
Implementing Radau IIA methods for

stiff delay differential equations

N. Guglielmi�, L’Aquila, and E. Hairer, Geneva

February 5, 2001

Abstract

This article discusses the numerical solution of a general class of delay

differential equations, including stiff problems, differential-algebraic delay

equations, and neutral problems. The delays can be state dependent, and

they are allowed to become small and vanish during the integration. Diffi-

culties encountered in the implementation of implicit Runge-Kutta methods

are explained, and it is shown how they can be overcome. The performance

of the resulting code – RADAR5 – is illustrated on several examples, and it

is compared to existing programs.

AMS Subject Classifications: 65L06, 65Q05, 34K28

Keywords: Stiff delay differential equations, neutral problems, Runge-Kutta methods,

implementation, step size control, numerical comparisons.

1 The Class of Considered Problems

We consider initial value problems of delay differential equations

M y

0

(t) = f

�

t; y(t); y(�

1

(t; y(t))); : : : ; y(�

m

(t; y(t)))

�

;

y(t

0

) = y

0

; y(t) = g(t) for t < t

0

;

(1)

�Partially supported by the Italian M.U.R.S.T. (project: “Numerical methods for evolution-

ary problems”) and I.N.D.A.M.-G.N.I.M. (project: “Numerical methods for ordinary differential

equations and applications”).

1

where M is a constant d� d matrix and �

i

(t; y(t)) � t for all t � t

0

and for all i.

The value g(t
0

) may be different from y

0

, allowing for a discontinuity at t
0

.

The presence of the matrix M in the problem formulation has several reasons.

If a partial delay differential equation is discretized in space by finite elements, we

obtain an equation of the form (1) where M is the mass matrix. A multiplication

of the equation with M

�1 would destroy the sparsity pattern of the problem and

is not recommended.

Since we allow the matrix M to be singular, the above formulation includes

all kinds of differential-algebraic delay equations. For M = diag(I; "I) with a

very small " > 0, we get singularly perturbed problems, which form an important

class of stiff problems. Moreover, neutral problems

y

0

(t) = f

�

t; y(t); y(�(t; y(t))); y

0

(t); y

0

(�(t; y(t)))

�

can be written in the form (1), if we introduce a new variable z(t) = y

0

(t) for the

derivative. In fact, this problem becomes equivalent to
�

1 0

0 0

��

y

0

(t)

z

0

(t)

�

=

z(t)

z(t)� f

�

t; y(t); y(�(t; y(t))); z(t); z(�(t; y(t)))

�

!

:

In an implementation, the special structure of the right-hand side can be exploited

on the linear algebra level during the solution of arising nonlinear systems.

We are aware of the fact that, without any further assumptions, the problem (1)

need not have a solution, but it is beyond the scope of this article to discuss ques-

tions on the existence and uniqueness of solutions. We simply assume throughout

that a solution exists on the considered interval of integration (possibly with dis-

continuities).

The aim of this article is to show how implicit Runge-Kutta methods, in partic-

ular collocation methods based on Radau nodes, can be applied to solve problems

of type (1). Many aspects of the implementation are a straightforward extension

of ideas implemented in the code RADAU5 for ordinary differential equations,

and described in Hairer & Wanner [8, Sect. IV.8]. Here we restrict our discus-

sion to new difficulties that are due to the presence of small delays, and to large

elements in the derivative of f with repect to the retarded arguments. Numerical

experiments and comparisons with other approaches conclude this article.

2 Numerical Method

A standard fourth-order Runge-Kutta : : : was used, although after the simu-

lation was begun, it was apparent that a program suitable for “stiff” systems

2

would have been more convenient. (P. Waltman 1978 [11])

Our main interest is the numerical solution of stiff delay differential equations, so

that explicit methods are excluded. Since collocation methods based on Radau

nodes have been successfully applied to stiff ordinary differential equations (see

the code RADAU5 of [8]), and since these methods have excellent stability prop-

erties also for delay equations (see for example Zennaro [13] and Guglielmi &

Hairer [6]), it is quite natural to take them as a basis for a code solving stiff prob-

lems of the type (1).

For ease of presentation, we assume that only one lag term is present (m = 1)

and that the problem is autonomous:

M y

0

(t) = f

�

y(t); y(�(t; y(t)))

�

; (2)

where �(t; y(t)) � t, y(t
0

) = y

0

, and y(t) = g(t) for t < t

0

. The actual code

handles multiple delays and is not restricted to autonomous systems.

Radau IIA methods are implicit Runge-Kutta methods, whose coefficient ma-

trix A = (a

ij

) is invertible, and whose weights satisfy b

i

= a

si

(“stiff accuracy”).

We denote c

i

=

P

j

a

ij

(see [8] for more information on these methods). For an

implementation we consider a grid t

0

< t

1

< t

2

< : : :, and we denote the stepsize

by h

n

= t

n+1

� t

n

. An application of the Radau IIA methods to the problem (2)

yields approximations y
n

� y(t

n

) by solving the nonlinear system

M

�

Y

(n)

i

� y

n

�

= h

n

s

X

j=1

a

ij

f

�

Y

(n)

j

; Z

(n)

j

�

; y

n+1

= Y

(n)

s

; (3)

where Z
(n)

i

is a suitable approximation to y(�

(n)

i

) with �

(n)

i

= �(t

n

+ c

i

h

n

; Y

(n)

i

).

We put

Z

(n)

i

=

8

<

:

g(�

(n)

i

) if �

(n)

i

< t

0

u

m

(�

(n)

i

) if �
(n)

i

2 [t

m

; t

m+1

],
(4)

where u

m

(t) is a polynomial approximation of the solution y(t) on the interval

[t

m

; t

m+1

]. A natural choice for u
m

is the collocation polynomial, which is of

degree s and passes through the values y
m

, and Y

(m)

i

for i = 1; : : : ; s. Using the

Lagrange interpolation formula it is seen to be of the form

u

m

(t

m

+ �h

m

) = `

0

(�)y

m

+

s

X

i=1

`

i

(�)Y

(m)

i

; (5)

3

where `
i

(�) is the polynomial of degree s satisfying `

i

(c

i

) = 1 and `

i

(c

j

) = 0 for

j 6= i (here we add c

0

= 0 to the nodes c
1

; : : : ; c

s

of the method).

Order of Convergence. If the matrix M is invertible, and if the delay is larger

than the step size (i.e., t� �(t; y(t)) � h), it follows from the standard theory for

ordinary differential equations that the local error at grid points isO(h

2s

), and that

the internal stages Y
(n)

i

approximate the local solution at t
n

+ c

i

h

n

with an error

of size O(h

s+1

). In the case of a state-dependent delay this gives an additional

O(h

s+2

) contribution to the local error (due to the multiplication by h

n

in (3)).

Therefore, on bounded intervals, the global error is of size O(h

s+1

). For stiff

problems, a further order reduction to O(h

s

) is possible, which is in complete

analogy to stiff ordinary differential equations (see e.g., [8, Chap. VI]).

If the delay is smaller than the step size, the theory for ordinary differential

equations can no longer be applied, and a more involved analysis is necessary.

Such a study is beyond the scope of this paper. However, we want to emphasize

that a general purpose code for stiff delay equations should be able to allow for

step sizes larger than the delay, because it is known that stiff solvers are efficient

only if ‘large’ step sizes can be used. Difficulties in an implementation that arise

due to the presence of large step sizes, are discussed in Sect. 3.

Discontinuities in the Solution. Since the considered class of problems contains

differential-algebraic delay equations and neutral problems as special cases, dis-

continuities at t
0

need not be smoothed out. Consider for example the problem

0 = �y(t) + cy(t� 1) (6)

for t > 0 and y(t) = g(t) for t � 0. On the interval (k � 1; k] the exact solution

is y(t) = c

k

g(t � k). If g(0) 6= cg(�1), the solution has a discontinuity of size

c

k

(g(0)� cg(�1)) at t = k (see Fig. 1, left picture).

If we apply method (3) to the problem (6), we obtain the exact values y
n+1

=

y(t

n+1

) and Y

(n)

i

= y(t

n

+ c

i

h

n

) for the numerical solution as well as for the

internal stages, as long as t
n+1

� 1. However, the collocation polynomial u
m

(t)

of (5) is a very bad approximation of the solution on the very first interval [t
0

; t

1

]

(see Fig. 1, left). Therefore, in the first interval to the right of t = 1 the numerical

solution y

n

will be completely wrong, unless the collocation polynomial is only

evaluated at the nodes t
m

+ c

i

h

m

. This is the case only in the unrealistic situation,

where a constant step size h = 1=k is used such that the delay is an integer

multiple of the step size. Figure 1 (right) also illustrates that the same behaviour

can be observed for stiff problems "y0(t) = �y(t) + cy(t� 1), if "! 0.

4

−1 0 1 −1 0 1

" = 0 " = 0:03

Figure 1: Solution of "y0(t) = �y(t) + 0:8y(t � 1) with y(t) = cos t for t � 0. The

numerical solution of the 3-stage Radau IIA method (h = 0:5) is indicated by big bubbles,

the internal stages by small ones; the dotted line is the collocation polynomial (5).

As a remedy for this difficulty we consider also the polynomial

v

m

(t

m

+ �h

m

) =

s

X

i=1

`

i

(�)Y

(m)

i

(7)

of degree s�1, which interpolates the values Y
(m)

i

but not y
m

. It can optionally be

used in the first interval after points of discontinuity (which have to be given in ad-

vance by the user of the code). A careful estimation of the error in the continuous

solution is therefore very important and will be the subject of Sect. 4.

3 Solving the Nonlinear Equations

An efficient solution of the nonlinear equations (3) is the most demanding part of

an implementation of implicit Runge-Kutta methods. For stiff problems (or when

M is singular), this system cannot be solved by fixed point iteration, and one is

obliged to use some kind of simplified Newton iterations.

As common in the implementation of implicit Runge-Kutta methods, we pre-

multiply the system (3) by A

�1

= (!

ij

) and so obtain the nonlinear system

F (Y) = 0, where Y = (Y

1

; : : : ; Y

s

)

T and the ith component of F (Y) is

F

i

(Y) =

s

X

j=1

!

ij

M(Y

j

� y

n

)� hf(Y

i

; Z

i

) (8)

(here, we suppress the subscript n when it does not give rise to confusion). In

view of an application of simplified Newton iterations we compute

@F

i

@Y

j

= !

ij

M � h�

ij

�

f

y

(Y

i

; Z

i

) + f

z

(Y

i

; Z

i

)u

0

m

(�

i

)�

y

(t

n

+ c

i

h; Y

i

)

�

; (9)

5

where we have to add the term

�hf

z

(Y

i

; Z

i

)`

j

(�

i

) if �

i

:= (�(t

n

+ c

i

h; Y

i

)� t

n

)=h > 0:

For an efficient implementation, we replace the exact Jacobian of the nonlinear

system with an approximation which, written in tensor notation, is given by

A

�1

M � hI

�

f

y

+ f

z

u

0

m

(�)�

y

�

� hL
 f

z

: (10)

The arguments of f
y

, f
z

, �, and �

y

are choson independent of i. The s� s matrix

L has elements given by

l

ij

=

(

`

j

(�

i

) if �(t
n

+ c

i

h; Y

i

) > t

n

0 else.

For an implementation we distinguish the two situations:

Step size is smaller than the delay or, more precisely, if �
i

� 0 for i = 1; : : : ; s.

For a constant delay (i.e., �(t; y) = t � �), this happens if and only if h � �

(because c
i

� c

s

= 1). In this situation, the matrix L vanishes identically, and the

matrix (10) has exactly the same structure as for ordinary differential equations

My

0

= f(y). Transforming the matrix A

�1 to diagonal form, the linear system

with matrix (10) can be solved efficiently as described in [8, Sect. IV.8]. The

user of our code can either provide a subroutine with the analytic expression of

f

y

(y; z) + f

z

(y; z)y

0

(�(t; y))�

y

(t; y) (where z � y(�(t; y(t)))), or he can choose

the option of computing it internally by numerical differentiation. Observe that

the nasty second term of this matrix is only present for state-dependent delays.

Step size is larger than the delay. In this case, the matrix L in (10) is non-zero.

Since, in general, the matrices A�1 and L are not simultaneously diagonalizable,

the tensor product structure cannot easily be exploited for an efficient solution

of the linear systems with matrix (10). However, when the delay is very small

compared to the step size (i.e., �(t
n

+ c

i

h; Y

i

) � t

n

+ c

i

h), we get �
i

� c

i

, and the

matrix L becomes close to the identity. Consequently, the second and third terms

in (10) can be considered together, and the idea of diagonalizing the matrix A

�1

can again be applied.

In conclusion, we adopt the following strategy for approximating the Jacobian

of the nonlinear Runge-Kutta equations: if �(t
n

+ c

i

h; Y

i

) � t

n

for at least one i,

we let L = 0, otherwise we put L = I (identity) in the Jacobian approximation of

(10). In both cases standard techniques for stiff ordinary differential equations can

6

be applied, and the tensor product structure of the linear system can be exploited.

In case of difficulties in the convergence of the simplified Newton iterations we

use the correct L. This, however, requires the LR decomposition of the full matrix

(10), which is about 5 times as expensive for the 3-stage method (s = 3).

4 Local Error Estimation and Step Size Control

Step size selection strategies for stiff ordinary differential equations are usually

based on error estimations at grid points. For delay equations, where the accuracy

of the dense output strongly influences the performance, such an approach is not

sufficient. We shortly present the technique used in RADAU5 [8, Sect. IV.8], and

we discuss a modification suitable for delay equations.

Standard error estimators for ordinary differential equations are based on em-

bedded methods. Assuming for the moment M to be invertible, this leads to

�y

n

= hM

�1

f(y

n

; z

n

) +

s

X

i=1

e

i

(Y

(n)

i

� y

n

); (11)

where the coefficients e
i

are chosen such that �y

n

= O(h

s+1

) whenever the prob-

lem and the solution are smooth. For very stiff problems, the expression �y

n

largely overestimates the true local error, and as a remedy it is pre-multiplied

once or twice with a kind of projection matrix:

P = (M � h(f

y

+ : : :))

�1

M; (12)

where is a real eigenvalue of the Runge-Kutta matrix A. Whenever the tensor

product structure in (10) is exploited, an LR decomposition of the matrix M �

h(f

y

+: : :) is already available from the simplified Newton iterations. We remark

that the estimates P�y

n

as well as P 2

�y

n

are meaningful also if the matrix M is

singular.

Let us illustrate the disadvantage of using this error estimation for step size

control. Consider the problem (6), which can be considered as the limit of "y0(t) =

�y(t)+cy(t�1), where "! 0. Since M = 0, we get P 2

�y

n

= 0. This is perfect

as long as one is interested only in approximations at grid points, because there the

local error is zero. However, for delay equations, where also the dense output is

used for stepping forward, such an error estimation is not acceptable (see Fig. 1).

Estimation of the error in the dense output. In most steps we use the collocation

polynomial u
n

(t) of (5) as dense output. In order to get an idea of its error, we

7

consider its difference to the lower degree polynomial v
n

(t) of (7), which is also a

continuous approximation to the solution. The maximum difference is at the left

endpoint t
n

of the considered subinterval, so that

err
2

= v

n

(t

n

)� y

n

(13)

estimates this error.

Our code RADAR5 uses a combination of both error estimators in order to

select the step sizes. This combination is based on heuristic arguments without

deep theoretical foundations. Since it is still in an experimental stage, we do not

present its details here.

5 Numerical Experiments

The code RADAR5 can handle delay equations of the form (1). It can be down-

loaded at the internet address

http://www.unige.ch/math/folks/hairer/software.html

Chemical Reaction with Delay. The Robertson problem [8, Sect. IV.10] is one

of the most famous test problems for stiff solvers. We consider here the following

modification:

y

0

1

(t) = �0:04 y

1

(t) + 10

4

y

2

(t� �) y

3

(t)

y

0

2

(t) = 0:04 y

1

(t)� 10

4

y

2

(t� �) y

3

(t)� 3 � 10

7

y

2

(t)

2

y

0

3

(t) = 3 � 10

7

y

2

(t)

2

(14)

with � = 10

�2 and initial values y
1

(0) = 1, y
2

(0) = 0, y
3

(0) = 0, and y

2

(t) = 0

for t < 0. This is a good test problem, if we consider it on a very large time

interval, say on [0; 10

11

] (see Fig. 2). Since the exact solution tends to a steady

state, an efficient code has to be able to increase the step size exponentially, so

that in most steps the delay is much smaller than the step size.

Our code RADAR5 adapts the step size automatically to this situation. For

example, with Rtol = 10

�6 and Atol = 10

�10

�Rtol the step size is about h � 10

�5

in the beginning and h � 8 � 10

8 at the end of the integration interval.

Artificial Problem with Vanishing Delay. Our second example, which is a modi-

fication by Enright & Hayashi [4] of a problem considered originally by Castleton

8

0

1

10−5 100 105 1010

� = 0:01

y

1

1000 � y

2

y

3

� = 0:03

16:7 16:9

Figure 2: Solution of the modified Robertson problem (14) with � = 0:01. For the larger

delay � = 0:03 (right picture) the component y
2

starts to oscillate, becomes negative, and

explodes close to x � 16:8.

& Grimm [3], is

y

0

(t) = cos (t)

�

1 + y(t y

2

(t))

�

+ c y(t) y

0

(ty

2

(t))

+ (1� c) sin t cos (t sin

2

t)� sin (t + t sin

2

t)

(15)

with initial value y(0) = 0. For every choice of the parameter c, it has y(t) = sin t

as exact solution. It has a vanishing delay at t = 0; �=2; 3�=2; : : :, and for c = 1 it

has a singularity at t = �=2 (i.e., y0(�=2) is not well defined by the equation (15).

For this problem, the numerical solution of the nonlinear Runge-Kutta equations

causes some difficulties.

We have rewritten the neutral equation (15) in the form (1) by introducing the

new variable z(t) = y

0

(t) as explained in Sect. 1, and we have applied our code

RADAR5 with Rtol = Atol = 10

�8. Table 1 shows the results for different values

of the parameter c. We display the total number of steps (accepted and rejected),

the number of steps where difficulties appeared in solving the nonlinear system

(so that the correct matrix L had to be used in (10)), and the global error at the

endpoint of integration. We observe that such difficulties appear only for values

close to �1. It is somewhat surprising that our code solves the problem correctly

even for c = 1 (the singular case). We remark that the code of [4], which is

based on fixed point iterations for the solution of nonlinear equations, solves this

problem only for values of c in the region �0:45 � c � 0:65.

Threshold Model for Antibody Production. This is an interesting delay differ-

ential equation which models the antibody response to antigen challenge (Walt-

man [11]). The problem consists of six equations

y

0

1

(t) = �ry

1

(t)y

2

(t)� sy

1

(t)y

4

(t)

9

Table 1: Statistics for the problem (15) with Rtol = Atol = 10

�8

c nr. of steps nr. of full Jac error at t = �

�1:0 127 12 0:18 � 10

�8

�0:7 111 6 0:42 � 10

�8

�0:3 99 0 0:17 � 10

�9

0:0 91 0 0:12 � 10

�8

0:3 120 2 0:10 � 10

�8

0:7 144 14 0:53 � 10

�9

1:0 164 19 0:43 � 10

�7

y

0

2

(t) = �ry

1

(t)y

2

(t) + �ry

1

(y

5

(t))y

2

(y

5

(t))H(t� t

0

)

y

0

3

(t) = ry

1

(t)y

2

(t) (16)

y

0

4

(t) = �sy

1

(t)y

4

(t)� y

4

(t) + �ry

1

(y

6

(t))y

2

(y

6

(t))H(t� t

1

)

y

0

5

(t) = H(t� t

0

)f

1

(y

1

(t); y

2

(t); y

3

(t))=f

1

(y

1

(y

5

(t)); y

2

(y

5

(t)); y

3

(y

5

(t)))

y

0

6

(t) = H(t� t

1

)f

2

(y

2

(t); y

3

(t))/f

2

(y

2

(y

6

(t)); y

3

(y

6

(t)))

where � = 1:8, � = 20, = 0:002, r = 5 � 10

4, s = 10

5, t
0

= 35, t
1

= 197,

H(x) is the Heavyside function (H(x) = 0 if x < 0 and H(x) = 1 if x � 0),

f

1

(x; y; w) = xy + w, and f

2

(y; w) = 10

�12

+ y + w. The initial values and

initial functions are given by y

1

(t) = 5 � 10

�6, y
2

(t) = 10

�15, and y

3

(t) = y

4

(t) =

y

5

(t) = y

6

(t) = 0 for t � 0.

This problem has several difficulties: the delay is state-dependent, it becomes

very small and vanishes asymptotically (see the right picture of Fig. 3). The func-

tions y

2

and y

4

; y

6

are extremely steep at the values t = 35 and t = 197, re-

spectively, and the problem is very stiff (as already observed in [11]). Indeed, the

second equation of (16) is closely related to that considered in Fig. 1 with " = r

�1,

because y

1

(t) is nearly constant on a long interval (compare the second compo-

nent of Fig. 3 with the right picture of Fig. 1). Since the size of the components

is very small, one has to be careful with the scaling. The solution in Fig. 3 is ob-

tained by RADAR5 with Rtol = 10

�9 and Atol = 10

�12

� Rtol for the first four

components, and Atol = Rtol for the components y
5

and y

6

. The discontinuities

due to the Heavyside functions are harmless, if one declares the points t
0

and t

1

as gridpoints. None of the other codes, described in Sect. 6 below, can solve this

problem.

10

0 100 200 300

10−18

10−12

10−6

100 200

100

200

y

1

y

2

y

3

y

4

arguments

y

5

y

6

Figure 3: Solution components of the problem (16). The retarded arguments y

5

(t) and

y

6

(t) are compared to t in the right picture.

Driver programs for all problems of this section are provided with the code

RADAR5. We also included driver programs for further interesting delay differ-

ential equations: the hepatitis B virus infection model of [2], a chemical reaction

(oregonator) proposed in [5], an enzyme kinetics problem of Okamoto & Hayashi

[10] (see also [7, p. 348]), and a nonsmooth artificial problem.

6 Related Software and Conclusion

To our knowledge there is no code available that can solve general differential-

algebraic delay equations of the form (1). However, there are several programs

dealing with stiff delay equations or with problems admitting vanishing delays.

We experimented with the following codes:

� DELH by Weiner & Strehmel [12]. This code is based on Rosenbrock type

methods for the integration of partitioned stiff/nonstiff systems. It is re-

stricted to one constant delay.

� DDE-STRIDE by Baker, Butcher & Paul [1], which is an adaptation of the

code STRIDE to delay differential equations and neutral problems. This

code can solve stiff problems with several state-dependent delays (including

vanishing delays), but it is restricted to problems of the form (1) withM = I

(identity).

� DIFSUB-DDE by Bocharov, Marchuk & Romanyukha [2]. This is an ex-

tension of the code DIFSUB by Gear (based on BDF) to delay differential

equations with constant delays.

� DDVERK by Enright & Hayashi [4]. This is a code for nonstiff delay

equations with possible vanishing delays. It is based on explicit Runge-

Kutta methods, and the nonlinear equations (arising for small delays) are

11

10−3 10−6 10−9

10−1

100

10−3 10−6 10−9

100

Hepatitis

RADAR5

DIFSUB-DDE

Oregonator

RADAR5

DIFSUB-DDE

Figure 4: Work-precision diagram. We plot the cpu time on a SUN Ultra 10 work station

(vertical axis) against the error of the solution at the end point of integration (horizontal

axis). All runs are made with and without optimizing the compilation.

solved by fixed point iterations. This code is available from the netlib site

at http://www.netlib.org/ode/ddverk.f

� SNDDELM by Jackiewicz & Lo [9]. This code solves nonstiff neutral delay

equations with state-dependent (possibly vanishing) delays. It is based on

Adams predictor-corrector methods and solves the problem (15) correctly

for all jcj � 1.

We thank the authors of these codes for permitting us to use them for our experi-

ments.

Since most of the codes for stiff delay equations (including ours) are still in an

experimental stage, it is probably too early to make serious comparisons. Never-

theless we present some of our experiments in Fig. 4. We have applied RADAR5

and DIFSUB-DDE with many different tolerances (ranging from 10

�1 for the

Hepatitis problem and 10

�4 for the Oregonator up to 10

�11 for both problems).

The results of RADAR5 are indicated by stars, those for DIFSUB-DDE by circles.

Large symbols indicate tolerances with integer powers of 10. We have included

the results obtained with and without the standard optimization option of the f90

compiler. Not only the accuracy of the numerical results are affected for some

tolerances, but also the improvement (due to the optimization option) is seen to

depend on the method and on the particular problem.

12

Hepatitis B Infection Model. This is a very stiff problem consisting of 10 equa-

tions with 5 constant delays. It is completely described in [2]. Here we consider

the interval [0; 130], and we use Atol = 10

�20

� Rtol, because the components are

very small. Both codes give satisfactory results, as can be seen in the left picture

of Fig. 4.

Oregonator. This problem, taken from [5], consists of two equations and one

constant delay. The equations are given by

y

0

1

(t) = 0:0804 y

2

(t)� 1:6 � 10

9

y

1

(t) y

2

(t� �) + 480 y

1

(t)� 8 � 10

7

y

1

(t)

2

y

0

2

(t) = �0:0804 y

2

(t)� 1:6 � 10

9

y

1

(t) y

2

(t� �) + 480 y

1

(t);

the initial data are y

1

(t) = 10

�10 and y

2

(t) = 10

�5 for t � 0, and the constant

delay is � = 0:06. We consider the integration interval [0; 100:5] and Atol =

10

�9

� Rtol. The results are shown in the right picture of Fig. 4.

Conclusion. We have presented a new code RADAR5, which can solve a large

class of delay problems (including differential-algebraic delay equations, stiff

problems, neutral delay equations, state-dependent delays, and problems with

small or vanishing delays). Although the code is still under development, we

have released a first version, which performs satisfactorily on all problems pre-

sented in this article. The code, together with seven driver programs, are available

at the address ‘http://www.unige.ch/math/folks/hairer’ under item ‘software’.

Acknowledgement. The work reported in this paper was developed during the

stay of Nicola Guglielmi at the University of Geneva, in the academic year 1999/2000.

This author wishes to thank Ernst Hairer and Gerhard Wanner for making this visit

possible.

References

[1] C.T.H. Baker, J.C. Butcher, C.A.H. Paul, Experience of STRIDE applied to delay

differential equations, Technical Report 208, Univ. Manchester, 1992.

[2] G.A. Bocharov, G.I. Marchuk, A.A. Romanyukha, Numerical solution by LMMs

of stiff delay differential systems modelling an immune response, Numer. Math. 73,

131–148 (1996).

[3] R.N. Castleton, L.J. Grimm, A first order method for differential equations of neutral

type, Math. Comp. 27, 571–577 (1973).

13

[4] W.H. Enright, H. Hayashi, A delay differential equation solver based on a con-

tinuous Runge-Kutta method with defect control, Numer. Algorithms 16, 349–364

(1998).

[5] I. Epstein, Y. Luo, Differential delay equations in chemical kinetics. Nonlinear mod-

els: the cross-shaped phase diagram and the Oregonator, J. Chemical Physics 95,

244–254 (1991).

[6] N. Guglielmi, E. Hairer, Order stars and stability for delay differential equations,

Numer. Math. 83, 371–383 (1999).

[7] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I.

Nonstiff Problems, 2nd edition, Springer Series in Computational Mathematics 8,

Springer-Verlag Berlin, 1993.

[8] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differ-

ential-Algebraic Problems, 2nd edition, Springer Series in Computational Mathe-

matics 14, Springer-Verlag Berlin, 1996.

[9] Z. Jackiewicz, E. Lo, The numerical solution of neutral functional-differential

equations by Adams predictor-corrector methods, Appl. Numer. Math. 8, 477–491

(1991).

[10] M. Okamoto, K. Hayashi, Frequency conversion mechanism in enzymatic feedback

systems, J. Theor. Biol. 108, 529–537 (1984).

[11] P. Waltman, A threshold model of antigen–stimulated antibody production, Theo-

retical Immunology (Immunology Ser. 8), Dekker, New York, 437–453 (1978).

[12] R. Weiner, K. Strehmel, A type insensitive code for delay differential equations

basing on adaptive and explicit Runge-Kutta interpolation methods, Computing 40,

255–265 (1988).

[13] M. Zennaro, P-stability properties of Runge-Kutta methods for delay differential

equations, Numer. Math. 49, 305–318 (1986).

Nicola Guglielmi

Dip. di Matematica Pura e Applicata

Università dell’Aquila

via Vetoio (Coppito)

I-67010 L’Aquila

Italy

e-mail: guglielm@univaq.it

Ernst Hairer

Section de Mathématiques

Université de Genève

14

CH-1211 Genève 24

Switzerland

e-mail: Ernst.Hairer@math.unige.ch

15

