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Long-time energy conservation of numerical
integrators

Ernst Hairer
Section de Mathématiques, Université de Genéve

This article discusses the energy conservation of a wide class of numerical
integrators applied to Hamiltonian systems. It surveys known material
by various illustrations, and it also contains more recent and new results.

1.1 Introduction

In this introductory section we present the class of differential equations
considered (Hamiltonian systems) together with properties of their flow,
and we introduce numerical integration methods that can be expressed
as B-series. We further discuss difficulties that can arise when one tries
to conserve exactly the Hamiltonian.

1.1.1 Properties of Hamiltonian systems
We consider Hamiltonian systems
p = 7VQH(pa q)
q=VpH(p,q)

where y = (p,¢)T and H(y) = H(p, q) is a real-valued smooth function,
and we emphasise the following two properties of such systems:

or  g=J'VH(y), J:(_OI é) (1.1)

(P1) energy conservation, and
(P2)  symplecticity.

Property (P1) just means that H(y) = H(p,q) is constant along so-
lutions of the differential equation. For classical mechanical systems,
where H(p,q) = %pTM(q)_lp—l— U(q) is the sum of kinetic and potential
energy, this is equivalent to the conservation of the total energy.
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Property (P2) — symplecticity — can be conveniently expressed in
terms of the flow ¢ (yo) of the differential equation, which is the solution
at time ¢ for the initial value y(0) = yo. Symplecticity then means that

AP IEAME (1.2)

where prime indicates the derivative with respect to y. It is interesting
to mention that this property is characteristic for Hamiltonian systems.

1.1.2 B-series integrators

For a general differential equation §y = f(y), the Taylor series of the
exact solution with initial value y(0) = y can be written as

y(h) = y+hf)+ W)W
(P W) 1) + P OI W)+

3!
We consider numerical integrators y,4+1 = P (yn), whose Taylor series
have the same structure as (1.3) with additional real coefficients:

Ou(y) = y+ha(<)f(y)+hal(])f' ) f(y)
12 (SO0 1) (1), £) + al DT ) )+

The coefficients a(7), which are in a one-to-one correspondence with
rooted trees, characterise the integrator. Properties like energy conser-
vation and symplecticity can be expressed in terms of these coefficients.
Series expansions of the form (1.4), called B-series, have their origin in
the paper of Butcher (1972) and were introduced by Hairer & Wanner
(1974).

Such B-series integrators are comprised of Runge Kutta methods (RK),
Taylor series methods, the underlying one-step method (in the sense of
Kirchgraber (1986), see also chapter XIV of HLW027) of linear multistep
methods (Imm), and all their extensions such as general linear methods

(1.3)
+

(1.4)

(glm) and multistep-multistage-multiderivative methods (mmm); see the
left cube of Figure 1.1.

For the numerical treatment of Hamiltonian systems, partitioned meth-
ods that allow one to treat the p and ¢ components in a different man-
ner are even more important. The basic method is the symplectic Euler
discretisation, which combines the explicit and implicit Euler methods.

1 The monograph “Geometric Numerical Integration” of Hairer, Lubich & Wanner
(2002) will be cited frequently. Reference to it will be abbreviated by HLWO02.
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Fig. 1.1. The cube of B-series methods (left) and its extension to partitioned
methods (right).

Taylor series methods are replaced by the generating function meth-
ods of Feng Kang, multistep methods by their variants for second-order
differential equations (Imm2), etc.; see the right cube of Figure 1.1.

1.1.3 Ezxact energy conservation

For a numerical solution obtained by y,+1 = ®5(y,) we would like to
have energy conservation (i.e., H(y,) = const for all n) and symplec-
ticity (i.e., ®}(y)TJ®} (y) = J) at the same time. Unfortunately, this
is not possible. Ge & Marsden (1988) proved that for Hamiltonian sys-
tems without further conserved quantities such a method has to be a
re-parametrisation of the exact flow. An algebraic proof for the impos-
sibility of having an energy conserving symplectic B-series integrator
(which is different from the exact flow) is given by Chartier, Faou &
Murua (2005).

Let us study what happens when we force energy conservation and
thus give up symplecticity. We consider the three-body problem (Sun—
Jupiter—Saturn) which is a Hamiltonian system with

13201 . 2 i1 mam;
H(p,q)=§zﬁpipi—Gzzi
i=0 "

2 2 Ta ol

The initial values ¢;(0),p;(0) € R? and the parameters G and m; are
taken from HLWO02, page 11. To this problem we apply two kinds of
integrators that exactly conserve the Hamiltonian along the numerical
solution. Notice, however, that neither of these methods is symmetric
so that the considerations of Section 1.4 do not apply.
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sympl. Euler, h =5 sympl. Euler, proj. onto H

Fig. 1.2. Numerical solution of the Sun—Jupiter—Saturn system.

Projection method. The most obvious approach for achieving exact
energy conservation is by projection. Assume that y,, is an approxima-
tion to y(t,) satisfying H(y,) = H(yo). We compute Jp11 = Pp(yn)
with some basic method, and then project ¥,11 orthogonally onto the
energy surface {y| H(y) = H(yo)} yielding y,+1. If we take as basic
method the symplectic Euler method (see method (1.8) below), an inte-
gration with step size h = 5 over an interval of 1.3-10% Earth days gives
the result of Figure 1.2. The left picture shows the numerical solution
obtained without any projection. Although the energy is not exactly
conserved, we observe a qualitatively correct behaviour (for an explana-
tion see Section 1.2). The picture on the right in Figure 1.2 shows the
result obtained by the same method, but with an additional projection
onto the energy surface after every step. Clearly, this does not improve
the result; in fact, it even destroys the good long-time behaviour.

Energy conserving B-series method. In the previous experiment
one can criticise the fact that the projection step throws out the method
from the class of B-series integrators. This is correct. Motivated by the
results of Faou, Hairer & Pham (2005) we therefore consider the method
Ynt+1 = Pn(yn), where &, (y) is the exact flow at time ¢t = h of

g=f@)+ 2+ D)) W) (1.5)

It is not difficult to check that this is a B-series method, and that for
fly) = J-'VH(y) the energy H(y) is a first integral of (1.5), so that
H(y,) = const. Since the perturbation in (1.5) is not Hamiltonian, the
method is not symplectic. We do not claim that this method can be
realised by a Runge—Kutta or multistep method. Application to the
Sun Jupiter Saturn system gives a result that is very similar to that of
the projection method (right picture of Figure 1.2).

From these experiments we conclude that exact energy conservation
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alone is certainly not sufficient for a qualitatively correct long-time in-
tegration of Hamiltonian systems.

1.2 Methods that exactly conserve quadratic first integrals

We now turn our attention to property (P2) — symplecticity — of Hamil-
tonian systems. This turns out to be closely related to the exact con-
servation of quadratic first integrals.

1.2.1 Equivalence with symplecticity

Consider the Hamiltonian system together with its variational equation,
§=J'VH(y), V=J'V?H(y)V, (1.6)

where ¥(t) is the derivative of y(¢) with respect to its initial value. The
symplecticity condition (1.2) just expresses the fact that W7 JV is a first
integral of the system (1.6); i.e., it is constant along solutions of (1.6).

Theorem 1.2.1 (criterion for symplecticity) A B-series integrator
is symplectic (i.e., it satisfies @), (y)T J®} (y) = J) if and only if it exactly
conserves all quadratic first integrals of a system y = f(y).

Conservation of quadratic first integrals implies symplecticity. Bochev
& Scovel (1994) have shown for Runge Kutta and general linear meth-
ods that the derivative of the numerical solution with respect to the
initial value, ¥,, := Oy, /0o, is the result of the same numerical method
applied to the augmented system (1.6). This implies the statement, be-
cause UTJU is a quadratic first integral of the system. The extension
to B-series methods is straight-forward.

Symplecticity implies conservation of quadratic first integrals. Calvo &
Sanz-Serna (1994) have given a characterisation of the symplecticity
of B-series methods in terms of the coefficients a(7) of (1.4); see also
HLWO02, page 201. Chartier, Faou & Murua (2005) show that exactly
the same conditions on the coefficients imply that the method conserves
exactly all quadratic first integrals of the differential equation.

Implicit midpoint rule. Let us illustrate the above characterisation
of symplectic B-series methods for the implicit midpoint rule

Ynt1 = YUn = hf ((Unt1 +un)/2). (1.7)
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For this we assume that Q(y) = y? Cy (with a symmetric matrix C) is a
first integral of § = f(y), i.e., yTCf(y) = 0 for all y. Left-multiplication
of (1.7) with (yn11 + yn)TC yields a vanishing right-hand side and

0= (Ynt1+Yn) CWnt1 = Yn) = Yt 1CYnt1 — Ui CYn.

This proves that Q(y,) is exactly conserved, implying that the implicit
midpoint rule is a symplectic integrator.

1.2.2 Partitioned methods

As mentioned in the introduction, partitioned methods play an impor-
tant role for solving Hamiltonian systems. They allow one to treat the
variables p and ¢ in the Hamiltonian system (1.1) in a different way. For
partitioned methods the above characterisation remains valid only if one
restricts the statements to quadratic first integrals of the special form
Q(p, q) = pT Eq with an arbitrary matrix E.

Symplectic Euler method. Consider the combination of the implicit

and explicit Euler methods. This yields the discretisation
Pn+1 = Pn — thH(anrla Qn) (1 8)
Gn+1 = Qn + hva(pn+1a Qn)-

If pT Eq is a first integral of (1.1), a multiplication of the first relation of
(1.8) by (Eq,)T, of the second relation by pZ_HE, and addition of the
two proves the exact conservation of this first integral. Consequently,
the method is symplectic.

Stormer—Verlet scheme. Composing a half-step of method (1.8) with
its adjoint (explicit in p and implicit in ¢) gives

h
Pn41/2 = Pn — iqu(pn—&-l/%Qn)
h
Gn+1 = qn T 3 (va(pn+l/2a qn) + Vo H (ppy1/2, Qn+1)> (1.9)

h
Pntl = Pnt1/2 — quH(pn+1/Qin+1)-

As the composition of symplectic mappings it is a symplectic integrator.
For a separable Hamiltonian H(p,q) = pTp/2 + U(q), this scheme
implies

dn+4+1 — 2qn + qn—1 = _h2 VqU(Qn)a (1'10)
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which is a natural discretisation of § = —V,U(g) that can already be
found in the Principia of Newton; c.f., Hairer, Lubich & Wanner (2003).

1.2.3 Near energy conservation

The aim of this article is to study energy conservation of numerical
integrators. In general, symplectic B-series methods cannot conserve the
Hamiltonian exactly (see Section 1.1.3). However, we have the following
central result, which was intuitively clear since the use of symplectic
methods and was rigorously proved by Benettin & Giorgilli (1994); see
also Section IX.8 of HLW02.

Theorem 1.2.2 Consider

e a Hamiltonian system with analytic H : U — R, and
e a symplectic B-series method ®n(y) of order r.

As long as {yn} stays in a compact set, we have for t, = nh and h — 0,

H(yn) = H(yo) + O(h") + O(tne 7/M), (1.11)

where v > 0 only depends on the method, and w is related to the Lipschitz-
constant (or highest frequency) of the differential equation.

If h is small enough, the second error term in (1.11) is exponentially
small on exponentially long time intervals. Thus we have error conser-
vation up to a bounded O(h") term on such long intervals.

Let us illustrate this behaviour with the symplectic Euler method
(1.8) applied to the Sun—Jupiter—Saturn system. Figure 1.3 shows the
relative error in the Hamiltonian on an interval of 500 000 Earth days.
The energy oscillates around the correct constant value and does not
show any drift. The non-symplectic explicit Euler method, however, has
a linear drift in the energy that makes the method useless even when
applied with a much smaller step size.

02 explicit Euler, h = 0.1
.01
.00 ffy
—o1 symplectic Euler, h = 50

Fig. 1.3. Energy conservation of numerical methods.
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Idea of the proof (backward error analysis). Let us indicate the
proof of the previous theorem. This is a welcome opportunity for men-
tioning backward error analysis which is one of the most important tools
in the analysis of geometric integrators.

Formal analysis. The numerical solution of a B-series method can
be interpreted as the exact solution of a modified differential equation
which, very similar to (1.4), is of the form

g o= f)+h(])f' W) f) (1.12)
+ 12 (D p10) (1), 1) + U DF OF @I W)+ .

The coefficients b(7) of this modified equation are obtained recursively
by comparing the series (1.4) with the Taylor series expansion of the
solution of (1.12) at ¢t = h. Consequently, we have y, = @nn(yo), where
#t(y) is the exact flow of (1.12).

It turns out that for symplectic B-series integrators (1.4) and for
fly) = J'VH(y), (1.12) is Hamiltonian with modified Hamiltonian

H(y) = H(y) + h" Hepa(y) + B oo (y) + . (1.13)

Since the exact flow @;(y) conserves the Hamiltonian H (y), it follows
that H(y,) = const, and thus H(y,) = H(yo) + O(h"). Unfortunately,
the above series are asymptotic series and usually diverge. This is why
we call this part of the proof a formal analysis.

Rigorous analysis. Whereas the formal analysis is relatively simple
and gives already much insight into long-time integration, the rigorous
analysis is rather technical. One has to truncate the series so that the
resulting error in y,, — @nn(yo) is as small as possible. This induces the
linearly increasing exponentially small error term in the statement of
Theorem 1.2.2.

Illustration with the Lennard—Jones potential. To illustrate the
result of the previous theorem, consider the Hamiltonian

1 _ _
H( ,q)=5p2+q 2 —q°,

which models the motion of a particle against a strongly repelling wall.
The variable g represents the distance to the wall, and p the veloc-
ity of the particle. With initial values ¢ = 10 and pg < 0 such that
H(po,qo) = 1, the particle moves against the wall until ¢ ~ 6.5, and
then it bounces off.
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Fig. 1.4. Error in the truncated modified Hamiltonian for the Lennard Jones
potential and the Stormer—Verlet method.

The solid lines in Figure 1.4 show the error in the Hamiltonian H (p, q)
for the Stormer—Verlet method applied with 3 different step sizes. In the
beginning this error is very small, then it increases and is maximal when
the particle approaches the wall. At ¢ = 6.5 the value of ¢ is very
small, so that the Lipschitz constant of the system (i.e., w in (1.11))
is large. For relatively large step sizes h (upper pictures of Figure 1.4)
when wh =& 1, the exponential term in (1.11) becomes dominant, and
energy conservation breaks down. In such situations, the value of the
energy can change dramatically. We thus see that in spite of the use of
a symplectic integrator, the energy drifts off the correct value if the step
size is too large.

For this simple problem, we have computed the perturbations Hz(y)
and Hj(y) in the modified Hamiltonian (the functions Hsk(y) vanish
identically, because the Stormer—Verlet method is symmetric). In Fig-
ure 1.4 we have included the functions H (y,, )+h?Hs(y,)—const (dashed)
and H (y,,)+h?Hz(y,)+h*Hs(y,) — const (dotted), where the constants
are chosen so that the expressions vanish at the initial value. We see
that H(yn) + h?Hs3(yn) + h*Hs(yn) = const up to round-off on a large
part of the interval considered. This nicely illustrates that the modified
Hamiltonian is much better conserved than the energy H(y).
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1.3 Methods that nearly conserve quadratic first integrals

We next study the question whether a larger class of numerical integra-
tors can have the same good energy conservation as symplectic methods.
Let us begin with an instructive example.

1.3.1 Trapezoidal rule

Consider the trapezoidal rule

pir = vt 5 (Fn) + ), (114)

and apply it to the Sun—Jupiter—Saturn system as in the previous exper-
iments. Figure 1.5 shows the error in the Hamiltonian (upper picture)
and in the angular momentum (lower picture), which is a quadratic first
integral of the system. We have used the same initial data and the same
integration interval as in Figure 1.3, and constant step size h = 50.

We first notice that the trapezoidal rule cannot be symplectic. Oth-
erwise, by Theorem 1.2.1, the angular momentum would be exactly
conserved along the numerical solution. Nevertheless, we observe an
excellent conservation of the total energy, very similar to that for the
symplectic Euler method of Figure 1.3. We shall give two explanations
of this good long-time behaviour.

001 error in the total energy
000!
-.001

.001 error in the angular momentum (norm)

.000
-.001

Fig. 1.5. Error in the total energy and in the angular momentum for the
trapezoidal rule.

1st explanation: near-conservation of quadratic first integrals.
Let u(t) be a solution of the modified differential equation in the sense
of backward error analysis, cf. (1.12). For the moment we only need that



Long-time energy conservation 11

u(t) is smooth and u(t,) = y,. This function thus satisfies

u(t+h) = u(t) + g(f(u(t +h)) + f(u(t))).

Writing the Taylor series expansion as u(t + h) = e"Pu(t), where D

denotes differentiation with respect to time ¢, this relation becomes

(ehD - l)u(t) - g(ehD + 1>f(u(t)) (1.15)
or, equivalently,
2 4
(1 - %D2 + %OD“ +.. .)u(t) = f(u(t)). (1.16)

Assume now that Q(y) = yT Cy is a first integral of the differential equa-
tion (like the angular momentum in the Sun—Jupiter—Saturn system).
This is equivalent to the condition yTCf(y) = 0 for all y. Multiplying
(1.16) from the left by u(t)Y'C gives a vanishing right-hand side and
(omitting the obvious argument t)

h2 @) h4

T - 2 (5) — T —
uC’(u Tk +120u +) u Cf(u)=0. (1.17)

Miraculously, this expression can be written as a total differential and,
after multiplication by 2, becomes

d( p PN S
E(u C’ufﬁ(Qu Cii—1 Cu)—}-...):O. (1.18)
This means that the function u(t) and hence the numerical solution of

the trapezoidal rule leaves the expression

Q) = Cy - "= (W CF W) - 1T CHW) +... (119

invariant. Consequently, the original first integral Q(y) = yT Cy is nearly
conserved with an O(h?) error that does not grow with time. This
completely explains the behaviour of the lower picture of Figure 1.5.

2nd explanation: conjugate symplecticity. Let @E“lex and @E““m
denote the numerical flow of the explicit and implicit Euler methods,
respectively. Those of the trapezoidal rule (1.14) and of the midpoint
rule (1.7) are then given by

trap _ xEulim Eulex midp _ xEulex Eulim
D) =P 0 Py D) = Oy 0Oy
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This implies that the trapezoidal rule and the implicit midpoint rule

are connected by the conjugacy relation @11 0 P — oyidr o DR,

With yj, := (@9P)=1/2 6 (I)E%ex, which is O(h?) close to the identity,
N B Z BP0 and o (BUY = (@R oy, (1.20)

so that a numerical solution {yp }n>¢ of the trapezoidal rule is connected
via Xp(Yn) = 2y, to the numerical solution {z,},>¢ of the midpoint rule
obtained with starting value zp = xx(yo). This explains why the non-
symplectic trapezoidal rule has the same good long-time behaviour as
the symplectic midpoint rule (upper picture of Figure 1.5).

1.3.2 Symmetric linear multistep methods

Symmetric linear multistep methods form an important class of numer-
ical integrators that have properties similar to those of the trapezoidal
rule. However, one has to take care of the stability of parasitic solutions.

Multistep methods for first-order differential equations. Since
the numerical solution of a multistep method

UYntk + -+ oyn = R(Bef Yntk) + -+ Bof(yn)) (1.21)

depends on k starting approximations yo, ..., yr—1, it is not at all ob-
vious how symplecticity or the conservation of first integrals should be
interpreted. The key idea is to consider the so-called underlying one-
step method ®p,(y), which is formally a series like (1.4), whose coefficients
a(e), a(/),... are determined by

ap®F () + ...+ a1®u(y) + aoy = h(Bf(PF(Y)) + ... + Bof ().

This means that for starting approximations given by y; = @i(yo) for
j=0,...,k — 1, the numerical solutions of the multistep method and
of its underlying one-step method are identical. We say that the lin-
ear multistep method (1.21) is symplectic (conserves energy, conserves
quadratic first integrals, ...), if its underlying one-step method is sym-
plectic (conserves energy, conserves quadratic first integrals, . ..).

It has been shown by Tang (1993) that linear multistep methods can-
not be symplectic. However, they have an interesting property that
will be explained next. If we let u(t) be the solution of the modified
differential equation of ®,(y), we have

p(e"P)u(t) = ho(e"P) £ (u(t)),
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where p(¢) and o(() are the generating polynomials of the coefficients
a; and 0, respectively. This equation reduces to (1.15) for the trape-
zoidal rule. If the method is symmetric (ay—; = —a; and Br—; = 5;),
the analysis of Section 1.3.1 extends straight-forwardly to the present
situation, and shows that for problems having Q(y) = yTCy as first in-
tegral there exists Q(y) of the form (1.19) which is exactly conserved by
the method (see Hairer & Lubich (2004)). Moreover, Chartier, Faou &
Murua (2005) have shown that a method with this property is conjugate
to a symplectic integrator.

Attention! In spite of these nice properties of symmetric linear mul-
tistep methods (1.21), they are not recommended for the long-time in-
tegration of Hamiltonian systems. The difficulty is that for nonlinear
problems no results on stable propagation of the parasitic solution com-
ponents are known, and numerical experiments reveal that they are un-
stable in most cases.

Multistep methods for second-order differential equations. An
important class of Hamiltonian systems have H(p,q) = %pTM “p+
U(q) with constant mass matrix M (for convenience we assume in the
following that M is the identity). Such problems are equivalent to the
second-order differential equation

G=-VU(q), (1.22)

and it is natural to consider multistep methods adapted to this form:

Qklnik + -+ 0Gn = —h? (BkVU(anc) 4+ ...+ ﬁoVU(qn)). (1.23)

Notice that the Stormer Verlet method (1.10) is a special case of this
formulation. The statements for methods (1.21) can all be extended to
the situation of second-order differential equations (near conservation
of quadratic first integrals, conjugate symplecticity of the underlying
one-step method).

To also obtain bounds on the parasitic solution components for ar-
bitrary starting approximations, we extend the idea of backward error
analysis (Hairer 1999). We write the numerical solution as

Gn = v(nh) + Z (fwj(nh) (1.24)

where the (;’s stand for zeros (different from 1) of the characteristic

polynomial p(¢) = Z?:o @;j¢7 and products thereof. Inserting (1.24)

into the linear multistep formula (1.23), expanding into a Taylor series,
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and comparing the expressions multiplying (7 and powers of h, we get
the modified equations — a second-order differential equation for v(t),
first-order differential equations for wj;(t) if ¢; is a simple zero of p((),
and algebraic relations, if {; is a product of zeros of p(().

If we are interested in energy conservation we have to complement
(1.23) with an approximation of the derivative, which in general is given
by a formula of the form

I
. 1
4n = E Z 5an+j-
j=—¢
Exploiting the Hamiltonian structure in the modified differential equa-
tions, Hairer & Lubich (2004) prove the following result.

Theorem 1.3.1 Consider the Hamiltonian system (1.22) with analytic
potential function U(q), and assume that the linear multistep method
(1.28) has order r and is

o symmetric, i.e., ap_j = o and Br_; = B;;
o without weak instability, i.e., p(¢) = (¢ — 1)?p(¢) and the zeros
of p(€) lie on the unit circle, are simple, and different from 1.

If the starting approximations qo, - . . , qe—1 are O(h™™1) close to the exact
solution, and the numerical solution stays in a compact set, then we have
on intervals of length T = O(h~""2)

o |lw;(t)]] < Ch™ with C independent of t;

o {qn,Gn} nearly conserves the total energy (without drift);

o {qn,Gn} nearly conserves quadratic first integrals of the form q¥ Eq
(without drift).

We do not have energy conservation on exponentially long time inter-
vals (as for symplectic integrators), but the intervals are sufficiently long
for practical computations. This result justifies the use of high-order
symmetric linear multistep methods (1.23) for long-time integrations in
celestial mechanics.

1.4 Energy conservation with symmetric methods

There is still another class of numerical integrators — symmetric meth-
ods — which, for special kinds of Hamiltonian systems, give good energy
conservation. Since in certain situations (such as variable step size in-
tegration, multiple time stepping, reversible averaging) it is much easier
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Fig. 1.6. Error in the total energy and in the angular momentum for the 3-
stage Lobatto I1IB method.

to design symmetric discretisations than symplectic ones, it is of interest
to characterise the problems for which symmetric methods have a good
long-time behaviour.

1.4.1 Symmetric non-symplectic methods

Let us start with a numerical experiment. We consider the 3-stage Lo-
batto IIIB method which is an implicit Runge-Kutta method (its coeffi-
cients can be found in Section II.1.4 of HLW02). It is neither symplectic
nor conjugate to a symplectic method (see Section VI.7.4 of HLW02),
but it is a symmetric integrator. This means that its numerical flow sat-
isfies @} (y) = ®(y). We apply this integrator with step size h = 400
in the usual way to the three-body Sun Jupiter Saturn system. The
result can be seen in Figure 1.6. There is apparently no difference com-
pared with the results obtained by the trapezoidal rule. What is the
reason?

1.4.2 Integrable reversible systems

Unfortunately, very little is known about the energy conservation of sym-
metric B-series methods. The only exceptions are integrable reversible
systems. In this survey article we present some results without giv-
ing all the technical assumptions, and we refer the interested reader to
Chapter XI of HLWO02.

We assume that the differential equation (not necessarily Hamilto-
nian) can be written in the form

= f(u,v), 0 = g(u,v), (1.25)
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and that it is reversible with respect to the involution (u,v) — (u, —v).
This means that

flu,=v) = =f(u,v),  g(u,—v) = g(u,v). (1.26)

Hamiltonian systems, for which the Hamiltonian is quadratic in p, satisfy
these relations with ¢ in the role of u, and p in the role of v.

Such a system is called an integrable reversible system if there exists
a reversibility-preserving change of coordinates (a,6) — (u,v) such that
in the new coordinates the system is of the form

a=0, 0=uw(a). (1.27)

This system can be solved exactly. The action variables a are constant
(i.e., first integrals), and the angle variables 6 grow linearly with time.
The Kepler problem with H(p1,p2. q1,¢2) = 5(p? + p3) — (¢} + ¢3) /2
satisfies all these conditions if we put u = (g1,p2) and v = (—p1, ¢2).
The Sun—Jupiter—Saturn system is a small perturbation of an integrable
reversible system.

Under certain technical assumptions (analyticity of the vector field,
strong non-resonance condition, etc.) it is proved in HLW02 that all
action variables are nearly conserved over long times for symmetric B-
series methods. Moreover, the global error grows at most linearly with
time. Since these results hold also for small reversible perturbations
of integrable reversible systems, the behaviour shown in Figure 1.6 is
explained.

1.4.3 An example: the perturbed pendulum

Let us illustrate with a simple example the difficulties that can be en-
countered by a symmetric method. Consider the one-degree-of-freedom
Hamiltonian system with (see Figure 1.7)

1
H(p,q) = §p2 — cosq + 0.2sin(2q). (1.28)

With v = ¢ and v = p it is of the form (1.25) and satisfies the condition
(1.26). Considered as a Hamiltonian system, it is also integrable.

We consider two different initial values (thick points in Figure 1.7).
The values go = 0 and py = 1.8 produce a periodic solution whose orbit
is invariant with respect to the reflection p — —p. For ¢y = 0 and
po = 2.2 the solution is still periodic (on the cylinder), but it does not
contain any symmetry.
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Fig. 1.7. Phase portrait of the perturbed pendulum problem.

As in the previous experiment, we apply the 3-stage Lobatto I1IB
method. We use the step size h = 0.2 and consider an interval of
length 200. For the initial values with symmetric solution (Figure 1.8)
the energy is well conserved without any drift. For the second set of
initial values, however, there is a clear drift in the energy along the
numerical solution (Figure 1.9).

Symplectic methods and methods that are conjugate to a symplec-
tic method will have bounded energy error for this problem. We have

0001 F
Lobatto I1IB, h = 0.2

.ooooiM M M ‘U\ M M M M M ‘U\ M M M M M M M M M M M ‘\

—-.0001F

Fig. 1.8. Energy conservation of the Lobatto IIIB method for the perturbed
pendulum with initial values corresponding to a symmetric solution.

0002
0001, Stormer—Verlet, h = 0.01
.0000E
-.0001¢
-.0002
—.0003F

Fig. 1.9. Energy conservation of the Lobatto IIIB method for the perturbed
pendulum with initial values corresponding to a solution without symmetry.
The result of the symplectic Stormer—Verlet scheme is included.
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included in Figure 1.9 the numerical result obtained with the symplec-
tic Stormer—Verlet method (with smaller step size, because it is only of
order 2, compared to order 4 of the Lobatto IIIB method).

1.5 Concluding remarks

In many applications, and in particular in long-time integrations of me-
chanical systems, it is important that the energy along the numerical
solution does not drift from the correct value. Within the class of B-
series methods we have studied the following properties:

o symplecticity (Section 1.2): the energy is nearly conserved for all
Hamiltonian systems (integrable or chaotic) provided the step size
is sufficiently small;

e conjugate symplecticity (Section 1.3): methods with this property
have the same long-time behaviour as symplectic methods and are
well suited for the integration of Hamiltonian systems;

e symmetry (Section 1.4): for reversible Hamiltonian systems and a
solution with a certain symmetry, symmetric methods usually give
excellent results; a complete explanation is missing in many situations.

Figure 1.10 shows the connections between these properties. Symplec-
ticity and exact energy conservation are not compatible. However, it
is possible to have symmetric methods that exactly conserve energy.
Examples are energy-momentum methods (see Section V.5 of HLW02)
which, however, do not fall into the class of B-series methods.

conserv.
symplectic

conjugate symplectic

Fig. 1.10. Survey of geometric integrators for Hamiltonian systems.
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