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Abstract. We prove that to every rational function R(z) satisfy-
ing R(−z)R(z) = 1, there exists a symplectic Runge-Kutta method
with R(z) as stability function. Moreover, we give a surprising re-
lation between the poles of R(z) and the weights of the quadrature
formula associated with a symplectic Runge-Kutta method.

1. Introduction

For the numerical solution of y′ = f(y) we consider the class of
implicit Runge-Kutta methods

g(i) = y0 + h
s∑

j=1

aijf
(
g(j)
)
, i = 1, . . . , s

y1 = y0 + h
s∑

i=1

bif
(
g(i)
)
,

(1.1)

whose theoretical study has started with the seminal work of John
Butcher, beginning with [2]. Such methods, applied to a Hamiltonian
system, define a symplectic transformation y1 = Φh(y0), if the coeffi-
cients satisfy (see for example [6, Sect. II.16])

biaij + bjaji = bibj for i, j = 1, . . . , s (1.2)

(for irreducible methods this condition is also necessary). It is observed
by numerical experiments and justified by a backward error analysis
that symplectic methods, applied with constant step size h, give a
qualitatively correct numerical approximation, and are important for
long-time integrations of Hamiltonian systems.

If Φh is not symplectic, but conjugate to a symplectic method [8],
i.e., there exists a transformation αh such that Ψh := α−1h ◦ Φh ◦ αh is
symplectic, then the longtime behaviour is the same for Φh and Ψh.
This follows at once from Ψn

h = α−1h ◦Φn
h ◦αh, so that trajectories of Φh

and Ψh remain close for all times. Assuming that the transformation
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αh is given by a Runge-Kutta method (or a B-series), one sees that the
stability function R(z) of conjugate methods is the same. Recall that
the stability function of method (1.1) is given by

R(z) = 1 + zbT (I − zA)−11l (1.3)

with A = (aij)
s
i,j=1, b

T = (b1, . . . , bs), 1l = (1, . . . , 1)T , so that we have
y1 = R(hλ)y0, when the method is applied to the scalar test equation
y′ = λy. For the linear oscillator y′ = iωy the method (1.1) becomes
y1 = R(iωh)y0, and it is symplectic if and only if |R(iωh)| = 1 for all
h > 0. This, however, is equivalent to

R(−z)R(z) = 1 for all z ∈ C . (1.4)

Consequently, the stability function of a method which is conjugate to
a symplectic one, has to satisfy (1.4). It is therefore natural to ask,
whether for a given rational function R(z) satisfying (1.4) there exists a
symplectic Runge-Kutta method possessing R(z) as stability function.
A positive answer to this question is given in Sect. 2, where we construct
the method in such a way that its order is the same as that of R(z)
approximating exp(z). The proof is based on the W -transformation [7,
Sect. IV.5], which is outlined in an appendix (Sect. 4). As a by-product
of the proof we observe that the number of poles of R(z) in the positive
half-plane is exactly equal to the number of positive bi in the method.
In Sect. 3 we show that this relationship between poles and weights is
true for all symplectic Runge-Kutta methods, for which the degree of
the stability function is equal to the number of stages.

2. Construction of Symplectic Methods

Irreducible, rational functions satisfying (1.4) are of the form

R(z) = P (z)/P (−z), (2.1)

where P (z) is a polynomial. In the following we assume that P (z) and
P (−z) have no common zeros.

Theorem 1. Let the rational function (2.1) satisfy R(z) − exp(z) =
O(zp+1), and let degP = s. Then, there exists a symplectic s-stage
Runge-Kutta method of order p which has R(z) as stability function.

Proof. The proof is very similar to the constructive characterization
of B-stable Runge-Kutta methods (see [5] and [7, Sect. IV.13]). We
outline its ideas, and we emphasize the main differences.
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We consider the Cayley transform Ψ(z) of the stability function R(z),
defined by

R(z) =
1 + 1

2
Ψ(z)

1− 1
2
Ψ(z)

. (2.2)

Since R(z) = exp(z) +O(zp+1), the continued fraction of Ψ(z) has the
form ([7, Theorem IV.13.18])

Ψ(z) =
z

1
+
ξ21z

2

1
+ . . .+

ξ2k−1z
2

1
+ ξ2kzΨk(z) (2.3)

where k = [(p − 1)/2], ξ2j = 1/(4(4j2 − 1)) and Ψk(z) = zg(z)/f(z)
with g(0) = f(0) = 1, deg f ≤ s − k, and deg g ≤ s − k − 1. The
special form (2.1) of the function R(z) implies that g(z) and f(z) are
polynomials in z2. The fact that P (z) and P (−z) have no common
zeros implies that also f(z) and g(z) have no common zeros, and that
either deg f = s − k or deg g = s − k − 1. Hence, by Lemma 1 below
there exists a (s−k)×(s−k) matrix Q with q11 = 0, such that Ψk(z) =
zeT1 (I − zQ)−1e1 (troughout this article we let e1 = (1, 0, . . . , 0)T with
suitable dimension) and

ΛkQ+QTΛk = 0, (2.4)

where Λk = diag (s−k−n, n) with 0 ≤ n < s−k. We use the notation
diag (m,n) for the diagonal matrix of dimension m + n, for which the
first m diagonal entries are +1, and the remaining n elements are equal
to −1.

We next consider a quadrature formula (bi, ci)i=1,... ,s of order at least
p, where the number of negative weights is equal to n (the number of
negative diagonal entries in Λk). Such a quadrature formula exists. For
example, consider the (s − n)-stage Gauss quadrature formula, which
has positive weights b1, . . . , bs−n and order 2(s − n) ≥ 2k + 2 ≥ p.
Add dummy stages cs−n+1, . . . , cs all equal to c1, choose sufficiently
small negative numbers bs−n+1, . . . , bs, and modify b1 so that the order
remains unchanged.

The rest of the proof is based on the W -transformation. For the
convenience of the reader, we have collected its definition and some
important properties in an appendix (Sect. 4). In particular, we know
from this theory (Lemma 2 below) that there exists a non-singular
matrix W satisfying the property T (k, k) with k = [(p− 1)/2] and

W TBW = Λ,

where B = diag (b1, . . . , bs) and Λ = diag (s − n, n). We then define
the matrix Y by (4.1) with Q obtained from the first part of this proof,
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and we put A = W (Y + 1
2
e1e

T
1 )W−1. By Theorem 3 (Sect. 4), the

Runge-Kutta method with coefficients bi, aij, cj is of order p and has
R(z) as stability function. The symplecticity follows from the fact that
the matrix M = BA+ATB−bbT = (biaij +bjaji−bibj)i,j=1,... ,s satisfies

W TMW = W T (BA+ ATB − bbT )W

= W TBWY + Y TW TBW = ΛY + Y TΛ = 0

by (2.4) and W T b = e1. This implies M = 0, which is equivalent to
the symplecticity condition (1.2). �

Lemma 1. Let f(z) and g(z) be polynomials in even powers of z,
such that f(0) = 1, g(0) = 1, deg f = m, and either deg g = m or
deg g = m − 2. If f(z) and g(z) have no common zeros, then there
exists a matrix Q (of dimension m+ 1 if deg g = m, and of dimension
m if deg g = m− 2) such that its first entry satisfies q11 = 0, that

g(z)

f(z)
= eT1 (I − zQ)−1e1, (2.5)

and that ΛQ+QTΛ = 0, where Λ = diag (n+, n−) with n+ ≥ 1.

Proof. Since f(z) and g(z) are polynomials in even powers of z, the
expression f(z)wg(w) + f(w)zg(z) vanishes for w = −z. We therefore
have

f(z)wg(w) + f(w)zg(z) = (z + w)
∑
i,j≥1

cijz
i−1wj−1,

(2.6)

which defines a symmetric matrix C of dimension m+ 1 if deg g = m,
and of dimension m if deg g = m − 2. By our assumptions on the
polynomials f(z) and g(z) we have c11 = 1, c12 = 0, and C is invertible.
The invertibility of C follows from [4] or also from the second part of
the proof of Theorem 2.

We next decompose C as C = LTΛL, where Le1 = e1, `12 = 0, and
Λ = diag (n+, n−) with n+ ≥ 1. This is possible, because c11 = 1 and
c12 = 0 (for the computation of C, apply one step of the Cholesky algo-
rithm and continue by diagonalizing a symmetric submatrix). Putting
w = 0 in (2.6), and using the notation ~z T = (1, z, z2, . . . ), we get

g(z) = ~z TCe1 = ~z TLTΛLe1 = ~z TLTΛe1 = ~z TLT e1.

We now define the matrix Q by comparing like powers of z in

f(z)e1 = (I − zQ)L~z.

Since f(z) is an even polynomial and `12 = 0, we have q11 = 0. These
relations for g(z) and f(z) imply (2.5). Furthermore, the expression



SYMPLECTIC RUNGE-KUTTA METHODS 5

(2.6) can be written as

(w + z)~z TC ~w = w~z TLT (I − zQT )ΛL~w + z ~z TLTΛ(I − wQ)L~w

= (w + z)~z TLTΛL~w − wz ~z TLT (QTΛ + ΛQ)L~w.

Because of LTΛL = C, this implies that QTΛ + ΛQ = 0. �

Remark 1. The analogous theorem for B-stable Runge-Kutta methods
(Theorem IV.13.15 of [7]) gives a constructive characterization of all
B-stable Runge-Kutta methods. This is no longer the case in our situ-
ation, because there exist symplectic methods of order p, which do not
satisfy C(k) with k = [(p− 1)/2]. As counter-examples serve composi-
tion methods of high order, which are equivalent to diagonally implicit
Runge-Kutta methods. They typically only satisfy C(1).

3. Relation between Poles and Weights

If all weights bi are positive and if the method satisfies the symplec-
ticity condition (1.2), then the method is algebraically stable (Burrage
& Butcher [1]), and hence all poles of the stability function R(z) lie in
the right half-plane.

For diagonally implicit Runge-Kutta methods satisfying (1.2) we
have aii = bi/2, and the poles of the stability function are at 2/bi.
Also in this case, the number of positive weights of the quadrature for-
mula is equal to the number of poles of R(z) in the right half-plane. Is
this true for all symplectic Runge-Kutta methods?

Theorem 2. Consider a symplectic s-stage Runge-Kutta method with
irreducible stability function, i.e., R(z) = P (z)/Q(z) is irreducible with
degQ = s. Then, the number of positive bi is equal to the number of
poles of the stability function R(z) in the right half-plane.

Proof. With the matrix S := A − 1
2
1l bT (where 1l = (1, . . . , 1)T and

bT = (b1, . . . , bs)) the symplecticity (1.2) of the Runge-Kutta method
can be expressed as

BS + STB = 0. (3.1)

We next write the stability function in terms of the matrix S. An
application of the Runge-Kutta method (1.1) to the test equation y′ =
λy yields y1 = y0+u, g = 1l(y0+ 1

2
u)+zSg (with z = hλ and u = zbTg).

Inserting g = (I− zS)−11l(y0 + 1
2
u) into u = zbTg allows one to express

u in terms of
Ψ(z) = zbT (I − zS)−11l.

Computing y1 = y0 + u = R(z)y0 yields (2.2) for the stability func-
tion R(z). Motivated by the computation of Sect. 2, we write Ψ(z) as
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Ψ(z) = zg(z)/f(z) where, due to the symplecticity of the method, f(z)
and g(z) are polynomials in z2. We then define the matrix L by the
relation

f(z) 1l = (I − zS)L~z,

so that

g(z) = bTL~z = 1lTBL~z.

As in the end of the proof of Lemma 1 we compute the expression
f(z)wg(w) + f(w)zg(z) and obtain

(w + z)~z TLTBL~w + wz ~z TLT (BS + STB)L~w.

Putting C := LTBL, it therefore follows from (3.1) that

f(z)wg(w) + f(w)zg(z) = (z + w) ~z TC ~w. (3.2)

We shall prove that C is non-singular, and that the number of poles of
R(z) in the right half-plane is equal to the number of positive eigen-
values of C. By Sylvester’s theorem this then proves the statement.

The arguments of the subsequent proof are those of Baiocchi &
Crouzeix in their proof on the equivalence of A-stability and G-stability
(see [7, Theorem V.6.7]). By (2.2), the poles of R(z) are the values z,
for which Ψ(z) = 2. We therefore consider the polynomial

zg(z)− λf(z), (3.3)

which is a polynomial of degree s, and we study its zeros for λ = 2. If
necessary, we slightly perturb the real value λ so that the zeros of (3.3)
become distinct, but do not cross the imaginary axis. This is possible,
because f(z) and g(z) do not have common zeros. Since f(z) and g(z)
are even polynomials, the zeros cannot lie on the imaginary axis.

Let z1, . . . , zm be the distinct zeros of (3.3) which lie in the right
half-plane. We get from (3.2) that

~z ∗kC~zl =
1

zk + zl

(
f(zk)zlg(zl) + f(zl)zkg(zk)

)
(3.4)

Here, ~zk = (1, zk, z
2
k, . . . )

T and ~z ∗k is the transposed and complex con-
jugated vector. We then put

ζk =
zk − 1

zk + 1
so that |ζk| < 1,

we use the relation

1

zk + zl
=

(1− ζk)(1− ζl)
2(1− ζkζl)

,
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and we expand (1− ζkζl)−1 in a geometric series. If we multiply (3.4)
by vkvl, and if we sum over 1 ≤ k ≤ m and 1 ≤ l ≤ m, we get with
v = (v1, . . . , vm)T and V =

∑m
k=1 vk~zk that

V ∗CV =
λ

2

∑
j≥0

∣∣∣ m∑
k=1

vkζ
j
k(1− ζk)f(zk)

∣∣∣2.
This expression cannot be zero for v 6= 0, because it follows from (3.3)
that f(zk) 6= 0 for all k, otherwise f(z) and g(z) would have common
zeros. Hence, we have V ∗CV > 0 for all vectors V lying the subspace
spanned by ~z1, . . . , ~zm.

If we consider the zeros zm+1, . . . , zs of (3.3) lying in the left half-

plan, we have to expand (1− ζkζl)−1 = −ζ−1k ζ−1l (1− ζ−1k ζ−1l )−1 into a
geometric series. This creates a negative sign, and we therefore have
V ∗CV < 0 for those vectors V that lie in the subspace spanned by
~zm+1, . . . , ~zs. This proves that C has m positive and s − m negative
eigenvalues. �

4. Appendix: W -Transformation

The W -transformation is very useful for the construction of B-stable
Runge-Kutta methods. Since B-stability is formally related to sym-
plecticity, this theory turns out to be useful also in our situation. We
refer to [7, Sect. IV.5] for the proof of the following results and for more
details on this theory.

We recall that a matrix W = (wij)i,j=1,... ,s is said to have property
T (k, k) (with 0 ≤ k < s) for a quadrature formula (bi, ci)i=1,... ,s, if

• W is non-singular,

• wij = Pj−1(ci), i = 1, . . . , s, j = 1, . . . , k + 1,

• W TBW = blockdiag (I, R),

where I is the identity matrix of dimension k + 1, R is an arbitrary
symmetric matrix of dimension s − k − 1, B = diag (b1, . . . , bs), and
Pj(t) is the jth shifted Legendre polynomial. The matrix R can be
diagonalized by an orthogonal matrix, so that we can always assume
that W TBW = Λ = diag (s−n, n), where n ≤ s− k− 1 is the number
of negative elements among b1, . . . , bs.

Lemma 2. Let the quadrature formula be of order p. Then, there exists
a matrix W satisfying property T (k, k) with k = [(p− 1)/2].

This is Theorem IV.5.14 of [7].
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Theorem 3. Let (bi, ci)i=1,... ,s be a quadrature formula of order at least
p, let W satisfy T (k, k) with k = [(p− 1)/2], and consider

Y =


0 −ξ1
ξ1

. . . . . .

. . . 0 −ξk
ξk

Q

 , (4.1)

where ξ2j = 1/(4(4j2−1)) and Q is a matrix of dimension s−k satisfying
q11 = 0 if p is even (otherwise Q is arbitrary). Then, the Runge-Kutta
method with coefficients bi, aij, cj, defined by

A = W
(
Y +

1

2
e1e

T
1

)
W−1,

is of order p, and its stability function R(z) is given by (2.2) and (2.3)
with Ψk(z) = zeT1 (I − zQ)−1e1.

Proof. By Theorem IV.5.11 of [7], the Runge-Kutta method satisfies
the simplifying conditions C(k) andD(k), and it follows from a classical
result of Butcher [3] that the method has order p. The statement
on the stability function is a consequence of Proposition IV.5.17 and
Theorem IV.5.18 on [7]. �
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