy with increasing order, even if we use very
large step sizes. This is due to the fact that the higher order versions have
only very little overhead with respect to the basic methods. For example,
one step of DMV6 costs only about 50% more cpu time than DMV.

4 Proof of the main theorem

The proof of Theorem 2.1 relies heavily on backward error analysis [4, Chap-
ter IX] and on the theory of modified differential equations presented in [2].



4.1 Backward error analysis for DMV

The DMV algorithm is equivalent to RATTLE [7] which is a symplectic dis-
cretisation for constrained Hamiltonian systems. Backward error analysis
allows one to interpret formally the numerical solution of this method as
the exact solution of a modified constrained Hamiltonian system (Theorem
IX.5.6 of [4]). For the special case of the rigid body problem it follows from
Sect. VIL.5.5 of [4] that the modified differential equation is of the form

y=UVHu(y).  Q=QVH(y). (10)
where Hp(y) is the modified Hamiltonian,

Hy(y) = H(y) + k*Hs(y) + h*Hs(y) + ... |

so that y,, = y(nh) and @,, = Q(nh) in the sense of formal power series. It
is in even powers of h because the numerical method is symmetric.

Lemma 4.1 The numerical solution of the DMV algorithm is formally equal
to the exact solution of (10) where the modified Hamiltonian Hy(y) depends
on y only via the conserved quantities H(y) and C(y),

Hp(y) = K(H(y),C(y)) (11)
K(H,C) = H+h*K3(H,C) + h*K5(H,C) +... .

Proof. The Hamiltonian H (y) is a first integral of (10), because it is exactly
preserved by the DMV agorithm (see [4, Sect.1X.5.1]), i.e., for all k&

VH(y)" §VH(y) = 0.

Since VH(y) and VC(y) are also orthogonal to ¥y VH(y), the vector V Hy(y)
lies in the span of the two vectors VH (y), VC(y), as long as they are linearly
independent (which is the case when y is not a stationary point of (1)).
We choose local coordinates z = x(y), where 21 = H(y) and 22 = C(y),
and we define Kj(z) via Ki(x(y)) = Hg(y). Since VH(y) is a linear com-
bination of VH (y) and VC(y), the function Kj(z) does not depend on the
variable zs. [l

The scalar functions K;(H, C') for the modified Hamiltonian can be com-
puted recursively as

_ 1
Ky(H,0) = %H2 - %CHJF&(J?,
301 + 200 _9 T+ 37—1,1
Ks(H,O) = 05— H3 — 05 CH?
o9 +400_4 9 o1 3
+ 2002 CTH - 2052 ¢

where the constants 9,04, 7. are those of Table 1.



4.2 The modified moments of inertia

We shall show that the modified equation (10) is of the form (1) with mod-
ified moments if inertia.

Lemma 4.2 The numerical solution of DMV applied to the rigid body prob-
lem (1) can be interpreted (formally) as the ezact solution of a rigid body
problem (7) with modified moments of inertia 11,12, 13, given by

1 1 0K 0K

7T o (HW).CW) + 55 (Hw), CW), =123 (12)

where K(H,C) is the function of Lemma 4.1.

Proof. The special form of the modified Hamiltonian Hp(y) in (11) implies
that

V() = S (), C) VH) + 9 (H), 0w) VOu) =T,
where I = diag (I, I2,13) with I; from (12). O

Proof of Theorem 2.1. For fixed y, formula (12) defines a mapping
U Iy, Ip, I3) — (11, 12,13)

which is O(h?)-close to the identity. Notice that in (12) the moments of
inertia /; also appear in K(H,C) and in H(y).

Letting (71, E,fg) = WYL, I, I3), it follows from Lemma 4.2 that the
DMV algorithm applied with f](yn) yields the exact solution of (1). This
relation can be reformulated as

== 1—1] hz(% %(ﬁ(y)ﬂ(y)) + %(ﬁ(y)ﬂ(y)g -y

where ﬁ(y) = %Z] fIv-_lyJQ-. Formal fixed point iteration shows that the fj
are of the form (6). O

4.3 Backward error analysis for the preprocessed DMV

We study here symplecticity properties of the preprocessed DMV algorithm.
This will be done with help of backward error analysis.

Theorem 4.3 The numerical solution of the preprocessed DMV Algorithm 2.2
applied to (1) is (formally) the exact solution of

o —

y=91y7'yv. Q=QI(y 'y, (13)



where 1(y) is obtained from (12), with I; replaced by ﬂjm (y) given by

I
ﬂj2r] Ij

<1+h253(y) o AR Ry () () AR 2 1 (y)

Furthermore, there exists a modified Hamiltonian
2r rrrl2r r 2r
1 () = Hy) + W HL () + WP H () +

such that the modified equation for the angular momentum y in (13) has the
Poisson structure

g =g VH(y). (14)

Proof. The first statement is an immediate consequence of Lemma 4.2, where
the I; are replaced by ﬂfr].
The fixed point argument in the proof of Theorem 2.1 implies that

1_ l(1 + W20y (H(y),Cw)) +...) +h205(H(y), Cw)) + ..

I I

for some scalar functions oy (H,C), 0, (H,C), k = 3,5, ... Since yy = 0, the
modified equation (13) for y has the form

g=91"y (1+ ho3(H(y),Cy)) +...) =§VH " (y),  (15)

where H,[?T] (y) = K,[fr] (H(y),C(y)) and K}[?r] (H,C) is chosen as an integral
with respect to H of the scalar factor 1+h2?03(H,C)+.... The derivative of
K}[fr] (H,C') with respect to C' is not involved in (15), because y VC(y) = 0.
U

Theorem 4.3 implies that the preprocessed DMV Algorithm 2.2 is a
Poisson integrator for all orders 2r. However, in the modified equation (13)
for the rotation matrix @ we cannot replace 1(y)~'y by VH }[LQT] (y). This
means that the preprocessed DMV Algorithm 2.2 is not symplectic for the
complete system for » > 1.

5 Quaternion implementation of DMV

For an efficient implementation, it is a standard approach to use quaternions
to represent orthogonal matrices (see [4] in the context of RATTLE and split-
ting implementations). Let Y;, be the vector defined from Q! through the
Cayley transform mentioned in (9). The orthogonal matrix Q1 can then be
represented by the quaternion w,, of norm 1 given by

1 h . Y, 1 . Yn 2 Yn 3
— 1 _< n, ) k ) > , 16
on = o= (145 (TR e (16)
W2 Yo Yo, Yr,
— 1 - ( n7 n’ n7 )

10



In a similar way, we represent the rotation matrix ¢, by a quaternion g,.
Some algebraic manipulations show that the DMV algorithm (3)-(4) reduces
to the following computation, with a simple multiplication of quaternions
for the update of the rotation matrix,

Ynt+l = Yn + Oér_Llhf(Yn); dn+1 = 4n * Wn, (17)

where f(y) = y 17y, and a,, w, are defined in (16). Here, the internal
stage Y,, can be computed from the implicit relation

Yo = apyn + g f(Yn) (18)

A simple way for solving the nonlinear (quadratic) system (18) is by fixed-
point iteration. To improve efficiency, one may calculate the vector e, =
%I —1Y, instead of Y,,, so that the computation of o, reduces to

2 2 2
Qn = 1+ en,l + 6n,2 + en,3'

Formulae (17) for y,4+1 and g,4+1 are explicit. Other approaches for the
solution of (4) are discussed in [7]. Suppressing the factor o, in (17) and in
(18), but not in the definition (16) of w,, yields the implicit midpoint rule
for problem (1) which is discussed in [2].

6 Appendix

Using a symbolic manipulation package like MAPLE, the functions in Table 1
can be computed formally by comparing the Taylor series of the exact so-
lution of (1), recursively with the series expansion of the DMV algorithm
applied with modified moments of inertia. A MAPLE script for this compu-
tation is the following:

MAPLE SCRIPT
with(linalg): Order := 8:
Modified moments of inertia
s := 1+h"2%s3+h"4*sb+h~6%s7:
d := h72%d3+h~4*d5+h~6*d7:
ilmod := 1/(s/il1+d): i2mod := 1/(s/i2+d): i3mod := 1/(s/i3+d):
SERIES EXPANSION OF THE NUMERICAL SOLUTION (DMV)
el := 0: e2 := 0: e3 := 0:
for i from 1 to 13 do
alpha := series(l+el”2+e272+e372,h);
el := series(alpha*h/2%*yl/ilmod+(i2mod-i3mod)/ilmod*e2%e3,h);
e2 := series(alphaxh/2*y2/i2mod+(i3mod-ilmod)/i2mod*e3*el,h);
e3 := series(alpha*h/2+y3/i3mod+(ilmod-i2mod)/i3mod*el*e2,h);
od:
yldmv := series(yl+4/h/alpha*(i2mod-i3mod)*e2*e3,h):
Cayley transform
Id := matrix(3,3,[1,0,0,0,1,0,0,0,11):
ehat := matrix(3,3,[0,-e3,e2,e3,0,-el,-e2,e1,0]):
Qdmv := evalm((Id+ehat)&*inverse((Id-ehat))):

VVV#VVVVVVVYV H#HYVVYV HVH

11



SERIES EXPANSION OF THE EXACT SOLUTION
fncy yi(t),y2(t),y3(t):
fncQ qi1(t),q12(t),q13(t),q21(t),q22(t),q23(t),q31(t),q32(t),q33(t):
Qexact := matrix(3,3,[fncQl):
Equations of motion
eqy := diff(yl(t),t)=y2(t)*y3(t)*(i2-i3)/i2/i3,
diff (y2(t),t)=y1(t)*y3(t)*(i3-i1)/i1/i3,
diff (y3(t),t)=y1(t)*y2(t)*(i1-i2)/i2/il:
W := matrix(3,3,[0, -y3(t)/i3, y2(t)/i2,
y3(t)/i3, 0, -yi(t)/i1,
-y2(t)/i2, y1(t)/i1, 01):
QW := evalm(Qexact&*W):
eqQ := seq(seq(diff(Qexactl[i,jl,t)=QW[i,jl,j=1..3),i=1..3):
Initial condition
init := q11(0)=1,q12(0)=0,q13(0)=0,
q21(0)=0,922(0)=1,923(0)=0,
q931(0)=0,932(0)=0,933(0)=1,
y1(0)=y1,y2(0)=y2,y3(0)=y3:
Exact solution
assign(dsolve({eqy,eqQ,init}, {fncy,fncQ},type=series)):
ylexact := subs(t=h,y1(t)):
Qexact := simplify(subs(t=h,matrix(3,3, [fncQl))):
LOCAL ERROR
erry := simplify(series(ylexact-yldmv,h)):
errQ := simplify(series(Qexact[3,2]-Qdmv[3,2],h)):
COMPUTATION OF s3,d3,s5,d5,...
sol := proc(coeff,err,n)
solve (convert (series(err,h,n) ,polynom), coeff):
end:
s3 sol(s3,erry,4): d3 := sol(d3,errQ,4):
sb := sol(sb,erry,6): db := sol(d5,errQ,6):
s7 := sol(s7,erry,8): d7 := sol(d7,errQ,8):
DECOMPOSITION as polynomials in H(y) and C(y)
C:=(y1°2+y2°2+y32)/2: H:=(y1°2/i1+y2°2/i2+y3°2/i3)/2:
decomp := proc(expr,vars)
solve ({subs ({y1=1,y2=0,y3=0},expr) ,subs ({y1=0,y2=1,y3=0}, expr),
subs({y1=0,y2=0,y3=1},expr) ,subs ({yl=1,y2=1,y3=1},expr) },vars) ;

VVVVYVYVH#HVVVVVYVH¥VVHVVYVHFVVVV HVVVVVVVYV HKYVVYVH

end:

decomp (s3=al*C+a2+H,{al,a2});
/ i2 i3 + i1 i3 + i1 i2 i2 + il + i3\
{a2=- , al = ——————————— }
\ 3 il i2 i3 6 i1 i2 i3 /

> decomp(sb=al*C~2+a2+C+H+a3%H"2,{al,a2,a3});
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