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Abstract

Certain symmetric linear multistep methods have an excellent long-time behavior when applied
to second order Hamiltonian systems with or without constraints. For high accuracy compu-
tations round-off can be the dominating source of errors. This article shows how symmetric
multistep methods should be implemented, so that round-off errors are minimized and propagate
like a random walk.
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1. Introduction

This article considers the numerical solution of constrained Hamiltonian systems

M q̈ = −∇U(q) −G(q)Tλ

0 = g(q),
(1)

where q ∈ Rd, M is a positive definite constant matrix, U(q) is a smooth real potential, g(q) ∈ Rm

(with m < d) collects holonomic constraints, and G(q) = g′(q) is the matrix of partial derivatives.
Assuming that G(q)M−1G(q)T is invertible, the system (1) is a differential-algebraic equation of
index 3. With the momentum p = Mq̇, the problem can be interpreted as a differential equation
on the manifold

M = {(q, p) ; g(q) = 0, G(q)M−1 p = 0}. (2)

Its flow is a symplectic transformation onM, and it preserves the Hamiltonian (total energy)

H(q, p) =
1
2

pTM−1 p + U(q). (3)

For a qualitative correct long-time integration of such systems the use of a geometric integra-
tor is essential. An excellent choice is the Rattle algorithm [1], which is a symplectic, symmetric
one-step method. However, due to its low order 2, it is not efficient for high accuracy compu-
tations. Symplectic partitioned Runge–Kutta methods (such as the Lobatto IIIA–IIIB pair) have
arbitrarily high order, but they are implicit in the force evaluations. This article considers the use
of explicit, symmetric multistep methods. With the notation f (q) = −∇U(q) they are given by

k∑
j=0

α j qn+ j = h2
k−1∑
j=1

β j M−1
(

f (qn+ j) −G(qn+ j)Tλn+ j

)
0 = g(qn+k).

(4)
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For given qn, . . . , qn+k−1 and λn+1, . . . , λn+k−2, the second relation implicitly defines λn+k−1, and
the first relation gives an explicit expression for qn+k. An approximation of the momentum
p = Mq̇ is obtained a posteriori by symmetric finite differences supplemented with a projection
ontoM:

pn = M
1
h

l∑
j=−l

δ jqn+ j + h G(qn)Tµn, G(qn)M−1 pn = 0. (5)

The second relation represents a linear system for µn, and the first relation is an explicit formula
for pn. By definition, this method yields a numerical solution on the manifoldM. It is proved in
[2] (in the absence of constraints, see [3]) that under suitable assumptions on the coefficients α j

and β j, the method can have high order, and the numerical approximations nearly conserve the
Hamiltonian over very long time intervals. Its computational cost is essentially the same as that
for the Rattle algorithm, which makes it to an excellent choice for high accuracy computations.

For computations close to machine accuracy, round-off errors can become more important
than discretization errors. This motivates the present study of the propagation of round-off errors.
This article gives hints on how the method should be implemented to reduce round-off errors and
to obtain approximations for which the error in the Hamiltonian behaves like a random walk.
Numerical experiments are presented in a final section.

2. Reducing round-off errors

For a straight-forward implementation of method (4)-(5), the round-off error typically in-
creases linearly with time. This can be observed for step sizes, for which the discretization error
is close to machine precision. It is known [5] that symplectic implicit Runge–Kutta methods
can be implemented such that the round-off error is improved quantitatively (using compensated
summation) and qualitatively. This means that it behaves like a random walk and grows like the
square root of time. This section shows how the same behavior can be achieved for symmetric
multistep methods.

2.1. Separation into difference equations for position and momentum
For consistent multistep methods (4) the characteristic polynomal ρ(ζ) of the coefficients α j

has a double zero ζ = 1. In the limit h → 0, the solution of the difference equation (4) is
unbounded and this fact provokes an undesired accumulation of round-off errors. There are two
possibilities to avoid this weak instability. Either one works with sums of f j values (summed form
of [7, Sect. 6.4-1]) or with differences of q j values (stabilized algorithm of [6, Sect. III.10]). We
use the second approach, because it is closer to the standard use of the Rattle algorithm.

For the difference of two consecutive q j values we introduce momentum approximations on
a staggered grid. Denoting by α̂ j the coefficients of the polynomial ρ(ζ)/(ζ − 1), i.e., αk = α̂k−1
and α j = α̂ j−1 − α̂ j for j = 1, . . . , k − 1, the method (4) is mathematically equivalent to

k−1∑
j=0

α̂ j pn+ j+1/2 = h
k−1∑
j=1

β j

(
f (qn+ j) −G(qn+ j)Tλn+ j

)
qn+k = qn+k−1 + h M−1 pn+k−1/2

0 = g(qn+k).

(6)

Concerning the propagation of round-off errors there is a big difference to (4), because in the
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limit h → 0 the two difference equations (for position and momentum) have bounded solutions.
The approximation of the momenta can be expressed in terms of pn+ j+1/2 as

pn =

l−1∑
j=−l

δ̂ j pn+ j+1/2 + h G(qn)Tµn, G(qn)M−1 pn = 0, (7)

where the coefficients δ̂ j are given by δ̂l−1 = δl and δ j = δ̂ j−1 − δ̂ j for j = −l + 1, . . . , l − 1.
Compared to (5) this formula for pn is less affected by round-off errors, because the difference
operator approximates a function and not a derivative. This reformulation is less important than
the previous one, because pn is not used in the step by step application of the method.

2.2. Use of symmetric and rational coefficients
For symmetric methods (4) the coefficients satisfy αk− j = α j and βk− j = β j, which implies

that α̂k−1− j = −α̂ j. To retain this symmetry in the implementation, it is recommended to apply
the formula for pn+k−1/2 as follows (here for k = 4):

pn+7/2 = pn+1/2 +
1
α̂0

(
α̂1(pn+3/2 − pn+5/2) + h

(
β1( fn+1 + fn+3) + β2 fn+2

))
,

where fn is an abbreviation for f (qn)−G(qn)Tλn. If the coefficients of the method are rational (the
typical situation), they should be multiplied by a factor, so that all α̂ j and β j become integers.
This avoids round-off errors in the computation of the coefficients.

2.3. Compensated summation
The iterative application of the second equation of (6) corresponds to a sum of small quan-

tities. This is precisely the situation where Kahan’s compensated summation can significantly
reduce round-off errors, see [4, Sect. VIII.5]. The effect of compensated summation is the same
as if the addition would be done with higher precision arithmetic.

It turns out that an application of compensated summation to the second equation of (6)
alone has only marginal effect to the propagation of round-off. One also has to reduce round-
off in the computation of the first equation of (6). This is less obvious, because the recursion
is not as simple. We introduce a variable e that accumulates small errors in qn+k, and further
variables e1/2, . . . , ek−1/2 for accumulating small errors in k consecutive approximations pn+ j+1/2.
The proposed algorithm reads then as follows (to simplify the notation, we assume α̂0 = 1):

for n = 0, 1, 2, . . . do
s1 = h

(∑k/2−1
j=1 β j

(
fn+k− j + fn+ j

)
+ βk/2 fn+k/2

)
s2 = −

∑k/2−1
j=1 α̂ j

(
pn+k− j−1/2 − pn+ j+1/2

)
d = −

∑k/2−1
j=1 α̂ j

(
ek− j−1/2 − e j+1/2

)
a = pn+1/2
ek−1/2 = s1 + s2 + d + e1/2
pn+k−1/2 = a + ek−1/2
ek−1/2 = (a − pn+k−1/2) + ek−1/2
for j = 1, . . . , k − 1 do

e j−1/2 = e j+1/2
end do
b = qn+k−1
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e = hpn+k−1/2 + e
qn+k = b + e
e = (b − qn+k) + e

end do
The effect of this implementation of symmetric multistep methods, applied to Hamiltonian sys-
tems without constraints, will be shown in Section 3.1. Since the force evaluations and the
solution of the nonlinear equation for λn+k−1 are not modified, the additional overhead is negli-
gible. For problems with constraints, it is not sufficient to apply compensated summation to the
first two relations of (6). One has to improve also the computation of the solution of the algebraic
equation g(qn+k) = 0.

2.4. Solving the nonlinear equation for the Lagrange multiplier
Most parts of (6) are explicit computations, only λn+k−1 is given by an implicit equation. The

first relation of (6) yields pn+k−1/2 = a − hβk−1G(qn+k−1)Tλn+k−1/α̂0. Inserted into the second
relation and then into the third one gives the nonlinear equation

g
(
b − M−1G(qn+k−1)Tλ

)
= 0,

where b = qn+k−1 + h M−1a, and λ = h2βk−1λn+k−1/α̂0 is the vector needed for the computation of
hpn+k−1/2 and qn+k. This nonlinear equation can be solved with simplified Newton iterations

λ(i+1) = λ(i) + ∆λ(i), G(qn+k−1)M−1G(qn+k−1)T∆λ(i) = g
(
b − M−1G(qn+k−1)Tλ(i)

)
starting with λ(0) that is obtained from information of the previous step. The stopping crite-
rion has to be chosen carefully. From the implementation of implicit Runge–Kutta methods [5]
we know that a criterion like ‖∆λ(i)‖ ≤ tol with tol close to the round-off unit can lead to a
linear growth in the energy error. This also happens with symmetric multistep methods (see Sec-
tion 3.2). We therefore follow the idea of [5] and apply iteration until convergence. This means
that we iterate until either ∆λ(i) = 0 or ‖∆λ(i)‖ ≥ ‖∆λ(i−1)‖ which indicates that the increments of
the iteration start to oscillate due to round-off. For up-dating the vectors hpn+k−1/2 and qn+k we
use the approximation λ(i).

2.5. Accurate evaluation of the constraint functions
Implementing the ideas of the previous sections does not give satisfactory results for con-

strained Hamiltonian systems. The reason is that for the computation of ∆λ(i) one has to evaluate
g(q) for an argument such that the result is close to zero. This provokes cancellation of significant
digits. As a remedy we use the fact that from the algorithm of Section 2.3 we obtain not only
the approximation qn+k, but also its accumulated error e. The idea is to compute g(qn+k + e) with
higher precision as follows:

- either, convert qn+k (only in the subroutine for g(q)) into quadruple precision, add the
small quantity e, evaluate g(qn+k +e) in quadruple precision, and return the result in double
precision;

- or, exploit the form of the constraint to get higher precision. For the important special case
of a quadratic constraint g(q) = q2

1 + q2
2 − 1, one can approximate q1 ≈ k1/k, q2 = k2/k by

rational numbers, compute the errors di = (kqi − ki) + kei, and evaluate the constraint as

g(q + e) =
1
k2

((
k2

1 + k2
2 − k2) + 2

(
k1d1 + k2d2

)
+ d2

1 + d2
2

)
4
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Figure 1: (Mathematical pendulum). Error in the Hamiltonian of the 8th order symmetric multistep method SY8 as
function of time without (grey) and with (black) compensated summation; step size h = 0.01.

In this way, the dangerous subtraction is done with integers and thus without introducing
round-off errors.

We shall present in Section 3.2 a numerical experiment illustrating the second approach,
which avoids the computation with quadruple precision and is therefore more efficient.

3. Numerical experiments

The aim of this section is to illustrate the effect of the algorithms described in the previous
section. This can best be done with simple examples, where further sources of round-off errors
are minimized.

3.1. Effect of compensated summation

To illustrate the effect of the algorithm of Section 2.3 we consider a Hamiltonian system
without constraints. In this case the method is explicit, no nonlinear equation has to be solved.
We consider the mathematical pendulum

H(p, q) =
1
2

p2 − cos q

and apply the 8th order symmetric linear multistep method SY8 of Quinlan and Tremaine [9]
(see also [4, page 603]) with step size h = 0.01. Accurate starting approximations are computed
with a high order implicit Runge–Kutta method. The step size is small enough, so that the
discretization error of the linear multistep method is below round-off.

Figure 1 shows the error in the Hamiltonian as a function of time in double logarithmic scale.
The use of compensated summation reduces this error by more than a factor 10. The broken
grey lines in the figure are of slope 1/2 and indicate a growth that is proportional to t1/2. For the
standard implementation as well as for that with compensated summation the error increases not
worse than ct1/2, which indicates a random walk behavior.
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Figure 2: (Two-body problem on the sphere). Error in the Hamiltonian of an 8th order symmetric multistep method
as function of time without (grey) and with (black) the technique of Section 2.5; step size h = 0.001; iteration until
convergence (Section 2.4) is applied.

3.2. Improving round-off by solving accurately the constraints
The algorithms of Sections 2.4 and 2.5 concern the treatment of the algebraic constraint in

the problem (1). We were surprised to see that without the ideas of Section 2.5 the stopping
criterion of the simplified Newton iterations for the computation of λn+k−1 has only little effect
on the roundoff error. The algorithm of Section 2.5, however, has a big influence.

As example we consider the two-body problem on the sphere. It describes the motion of two
particles on the unit sphere respecting the force given by the potential (see [8])

U(q) = −
cos θ
sin θ

, cos θ = 〈Q1,Q2〉,

where q ∈ R6 collects the position coordinates of the two particles Q1 = (q1, q2, q3)T and Q2 =

(q4, q5, q6)T. The constraints are quadratic

g1(q) = QT
1 Q1 − 1, g2(q) = QT

2 Q2 − 1

and ideally suited for the algorithm of Section 2.5. For our numerical experiment we use initial
values as in [2], but the qualitative behavior is independent of them. We apply the symmetric
linear multistep method with generating polynomials

ρ(ζ) = (ζ − 1)2
3∏

j=1

(ζ2 + 2a jζ + 1)

(a1 = −0.8, a2 = −0.4, a3 = 0.7), and σ(ζ) such that the method is explicit and of order 8.
Starting approximations are computed using a high order implicit Runge–Kutta method.

Figure 2 shows the error in the Hamiltonian along the numerical solution for two implemen-
tations, both with step size h = 0.001, so that the truncation error is below round-off. The error
indicated by “standard constraint” corresponds to an implementation, where all the improve-
ments of Sections 2.1 to 2.4 are taken into account. The error indicated by “accurate constraint”
uses in addition the technique of Section 2.5. We observe an enormous improvement with little
additional work. The more accurate computation of g(q) needs for a few steps an additional
iteration for the solution of the nonlinear equation. For example, on an interval of length 103

with step size h = 0.001, we have 106 force evaluations and 4 608 497 evaluations of g(q) for the
6
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Figure 3: (Two-body problem on the sphere). Error in the Hamiltonian of an 8th order symmetric multistep method as
function of time without (grey) and with (black) the technique of Section 2.5; step size h = 0.001; stopping criterion
(Section 2.4) is ‖∆λ(i)‖ ≤ tol with tol = 10−15.

standard implementation, and 4 818 860 evaluations of g(q) for the “accurate constraint” imple-
mentation. The cpu time with the Intel Fortran complier compiler IFORT on a MacBook Pro is
2.27 sec for the standard and 2.34 sec for the accurate implementation. This experiment shows
that an accurate computation of the Lagrange multiplier from the algebraic constraint is essential
for a reduction of round-off effects.

Our second experiment (Figure 3) is very similar to the one for Figure 2. The only difference
is that instead of using the stopping criterion “iteration until convergence” (Section 2.4) we stop
the iteration as soon as ‖∆λ(i)‖ ≤ tol with tol as small as possible. For tol = 10−16 we had
difficulties with convergence, so that we have taken tol = 10−15. For the “standard constraint”
implementation we cannot observe a significant difference between the results of Figures 2 and 3.
For the “accurate constraint” implementation, however, there is an enormous difference. Whereas
the error behaves like a random walk in Figure 2, it grows linearly with time in Figure 3.

Let us mention that a direct implementation of the multistep method, based on the formula-
tion (6) and exploiting the symmetry of the coefficients (without compensated summation and
without the techniques of Sections 2.4 and 2.5) yields an error in the Hamiltonian that is nearly
identical to the “standard constraint” error in Figure 3. For this reason we did not include it in our
figures. Our conclusion is that all improvements discussed in this note (compensated summation,
careful stopping criterion, accurate evaluation of the constraint) should be considered in the an
implementation. If one of them is omitted, a significant loss in accuracy will be the consequence.

We have made further experiments with Hamiltonian problems that are subject to quadratic
constraints. For example, we have considered a triple coupled pendulum in dimension d = 8
with m = 5 constraints. The results with our code are qualitatively the same as those presented
here. For non-quadratic constraints the technique of Section 2.5 has to modified suitably.

Acknowledgement
This work was partially supported by the Fonds National Suisse, projects No. 200020-144313

and No. 200021-129485.

References

[1] H.C. Andersen, Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations, J. Comput.
Phys. 52 (1983) 24–34.

7



[2] P. Console, E. Hairer, C. Lubich, Symmetric multistep methods for constrained Hamiltonian systems, Numerische
Mathematik (2013) ?–?

[3] E. Hairer, C. Lubich, Symmetric multistep methods over long times, Numer. Math. 97 (2004) 699–723.
[4] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary

Differential Equations, Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin, 2nd edition,
2006.

[5] E. Hairer, R.I. McLachlan, A. Razakarivony, Achieving Brouwer’s law with implicit Runge-Kutta methods, BIT 48
(2008) 231–243.

[6] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in
Computational Mathematics 8, Springer, Berlin, 2nd edition, 1993.

[7] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley & Sons Inc., New York, 1962.
[8] V.V. Kozlov, A.O. Harin, Kepler’s problem in constant curvature spaces, Celestial Mech. Dynam. Astronom. 54

(1992) 393–399.
[9] G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits, Astron.

J. 100 (1990) 1694–1700.

8


