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REVERSIBLE LONG-TERM INTEGRATION WITH VARIABLE
STEPSIZES*

ERNST HAIRER! AND DANIEL STOFFER?

Abstract. The numerical integration of reversible dynamical systems is considered. A back-
ward analysis for variable stepsize one-step methods is developed, and it is shown that the numerical
solution of a symmetric one-step method, implemented with a reversible stepsize strategy, is formally
equal to the exact solution of a perturbed differential equation, which again is reversible. This
explains geometrical properties of the numerical flow, such as the nearby preservation of invariants.
In a second part, the efficiency of symmetric implicit Runge-Kutta methods (linear error growth
when applied to integrable systems) is compared with explicit nonsymmetric integrators (quadratic
error growth).
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1. Introduction. We consider the numerical treatment of systems

(1.1) v =fy),  y0) =y,

where the evolution of dynamical features over long time intervals is of interest. In
such a situation it is important to use a numerical method that is numerically sta-
ble in the sense of [17], i.e., the dynamical properties are inherited by the numerical
approximation. Typical examples are that (1.1) is a Hamiltonian system and a sym-
plectic integration method is applied with constant stepsizes or a reversible differential
equation is integrated with a symmetric method (constant stepsizes). In these situa-
tions numerical stability can be explained by a backward error analysis, because the
numerical solution can be formally interpreted as the exact solution of a perturbed
differential equation which again is Hamiltonian, respectively, reversible. (This is
related to a classical question called interpolation; see, e.g., H. Shniad [13]. In the
context of numerical integrators we refer the reader to chapter 10 of [12] and the
references given there.)

The aim of this article is to extend these results to variable stepsize integrations.
At present no such extension is known for Hamiltonian problems. Therefore we shall
concentrate on reversible systems and on the stepsize strategy of [15] (see also [2]).
Section 2 presents a backward analysis for variable stepsize methods, where the step
lengths are determined by a nonlinear equation involving a small parameter (the user-
supplied tolerance). Particular attention is paid to symmetric methods. Practical
aspects for an implementation of the reversible stepsize strategy are discussed in
section 3. Finally, in section 4 we give a comparison between the symmetric Lobatto
ITTA method (which preserves the geometric structure of a reversible problem and for
which the global error grows linearly in time when applied to integrable systems) with
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258 ERNST HAIRER AND DANIEL STOFFER

the explicit GBS extrapolation method (applied with a more stringent tolerance, so
that the same accuracy is achieved over a long time interval).

1.1. Reversible differential equations. The differential equation (1.1) is
called p-reversible (p is an invertible linear transformation in the phase space) if

(1.2) flpy) = —pfly)  forally.

This implies that the flow of the system, denoted by ¢, (y), satisfies pé; (y) = ¢; ' (py),
hence the name p- or time-reversible. A typical example is the partitioned system

(1.3) p'=haq), 4= flpq),

where f1(—p,q) = fi(p,q) and fo(—p,q) = —f2(p,q). Here the transformation p
is given by p(p, q) = (— ,q). Hamiltonian systems with a Hamiltonian satisfying
H(—p,q) = H(p,q) are of this type and all second-order differential equations p’ =
9(q), ¢ =p.

1.2. Symmetric integration methods. For the numerical integration of (1.1)
we consider Runge-Kutta methods

Yi:yoJthaijf(Yj), i=1,...,s,
(1.4) jj
Y1 = Yo Jrhzbif(yz)
i=1

Such a method defines implicitly a discrete-time map yo — y1, denoted by y; =
D1, (yo). By the implicit function theorem it is defined for positive and negative (suf-
ficiently small) values of h. Method (1.4) is called symmetric if

(1.5) y1 = Pn(yo) = Yo = P_n(y1).
If the coefficients of the Runge—Kutta method satisfy
(1.6) As41—i,s+1—j T Qjj = bj for all 4, j,

then the method is symmetric (see [5, p. 221]). For irreducible methods it can be
shown (using the ideas of the proof of Lemma 4 of [4]) that after a suitable permutation
of the stages, condition (1.6) is also necessary for symmetry.

The symmetry of a method is beneficial for the integration of p-reversible differ-
ential equations, in particular, if the main interest is in a qualitatively correct, but not
necessarily accurate, simulation over a long time interval (see, e.g., [15]). A further
explanation of this fact can be obtained by a backward analysis argument as follows:
from [4] it is known that the numerical solution yo,y1,y2,... (obtained with a con-
stant stepsize h) can be formally interpreted as the exact solution at times 0, h, 2h, . ..
of the perturbed differential equation

(1.7) g =),  70) =y,

where

r(r)—1
(1.8) faly) = Z h
T)>p+

a(7) b(1) F(7)(y)-
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Here, p denotes the order of the method, the sum is over all rooted trees with at
least p+ 1 vertices (we write r(7) for the number of vertices of the tree 7), a(7) is an
integer coeflicient, b(7) is a real coefficient depending on the integration method, and
F(7)(y) denotes the elementary differential corresponding to the tree 7. It follows
from (1.2) and from the definition of the elementary differentials (see [4] or [5]) that

(1.9) F(m)(py) = (=1)"TpF(7)(y).

Consequently, the function f;(y) of (1.8) is p-reversible if and only if b(7) vanishes for
all trees with an even number of vertices. But this is precisely the case for symmetric
methods, because they are characterized by the fact that the global error has an
asymptotic expansion in even powers of h. All properties of p-reversible systems
are thus inherited by the numerical approximation, and Kolomogorov—Arnold—Moser
(KAM) theory (see [8]) can be applied. If system (1.1) is integrable (see [9]), this
implies the nearby conservation of invariants and the linear growth of the global error
(in contrast to a quadratic growth if a nonreversible method were used; see [2]).

1.3. Reversible stepsize strategy. We consider an embedded method and
denote the difference of the numerical solutions by

(1.10) D(yo,h) = by eif(Y:).

Using (1.4), the Taylor expansion around h = 0 shows that D(yo,h) = O(h?) with
some g > 1. Usually, some heuristic formula based on this relation is used for stepsize
prediction, and the step is accepted if |[D(yo,h)|| < Tol. Such a stepsize strategy
destroys the above-mentioned properties (conservation of invariants and linear error
growth) as can be observed by numerical experiments.

To overcome this inconvenience, new stepsize strategies have been proposed in [7],
[14], and [15]. Whereas the strategies of [7], [14] are problem dependent, the strategy
of [15] is in the spirit of embedded methods. The idea is to use a symmetric error
estimate satisfying

(1.11a) 1D (yo, W) || = [[D(y1, —h)| with y1 = @5 (yo)
and to require equality in
(1.11b) |D(yo, 1| = Tol.

Condition (1.11b) then determines uniquely (for small Tol and small h) the stepsize
h as a function of the initial value yq. If the coefficients e; in (1.10) satisfy

(1.12) est1-; =¢€; foralli or est1-; = —e; for all i,

and if the Runge-Kutta method is symmetric (i.e., condition (1.6) is satisfied), then
condition (1.11a) is satisfied. This follows from the fact that the internal stage vectors
Y; of the step from g to y; and the stage vectors Y; of the step from y; to yo (negative
stepsize —h) are related by Y; = Y,y1_;. The stepsize determined by (1.11b) is thus
the same for both steps.

As an illustration of the effect of the different stepsize strategies let us consider

the modified Kepler problem (as presented in [12])

q/ =p p/ _ q1 3eq1
— M1y - = - )
(1.13) ! Y@+ a3 203+ a3)5?

' & =p o .
S 2B+ B 2AG + )



260 ERNST HAIRER AND DANIEL STOFFER

exact solution reversible stepsize strategy
Tol =0.01

constant stepsize: h=0.1 classical stepsize strategy
Tol =0.01
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F1G. 1. Comparison of different stepsize strategies.

(e = 0.01) with initial values

(1.14) @(0) =1—e, (0)=0, pi(0)=0, p(0) = g

(eccentricity e = 0.6). This problem has several symmetries and in particular satisfies
condition (1.2) with p(q1, g2, p1,p2) = (g1, —q2, —p1,p2). As numerical integrator we
take the trapezoidal rule

(1.15) i =yo+g(f(yo)+f(y1))7

which is a symmetric method. For stepsize selection we consider the expression

h
(1.16) Dlyo.h) = (F) ~ F(w)).
It satisfies || D(yo,h)|| = ||D(y1, —h)||. In Fig.1 we show the projection of the exact

solution onto the (g1, ¢2)-plane for a time interval of length 500. We further present
the numerical solution obtained with constant stepsize h = 0.1 and those obtained
with variable stepsizes—the classical strategy (see, e.g., [5, p. 168]) and the reversible
strategy—both applied with Tol = 10~2. The value h = 0.1 for the constant stepsize
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implementation has been chosen so that the number of function evaluations is approx-
imately the same as that for the reversible stepsize strategy. Whereas the numerical
solution with classical stepsize strategy approaches the center and shows a wrong
behavior, the results of the constant stepsize implementation and of the reversible
stepsize implementation are qualitatively correct. This phenomenon will be explained
in the next section.

2. Backward analysis of variable stepsize methods. In this section we shall
extend the backward analysis of [4] to variable stepsize methods, where the step length
is determined by a nonlinear equation involving a small parameter e. We shall show
that for symmetric methods the perturbed differential equation has an expansion in
even powers of € and that such methods are suitable for the integration of p-reversible
systems.

We consider a one-step method, written in the general form

(2.1a) y1 = @n(yo),

together with a stepsize function
(2.1b) h =€ s(yo,€).

In [16] it was shown that a large class of variable stepsize methods are asymptotically
equivalent to integration methods of the form (2.1).

The Runge-Kutta method (1.4) is clearly of the form (2.1a) and the reversible
stepsize strategy, explained in the introduction, can be brought to the form (2.1b).
Indeed, expanding || D(y, h)|| into powers of h and setting Tol = €9, condition (1.11b)
becomes

(2:2) | D(y, h)|| = hid,(y) + h dy 1 (y) + - = e’

Assuming that d4(y) > 0 in the considered domain, we can take the gth root of (2.2)
and solve the resulting equation for h. This yields a relation of the form (2.1b). The
parameter ¢ is equal to Tol'/? and can be interpreted as a mean stepsize.

We denote by p the order of the one-step method (2.1a), and we expand its local
error into a Taylor series as follows:

(2.3) ®p(y) — on(y) = WP Fppr(y) + W2, 0(y) + -

Here, F;(y) is a linear combination of elementary differentials corresponding to trees
with j vertices. We also assume that the stepsize function admits an expansion of the
form

(2.4) h=ces(y,e)=csoly) +e2s1(y) +e>sa(y) +---.

THEOREM 1. Let the one-step method (2.1a) be of order p. Then there exist func-
tions fj(y) (for j > p) such that the numerical solution y; = Pcs(y,.2)(yo) is formally
equal to the exact solution at time £s(yo, ) of the perturbed differential equation

(2.5) 7' =F@) + @) + T (@) +

with initial value y(0) = yo, i.e., y1 = y(es(yo,€)).
Remark. The series in (2.5) does not converge in general. Nevertheless, in order
to give a precise meaning to the statement of Theorem 1, we truncate the series
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after the eV-term and denote the solution of the truncated perturbed differential
equation by yn(¢t). In this way we get a family of solutions, which satisfy y; =
un(es(yo,€)) + O(eNHL) (for a more detailed estimate of this error we refer to [1]).
In order to emphasize the main ideas and to keep the notations as simple as possible,
we omit in the following the subscript N and the remainder terms.

Proof. Following an idea of [10] we shall recursively construct the functions f;(y).
We insert h from (2.4) into (2.3), and we see that the local error of the method is
£ (s0(y))"* Fya (3) + O(7+). 1f we put

(2.6) Fo(w) = (s0(y)" Fpi1(v),

the difference of the solution of the differential equation
v =f@+ehH®,  w0) =y

to that of (1.1) satisfies 7(e5(yo, €)) —y(es(yo, €)) = e (s0(10))" T Fpi1 (yo) +O(PF2).
Since the leading term of this difference is exactly the same as that of the local error,
we get

Cesiye) (y) — Fles(y,€)) = "2 Cppaly) + -,

where the function G,12(y) depends on Fpy2(y), Fp+1(y), so(y), s1(y) and on the
derivative of f,(y). In the second step of the proof we put fo11(y) = Gpi2(y),
consider the differential equation

v =f@)+ e @)+ (@), 9(0) = o,

and conclude as above that the difference between g(es(yp,e)) and the numerical
solution is of size O(eP™3). Continuing this procedure leads to the desired expansion
(2.5). O

Remark. If we apply the statement of Theorem 1 to successive integration steps,
we obtain formally y,, = y(t,,) where t,, is recursively defined by t,, = t,,—1+e$(yn—1,¢)
and tp = 0. It then follows from the nonlinear variation of constants formula (see
Theorem 1.14.5 of [5]) that

(2.7) Un = Y(tn) = ePep(tn) + " epra(tusr) + -

giving an asymptotic expansion in powers of ¢ for the global error of the variable
stepsize method (2.1). Since the leading term contains the factor e? = Tolp/q, we get
“tolerance proportionality” if we replace condition (1.11) by

(2.8) | D(yo, h)|| = Tol®'?.

This modification is implemented in all of our computations.

2.1. Adjoint and symmetric methods. Our next aim is to prove that for
symmetric methods the expansion (2.5) contains only even powers of . For this
purpose we extend the results of [5, Sect. I1.8] to variable stepsize methods.

Let us start with the definition of the adjoint method of (2.1). For this we replace
in (2.1) € by —e, denote h* = —h, and exchange the notations of yo and y;. This
yields

(29) Yo = (b,h* (y1)7 h* = Es(yh _5)7
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a system which by the implicit function theorem defines implicitly y; and h* as func-
tions of yy and €. We denote these functions by

(2.10) y1 = D7 (yo), h* =es*(yo,€)

and call the resulting formulas the adjoint method of (2.1).

DEFINITION 2. The variable stepsize method (2.1) is called symmetric if it is equal
to its adjoint method, i.e., if ®* = ® and s* = s.

The condition ®* = ® is the same as for the symmetry of the fixed stepsize
method (2.1a). If the stepsize strategy (1.11) is used in connection with a method
satisfying ®* = ®, then s(y;,—¢) = s(yo,&) holds and hence also s* = s. Con-
sequently, a Runge-Kutta method satisfying (1.6) together with a stepsize strategy
(1.11) satisfying (1.12) is symmetric in the sense of Definition 2.

THEOREM 3. If the variable stepsize method (2.1) is symmetric, then the perturbed
differential equation (2.5) has an expansion in even powers of ¢, i.e., f;(y) =0 for
odd j.

Proof. We first look for the perturbed differential equation of the adjoint method.
Recall that the adjoint method is obtained from (2.1) by replacing € by —e and by
exchanging yo and y;. If we apply these operations to the statement of Theorem 1,
we obtain

(2.11) 7' =F@) + (P @) + ()P o (B) +

with §(0) = y1 and y(—es(y1, —¢€)) = yo or, after a time translation, y(es(y1, —¢)) = y1
and 7(0) = yo. By definition of s* we thus obtain y; = y(es*(yo,€)), where g(t) is the
solution of (2.11) with initial value y(0) = yo. The perturbed differential equation of
the adjoint method is therefore equation (2.11).

For symmetric methods the expansions of (2.5) and (2.11) have to be equal. But
this is only the case if the terms with odd powers of € vanish. d

2.2. Application to reversible systems. Now let the differential equation
(1.1) satisfy (1.2) and apply the Runge-Kutta method (1.4) with stepsize strategy
(2.1b). At the moment neither the method nor the stepsize function are assumed to
be symmetric. We are interested in the structure of the perturbed differential equation
(2.5).

Multiplying (1.4) by p, it follows from (1.2) that

pY;=pyo—hY _ai f(pY;),  pyr=pyo —h Y bif(pYi).

j=1 =1

This shows that the numerical solution of method (1.4), applied with stepsize —h to
Yo = PYo, yields 7, = py; and the stage vectors are Y; = pY;. Consequently, we have
D(pyo, —h) = pD(yo, h) and under the additional assumption that p is an orthogonal
transformation (with respect to the inner product norm used in (1.11)) we also have

(2.12) s(pyo, —€) = s(yo, €).-

THEOREM 4. Suppose that the differential equation (1.1) is p-reversible with an
orthogonal transformation p. For a Runge—Kutta method (1.4) with a stepsize function
satisfying (2.12), the coefficient functions of the perturbed differential equation (2.5)
satisfy

filpy) = =(=1)7 p fi ().
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Proof. Let y; be given by (1.4) with h = es(yo, ). The discussion before the for-
mulation of Theorem 4 shows that py; is then the numerical solution of (1.4) obtained
with initial value pyo and negative stepsize —h = —es(pyo, —¢). As a consequence of
Theorem 1 we have py; = z(—es(pyo, —¢)), where z(t) is the solution of

2= f(2) + (—e)P fo(2) + ()P fppa(2) + -

with initial value 2(0) = pyo. Introducing the new variable v(t) := p~'z(—t) we
obtain
(213) o = =g f(o0) — (=) p(pv) — (=) fya () + -

with v(0) = yo and v(es(yo,€)) = y1 (here we have again used the relation (2.12)).
Since the differential equation (2.13) is the same for all values of yo, we obtain the
statement of the theorem by comparing the series of (2.5) and (2.13). o0

Combining the statements of Theorems 3 and 4 we get the following interesting
result.

COROLLARY 5. If in addition to the assumptions of Theorem 4 the method is
symmetric (in the sense of Definition 2), then the perturbed differential equation (2.5)
is also p-reversible.

We are now back to the same situation as for symmetric fixed stepsize methods:
the numerical solution is formally equal to the exact solution of a perturbed differential
equation, which is also p-reversible. Hence, the same conclusions concerning the
preservation of invariants and the linear error growth can be drawn (see section 3 of
[2] for a formal explanation). In order to get rigorous estimates also in the case where
the series in (2.5) does not converge, one has to estimate the error y; — yn(es(yo,€))
(see the remark following Theorem 1) and to study its propagation and accumulation.
Under suitable assumptions this allows us to conclude that the formally obtained
results are valid on “exponentially long” time intervals (see [1] for more details).

3. On the implementation of reversible stepsize strategies. In the preced-
ing analysis we have assumed that the nonlinear equations (1.4) and (2.8) are solved
exactly. In practice, however, these equations have to be solved iteratively, and it is
important to have suitable stopping criteria. For implicit Runge-Kutta methods it is
natural to solve equations (1.4) and (2.8) simultaneously. An iterative method based
on a dense output formula is proposed in [2]. For certain problems, simplified Newton
iterations for system (1.4) and convergence acceleration strategies for the stepsizes
may be more suitable. It is not the purpose of the present paper to discuss such
details (which are still under investigation), but we shall concentrate on aspects that
are common to all iteration techniques.

We have problems in mind where KAM theory is applicable. This implies that
the global error of symmetric methods grows linearly in time. Obviously, the errors
due to the approximate solution of the nonlinear equations should not be larger than
the error due to discretization.

3.1. Stopping criterion for the iteration of the stage vectors. The er-
ror in the stage vectors that is due to the iterative solution of the system (1.4) is
not correlated to the discretization error. This means that its dominant part has
also components orthogonal to the direction of the flow of the problem. Hence the
contribution of this error to the numerical solution grows quadratically in time.

Suppose now that the considered problem is well scaled (meaning that a char-
acteristic time interval such as the period or quasi period is equal to one) and that
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an approximation of the solution is searched over an interval of length T" with an
accuracy 6. We are interested in the situation where 7" is much larger than one. Due
to the linear error growth of the method we have to apply the stepsize strategy (2.8)
with

(3.1) Tol = §/T.

If we denote the stopping error of the iterative process by ¢ijter, then its contribution
to the error at time ¢ will be of size (’)(tzaiter). To guarantee that it is below § on the
considered interval, we require T?eie; < 6. This justifies the stopping criterion

(3.2) |AY;|| < Tol?/6 fori=1,...,s.

Since Tol < 8, the nonlinear equations (1.4) have to be solved with a higher precision
than when the method is applied to unstructured problems.

For stringent tolerances the influence of round-off errors may be significant. Since
they are random and the propagation of perturbations is linear for our model problem,
the round-off contribution to the error at time t is of size O(t3/?eps), where eps is
the unit roundoff. For eie; > eps the round-off errors can be neglected, because they
grow slower than the iteration errors. What happens if €j;e; < eps? In this situation
it is not adequate to use the stopping criterion ||AY;|| < &jter, but we can proceed
as follows: as long as ||AY;]| > 10eps (here 10 is an arbitrary safety factor) we use
the increments to estimate the convergence rate k. If ||AY;|| < 10eps for the first
time, we continue the iteration until the theoretical iteration error (assuming that
from now on one gains a factor of x at each iteration) is smaller than €jte,. Numerical
experiments revealed that such a procedure allows the iteration error to be pushed
below the round-off error.

3.2. Stopping criterion for the iteration of the stepsize. The situation
changes completely for the errors in the stepsize. Let £(yo,h) = ®n(yo) — dn(yo)
denote the local truncation error of the method. Then, perturbing the stepsize h to
h 4+ Ah, the numerical solution of (1.4) becomes y; + Ay; where Ay; = y(to + h +
Ah) —y(to + h) + £(yo, h + Ah) — €(yo, h). For a method of order p, the difference
L(yo, h + Ah) — £(yo, h) is of size O(hPAh), which by (2.8) can be expected to be of
size O(Tol - Ah). Hence the dominant part of this error is in direction of the flow of
the differential equation and induces a time shift of the solution. The sum of these
errors results in a linear error growth in time. If we require that in each step this
error is bounded by 7Tol, i.e.,

(3-3) |AR[ - [|f (yo) || < Tol,

then its contribution to the final error is comparable with that of the discretization
error. The component of the error, orthogonal to the flow, can grow quadratically
and usually leads to a O(T? - Tol - Ah) = O(T? - Tol?) contribution to the error at
time T. If the constant symbolized by O(T? - Tol?) is not larger than 6~ (see (3.1)),
then these components can be neglected. We therefore propose (3.3) as a stopping
criterion for the iterative solution of (2.8).

3.3. A reversible lattice stepsize strategy. As pointed out in [2] the com-
putation of the stepsize h from (2.8) is ill conditioned. Indeed, due to round-off errors
in the computation of f(Y;), the expression D(yo, h) is affected by a relative error of
size eps - h- || f(yo)||/||D||- Since ||D|| = Ch4, this leads to a relative error in h of size

Ah JLAIDL kel (o)l

3.4 ~ R eps ,
(3.4) n S D] 4 TolVP
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because || D|| & Tol?/?. Difficulties will therefore arise when the right-hand expression
of (3.4) is larger than Tol/(h - || f(yo)l|)-

As a remedy to this fact (inspired by the symplectic lattice methods of [3]) we
propose to restrict the stepsizes to the values of a fixed lattice L; e.g., we consider only
stepsizes that are integer multiples of say 27" where m is a fixed number. Obviously,
condition (2.8) can no longer be satisfied exactly. The essential idea is now to take
as stepsize h the largest element of L satisfying ||D(yo, h)|| < Tol%P. In this way the
stepsize is (locally) uniquely determined and can again be written as h = es(yo, €).
Under assumptions (1.6) and (1.12) we still have s(y1,—¢) = s(yo,¢), so that this
variable stepsize method is symmetric in the sense of Definition 2. However, s(y, ¢)
no longer has an expansion (2.4) and the results of section 2 cannot be applied.
Nevertheless, experiments have shown that the numerical solution of this approach
still shares the nice properties (nearby preservation of invariants, linear error growth)
of the continuous stepsize strategy.

4. Comparison between reversible and nonreversible methods. It is well
known that for the numerical integration of nonstiff differential equations, explicit
methods are superior to implicit methods. Unfortunately, symmetric Runge-Kutta
methods cannot be explicit. Hence the question arises whether the symmetry of
a method can compensate for its nonexplicitness when it is applied to a reversible
differential equation over a very long time interval. In order to achieve the accuracy
6 on an interval of length T, a symmetric method can be applied with Tol = §/T
whereas a general nonsymmetric method has to be applied with the more stringent
tolerance 8/T2 = Tol? /6.

This section is devoted to a comparison of two classes of integration methods:
the symmetric collocation method based on the Lobatto quadrature formula, named
Lobatto IITA, and the explicit Gragg—Bulirsch-Stoer (GBS) extrapolation method
(for their precise definition, see, for example, [6]). Both classes contain methods of
arbitrarily high order. As a measure of comparison we consider the work per unit step
W = A/h, where A counts the number of function evaluations of one step and h is
the stepsize such that the local error of the method is Tol and Tol? /6, respectively.
We restrict our theoretical comparison to linear problems 3’ = Qy, because in this
case the error constants are available and a reasonable comparison is possible. Some
limited numerical experiments with the Kepler problem have given similar results.

4.1. Work per unit step for Lobatto ITTA. The collocation method based on
the s-stage Lobatto quadrature formula is a Runge—Kutta method of order p = 25 — 2
(see [6, p. 80]). For a linear problem the numerical solution is y13 = Rs—1 s—1(hQ)yo,
where Rs_1,s—1(2) is the diagonal Padé approximation of degree s —1 (see [6, p. 50]).
The local error is given by

kL k!
(4.1) err = m h2k+1Q2k+1y0 + O(h2k+2)7

where, in view of the comparison with the GBS method, we have put £k = s — 1.
The hypothesis ||err|| &~ Tol allows us to express the stepsize h as a function of Tol.
Neglecting higher-order terms and assuming that ||Q2**1yy|| ~ 1 for all & we obtain
for the stepsize

(2K)1(2k + 1)!

1/(2k+1)
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For the computation of the number of function evaluations we have to specify
an iteration process for the solution of nonlinear system (1.4). Suppose that we
apply fixed point iteration with starting approximation Yi(o) = yo + heif(yo) where
DY ; @ij (in practice one would use the extrapolated dense output solution; some
iterations can be saved in this way). For linear problems y’ = Qy the error Ey of the
vector (Y, ... ,YS(O))T is equal to Ey = h2A%1® Q%yo + O(h?). Here A = (a;;) is the
s X s matrix whose elements are the Runge-Kutta coefficients of (1.4) and 1 stands
for the vector (1,...,1)T. Each fixed point iteration contributes a factor h4A ® @, so
that after r iterations the error is equal to

E, = hr+2Ar+2]l ® Qr+2y0 + O(hr+3).

We shall stop the iteration as soon as || E,|| &~ Tol?/6 in a suitable norm (see (3.2)). In
order to estimate || A" 21| we shall use the spectral radius of A. Since the eigenvalues
of A are the inverse values of the poles of the stability function, we have to bound from
below the zeros of the denominator of Rs_1 s—1(2). A result of [11] states that these
zeros lie outside the parabolic region {z = x +iy | y*> < 4s(x + s)}, which contains the
disc with center (0,0) and radius s. Consequently, the spectral radius of A satisfies
p(A) < 1/s. The number r of required iterations can therefore be approximated by
the relation

” ()

k+1
The work per unit step for the Lobatto IITA method of order 2k is therefore given by
1+k
(4.4) Wy = Tk
hi

where hy, is the value given by (4.2) and ry, is the value given by (4.3).

4.2. Work per unit step for GBS extrapolation. The GBS extrapolation
algorithm is an explicit method for the integration of (1.1). It is based on the ex-
plicit midpoint rule, whose error has an asymptotic expansion in even powers of the
stepsize. If we apply k — 1 extrapolations with the most economic stepsize sequence
(the “harmonic sequence” of Deuflhard) to the linear problem y’ = Qy, the numerical
approximation is of the form y; = P (hQ)yo, where Psy(2) is a polynomial of degree
2k. Since the order of this approximation is 2k, it has to be the truncated series for
exp(z). Consequently, the local error of the GBS method is given by

1
(4.5) = T hPEFLQHHyg + O(RPFF2).

We again neglect higher-order terms and assume that ||Q?**1y|| ~ 1. The condition
|err|| & Tol? /8, which, due to the quadratic error growth, has to be imposed in order
to achieve a precision of § over the considered interval, yields

Tor2\ /D
)

The number of required function evaluations is k2 4 1, so that the work per unit step
of the GBS method is

(4.6) h = ((2/4; + 1)

k41
=

(4.7) Wi

where the stepsize hy, is given by (4.6).
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F1G. 2. Work per unit step as a function of the length of the interval.

4.3. Comparison between Lobatto ITIA and GBS. Figure 2 shows the
values Wy, (for methods of order p = 2k) plotted as functions of T, the length of
the considered interval. We have chosen § = 10~! and Tol from (3.1) so that the
numerical solution is accurate to one digit on the interval [0, 7.

In the upper picture (Lobatto IITA) the plotted curves show a singularity for
small values of T'. This can be explained as follows: if a high-order method is used
with a relatively large Tol (which is the case for small values of T'), then the stepsize
determined by (4.2) is rather large. If it is so large that h > k+1 (see (4.3)), then the
fixed point iteration does not converge and the work per unit step tends to infinity.
We also observe that for long integration intervals it is important to use high-order
methods, but an order higher than p = 20 does not improve the performance.

The lower picture (GBS method) shows a completely different qualitative behav-
ior. Since the method is explicit, there is no singularity for small values of T'. Again,
high order is essential for an efficient integration over a long time interval. Here we
observe that high order improves the performance of the method on large intervals but
still remains efficient also for small T' (coarse tolerances). We have also included the
corresponding curve for the explicit Runge-Kutta method of order 8 due to Dormand
and Prince (see [5, p. 181ff]). Due to its smaller error constant it lies below the curve
of the eighth-order GBS method, but its order is too low for very large time intervals.
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Comparing the two pictures we see that (at least for large T') the curves for order
p in the Lobatto IITA case are close to those for order 2p in the GBS case. This
indicates that the application of an explicit (nonsymmetric) method needs an order
twice as high as that of a symmetric method in order to achieve the same efficiency. It
should be mentioned that the pictures of Fig. 2 do not take into account the influence
of round-off errors. The numerical solution of the Lobatto ITTA method is obtained by
an iterative process, so that only the last iteration contributes to the round-off error
of one step. Since the weights of the Lobatto quadrature formulas are all positive,
this error will be close to the unit round-off eps. The situation changes for the GBS
method. Since extrapolation is a numerically unstable process, the round-off error of
one step increases with increasing order. For example, about two digits are lost for
the method of order 18 (see [5, p. 242]).
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